
Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2011, Article ID 126407, 12 pages
doi:10.1155/2011/126407

Research Article

SEF: A Secure, Efficient, and Flexible Range Query Scheme in
Two-Tiered Sensor Networks

Jiajun Bu,1 Mingjian Yin,1 Daojing He,1 Feng Xia,2 and Chun Chen1

1 Zhejiang Provincial Key Laboratory of Service Robot, College of Computer Science, Zhejiang University, Hangzhou 310007, China
2 School of Software, Dalian University of Technology, Dalian 116024, China

Correspondence should be addressed to Jiajun Bu, bjj@zju.edu.cn

Received 10 February 2011; Accepted 19 May 2011

Copyright © 2011 Jiajun Bu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Large-scale wireless sensor networks follow the two-tiered architecture, where master nodes take charge of storing data and
processing queries. However, if a master node is compromised, the information stored in it may be exposed, and query results can
be juggled. This paper presents a novel scheme called SEF for secure range queries. To preserve privacy, SEF employs the order-
preserving symmetric encryption which not only supports efficient range queries, but also maintains a strong security standard.
To preserve authenticity and integrity of query results, we propose a novel data structure called Authenticity & Integrity tree.
Moreover, SEF is flexible since it allows users to include or exclude the authenticity and integrity guarantee. To the best of our
knowledge, this paper is the first to use the characteristic of NAND flash to achieve high storage utilization and query processing
efficiency. The efficiency of the proposed scheme is demonstrated by experiments on real sensor platforms.

1. Introduction

The traditional architecture of wireless sensor networks
(WSNs) always assumes that a trusted base station (or
sink) is present and responsible for collecting data from
the sensor nodes and processing query requests from the
users. However, many WSNs are deployed in hostile and
harsh environments such as battlefields, forests, and oceans
where it is impossible or difficult to establish a stable
communication link from sensor nodes to the base station.
Summarizing the above, we can see that such an architecture
only makes sense for experimental and small networks. As
illustrated in Figure 1, large-scale WSNs follow a two-tiered
architecture, where a large number of regular resource-
poor sensor nodes are at the lower tier and fewer resource-
rich master nodes are at the upper tier. The two-tiered
architecture has been widely adopted [1, 2] because of
the benefits of energy and storage saving as well as the
efficiency of query processing. Compared with sensor nodes,
master nodes have more powerful computing power and
more energy supply, additionally they are equipped with
several gigabytes of NAND flash for tens of dollars. The
sensor nodes are organized as cells and each cell includes
a master node referred to as the cell header. The sensor
nodes are responsible for sensing data and submitting data

to the master nodes, while the master nodes take charge of
storing data and performing resource-demanding tasks such
as query processing. In this paper, we focus on range queries,
namely, once the base station launches a query request to
a master node to query the data items in the range [low,
high], the master node must return all data items in the query
range. Note that if low is equal to high, the query is actually
an equality query that requires the master node to return
all data items that are equal to low (or high). Our scheme
also supports equality queries. For simplicity, we refer to the
sensor node, master node, and base station as SN, MN, and
BS, respectively, in the rest of this paper.

The inclusion of MNs also incurs significant security
challenges. Since both data storage and query processing
rely on MNs, MNs are prone to be the target of attacks,
especially in some unattended and hostile environments such
as military scenarios. And the adversary is more attracted
to compromise MNs to greatly damage WSNs. If MNs are
compromised, the adversary can launch at least three types
of attacks. First, the adversary can read all data stored in the
compromised MNs and breach data privacy. A sound defense
to this attack should ensure data privacy and still enable
efficient query processing. Second, the compromised MNs
may send tampered or forged data in response to queries,

2 International Journal of Distributed Sensor Networks

Query Result

Base station

Master node

Sensor node

Data
Query Result

Base station

Master node

Sensor node

Data

Figure 1: Architecture of a two-tiered WSN.

which breaches the authenticity of query results. Thirdly, the
returned query results may not be integral, which means that
some qualified data items are omitted by the compromised
MNs. Therefore, a solution is required urgently, which can
offer efficient and effective range queries. At the same time
it can also preserve data privacy as well as the authenticity
and integrity of query results at the presence of compromised
MNs.

In some cases, the authenticity and integrity guarantee
might not be always necessary, for example, out of consid-
eration for reducing communication and verification cost.
Therefore, a range query scheme should be flexible, namely,
the users can choose to include or exclude the authenticity
and integrity guarantee according to different applications.

The main contributions of this paper include the fol-
lowing: (1) To the best of our knowledge, this paper, for
the first time in the literature, considers the characteristic
of NAND flash when designing query schemes in WSNs.
Our work explores the storage media concerns in general
WSNs and provides a novel approach for data storage
and query processing. (2) We propose a secure, efficient,
and flexible range query scheme called SEF for two-tiered
WSNs, in which only the order information of the encrypted
data is exposed to MNs. (3) Since some applications may
require authenticity and integrity guarantee of query results,
and others may not, by keeping encrypted data separated
from verification information, our scheme provides much
flexibility. (4) We evaluate our scheme in a test bed; the
results show that compared with existing schemes, our
scheme performs better on both energy consumption and
storage consumption.

The rest of this paper is organized as follows. Section 2
gives a brief review of the related work. Section 3 presents
the network and adversary models. Section 4 introduces
some techniques and notations used in this paper. Section 5
describes our scheme in detail. Section 6 gives a detailed
security analysis of the proposed scheme. Section 7 reports
the performance evaluation results. Section 8 concludes the
paper.

2. Related Work

Data security has gained some attention in outsourced
database community [3–5]. In an outsourced database
system, a data owner publishes his/her data through a
remote server which may be untrusted or compromised.

The remote server answers user queries on behalf of the
data owner. However, due to the unique and challenging
characteristics and security requirements of WSNs, such as
limited computing power and communication capability,
these approaches are not suitable for WSN applications.

Despite significant progress in WSN security such as
[6, 7], secure range queries have started receiving people’s
attention very recently [8–12]. In [8] Sheng and Li first
considered the privacy issue in the design of range query
schemes in WSNs. We call it “SL” scheme in the rest of
this paper. They apply the bucketing technique introduced
in [13] to fulfill secure range queries. The basic idea of
bucketing technique is to partition the domain of sensed
data values into buckets and each bucket is assigned with
a bucket tag. The bucket tags are exposed to SNs, MNs,
and the BS, but how to partition the domain of sensed data
values into buckets is only known to SNs and the BS. A data
item sensed by a SN is placed into a bucket according to the
partition. Then all data items falling into the same bucket are
encrypted as a whole, at last the SN sends the buckets as well
as the bucket tags to its MN. In order to make the BS verify
whether the returned query result is integral, [8] introduces
the encoding technique. The bucket into which no data item
falls is attached with an encoding number.

In [9, 10], Shi et al. proposed an optimized integrity
verification version of SL scheme, to reduce the communi-
cation cost between the SN and its MN caused by encoding
technique. The basic idea is that each SN uses a bit map
to represent which buckets have data and broadcasts its
bit map to nearby SNs. Each SN attaches the bit maps
received from other SNs to its own data items, then encrypts
them together. However, the optimization technique causes
a serious problem that is a compromised SN can easily
breach the integrity verification of the network by sending
false bit maps. On the contrary, SL scheme and our scheme
do not have the problem. As the techniques used in [9,
10] are similar to [8] except the optimization for integrity
verification, they inherit the same weakness with SL scheme.

There are many common drawbacks in the schemes of
[8–10]. (1) They require in advance the accurate distribution
of sensed data items, F(x) (i.e., the probability that a sensed
data item is x). In reality, it is very hard to meet the
requirement; sometimes the BS is unable to estimate F(x) in
advance. (2) The bucketing technique incurs a problem of
false positive [13]; some useless data items are sent back to
the BS. The less the buckets are, the more useless data items
are. While the more the buckets are, the more the exposed
privacy is. Consider an extreme case, every distinct value has
a unique bucket tag. If a SN is compromised, the value and
bucket-tag mapping will be exposed, then the adversary can
derive all data values stored in the compromised MN, even
though the data is encrypted. (3) As all SNs in the same cell
share the same bucket tags, and the bucket tags are constant,
if the adversary compromises a SN, the adversary can get
other SNs’ information just by overhearing. Specifically the
information that into which range the data items fall, as
well as how many data items a range has, is exposed to the
adversary. (4) They do not consider the storage media issue
of MNs. Since SNs or MNs can create a search index, such

International Journal of Distributed Sensor Networks 3

as B+ tree [14] and EMB tree [3], to speed up the process
of searching data, the cost of reading data from NAND
flash is dominant in query processing. The I/O interface
of NAND flash does not provide a random-access external
address bus, data must be read on a pagewise basis, with
typical page sizes of 256 or 512 bytes. The storage media
issue greatly influences the storage utilization and query
processing efficiency.

In order to address the drawbacks of these schemes, Chen
and Liu proposed a novel privacy and integrity preserving
rang query protocol called SafeQ-Basic in [11, 12]. To
preserve privacy, their protocol uses the prefix membership
verification scheme first introduced in [15]. The basic idea
of the prefix membership verification scheme is to convert
the verification of whether a number is in a range to several
verifications of whether two numbers are equal. Interested
readers can refer to [15] for more detailed information.
To preserve integrity, they propose a data structure called
neighborhood chaining. The main idea of neighborhood
chaining is to sort the sensed data items in ascending
order first, and each data item di concatenates its right
neighbor di+1, then di‖di+1 are encrypted together, i =
1, 2 . . . , N − 1 (suppose there are N data items), where ‖
denotes concatenation.

SafeQ-Basic causes large computation, communication,
and storage overhead, because the prefix membership
verification scheme requires many HMAC operations and
produces a lot of HMACs. To reduce the communication
and storage overhead, [11, 12] also proposed an optimized
version of SafeQ-Basic, called SafeQ-Bloom. SafeQ-Bloom
uses a Bloom filter to represent HAMCs. Thus, an SN
only needs to send the Bloom filter instead of HMACs.
The number of bits needed to represent the Bloom filter
is much smaller than that needed to represent HMACs.
However, to produce the Bloom filter further leads to more
computation overhead. These features make SafeQ-Basic and
SafeQ-Bloom not efficient and not suitable for WSNs. We
find that though SafeQ-Basic and SafeQ-Bloom apply the
ordinary symmetric encryption algorithm to encrypt sensed
data items, such as DES in their experiments, the order of
encrypted data items is still exposed to MNs because all
encrypted data items are sorted in ascending order. This
security standard is the same as that of SEF. Moreover,
neither SafeQ-Basic nor SafeQ-Bloom considers the storage
media issue.

3. Network and Adversary Models

3.1. Network Model. We consider a large-scale two-tiered
WSN as illustrated in Figure 1. The WSN consists of SNs and
MNs; the network is partitioned into cells, according to the
geographic location, each SN belongs to one cell, and each
cell contains an MN which is in charge of other SNs in the
cell. In some scenarios, two adjacent cells maybe overlap; in
this case the SNs in the overlapping regions are affiliated with
both MNs. The SNs are limited in storage, energy supply,
and computing power; in contrast the MNs are resource-rich
devices.

Time is assumed to be divided into time slots and all SNs
and MNs are loosely synchronized with the BS. We assume
that every SN senses the environment data in a fixed rate and
periodically submits sensed data to its MN.

Contrary to conventional WSNs, our WSN has no stable
always-on communication link to the external BS. MNs store
all data collected from SNs which they are in charge of. The
BS can query MNs for data on demand. We assume that
MNs have enough storage to store data. Nowadays, most
embedded devices use NAND flash as the storage media. In
this paper, we follow the assumption that the storage media
of MNs is the most conventional NAND flash [16, 17].

In this paper, for sake of simplicity, we assume that any
query request can be converted into multiple range query
primitives having the format:

cell = C ∧ SN = S∧ time = T ∧ value ∈ [low, high
]
, (1)

where C, S, and T represent the IDs of a cell, SN, and time
slot, respectively, and [low, high] is the query range.

3.2. Adversary Model. Due to the broadcast nature of wireless
communication environments, the adversary may launch
many attacks such as jamming, passive eavesdropping, and
bogus-message injection. There exist rich elegant defenses to
these attacks such as in [18–23]. We resort to the existing rich
literature for these attacks. This paper particularly focuses on
SNs compromise and MNs compromise attacks.

(1) SNs compromise: if an SN is compromised, the
data values stored in the SN will be exposed to the
adversary and the compromised SN may send forged
data to its MN. Unfortunately, it is very difficult
to prevent such attack without the use of tamper
proof hardware. We follow the same SNs compromise
assumption with [11, 12]. If an SN is compromised,
the adversary can just access the data stored in the
compromised SN. It must be guaranteed that the
adversary cannot make any damage to other SNs and
MNs by the compromised SN.

(2) MNs compromise: once an MN is compromised, the
adversary can read all data stored in the compromised
MN and try to obtain the data values, which violates
data privacy. Second, the compromised MN can
return tampered, forged or not integral query results
in response to queries. As compromising an MN can
cause greater damage to WSNs than compromising
an SN, the adversary is more attracted to compromise
MNs. We propose a novel data structure called
Authenticity&Integrity tree (AI tree for brevity) to
guarantee the authenticity and integrity of query
results from MNs.

4. Preliminaries and Notations

In this section we review some cryptographic essentials used
by our system.

4 International Journal of Distributed Sensor Networks

Data block 4

h2 h3 h4h1

Data block 3Data block 2Data block 1

h1-2 h3-4

h1–4

Figure 2: A Merkle hash tree example.

Order-Preserving Symmetric Encryption. The Order-
Preserving Symmetric Encryption (OPSE) is a deterministic
encryption scheme whose encryption function preserves
the numerical order of the plaintexts [24]. More specifically
OPSE has the property that given two numbers x and
y, x ≤ y, after encrypted using OPSE function Enc(·),
Enc(x) ≤ Enc(y). OPSE provides efficient range queries on
encrypted data. By “efficient” we mean in time logarithmic
in the size of data, as performing linear work on each query
is prohibitively slow in practice for a large amount of data.
Consider an OPSE function Enc(·) from plaintext domain
D = 1, . . . ,P to ciphertext domain R = 1, . . . ,Q, Enc(·) can
be uniquely defined by a combination of P out of Q ordered
items. An OPSE algorithm is then said to be secure if and
only if an adversary has to perform a brute force search over
all possible combinations of P out of Q ordered items to
break the encryption scheme. The concept of OPSE was first
proposed in database community by Agrawal et al. [25]. In
[24] Boldyreva et al. gave the state-of-the-art cryptographic
study of OPSE primitive and provided a construction
that is provably secure under the security framework of
pseudorandom function or pseudorandom permutation.
The readers can refer to [24] for more details about OPSE
and its security definition.

HMAC. In cryptography, HMAC (Hash-based Message
Authentication Code) is a specific construction for calcu-
lating a message authentication code (MAC) involving a
collision-resistant hash function in combination with a secret
key. As with any MAC, it may be used to simultaneously
verify both authenticity and integrity of a message. Any
cryptographic hash function, such as MD5 or SHA-1, may
be used in the calculation of an HMAC. The cryptographic
strength of the HMAC depends upon the cryptographic
strength of the underlying hash function.

Merkle Hash Tree. Merkle hash tree (MHT) first invented in
1989 by Merkle [26] is a tree of digests in which the leaf is the
digest of a data block. Nodes further up in the tree are the
digests of their respective children. For example, as shown
in Figure 2, h1-2 is the digest of hashing h1 and h2. That is,
h1-2=h(h0‖h1) where ‖ denotes concatenation. Most Merkle
hash trees are binary (two child nodes under each node)
but they can as well use many more child nodes under each
node. The Merkle hash tree is always used to authenticate a
set of messages collectively, without authenticating each one

Table 1: Primary notations.

Notation Description

L Number of SNs in a cell

N Number of sensed data items in a time slot

n Number of encrypted data items in a page

m Number of leaves of upper tree in a page

S Query result to a query

h(msg) Digest of hashing msg

Enc(k, msg) OPSE ciphertext of msg

hmac(k, msg) HMAC of msg

|P|, |d| Size of a page and digest

|e| Size of an encrypted data item

|des|, |lev| Size of a descendant label and level label

height Height of AI tree

[low, high] Query range

MHT Merkle hash tree

individually, for example, [4, 27]. Following the same idea
with [4], we propose a novel data structure called AI tree to
guarantee the authenticity and integrity of query results from
MNs.

Table 1 lists the primary notations used in this paper.

5. The Proposed Scheme

In this section, our scheme, SEF, is described in detail.
Without loss of generality, we focus on one cell consisting
of L SNs referred to as SNi, i = 1, 2, . . . ,L and a MN referred
to as MN.

5.1. System Initialization. A simple approach for data privacy
is to require each SN to encrypt each data item using ordinary
symmetric encryption algorithm (such as DES and AES)
before sending it to MN. Although this approach leaks the
least information to MN and provides strong privacy, it is
not suitable for efficient range queries because MN has no
knowledge to locate the encrypted data items which exactly
match the range. MN has to send the entire encrypted data
collected in the specified time slot to the BS. Obviously,
this approach is very inefficient and wastes much energy. To
address this issue, we employ OPSE in our scheme, which
only exposes the order information of the encrypted data to
MN. OPSE not only allows efficient range queries, but also
maintains a strong security standard.

The BS loads an OPSE function and a hash function
to each SNi (1 ≤ i ≤ L). Additionally the BS loads the
hash function to MN. We use the notation Enc(k,m) for the
ciphertext of plaintext m, where the OPSE function is Enc(·)
and the key is k. In order to ensure data privacy against
adversaries or compromised MN, the sensed data must be
encrypted before sent to MN. So the BS preloads each SNi

with a distinct initial key key0
i which is only shared with the

BS and SNi. At the end of time slot t (t ≥ 0), SNi computes
a new key keyt+1

i = h(keyti), then erases the old key keyti . This
mechanism has several advantages: (1) compromising SNi

International Journal of Distributed Sensor Networks 5

and MN does not lead to the disclosure of the data values
sensed by SNi before the compromise. (2) As each SN has a
distinct key chain, even one SN is compromised, the security
of other SNs will not be affected. In addition, the BS chooses
two boundary data items, dmin and dmax, as the minimum
bound and maximum bound, respectively, for all possible
sensed data items. For example, the temperature in the range
[−50, 200] is considered reasonable in most situations, so the
BS can choose dmin = −100 and dmax = 300. Both dmin and
dmax are also loaded into each SNi (1 ≤ i ≤ L).

5.2. Sensor Node Behavior. Sensor node behavior is divided
into three phases: sensing phase, AItree-construction phase,
and communication phase. In sensing phase, SNi performs
sensing and simple encryption tasks. In AItree-construction
phase, on top of all encrypted data items, SNi builds an AI
tree and finally computes the HMAC. In communication
phase, SNi submits all encrypted data items and the HMAC
to MN.

In sensing phase, SNi performs the sensing task first.
Assume that SNi can sense N data items in time slot t. For
each sensed data item dj , 1 ≤ j ≤ N , dj is encrypted into ej=
Enc(keyti ,dj). In addition, SNi computes e0=Enc(keyti ,dmin)
and eN+1 = Enc(keyti ,dmax) as the minimum bound and
maximum bound for all ej , 1 ≤ j ≤ N .

Since the I/O interface of NAND flash does not provide
a random-access external address bus, data must be read
on a pagewise basis, our scheme makes full use of this
characteristic to achieve high storage utilization and query
processing efficiency. In AItree-construction phase, on top
of ej , 0 ≤ j ≤ N + 1, SNi constructs an AI tree which
consists of an upper tree and some lower trees as illustrated
in Figure 3. First of all, SNi sorts ej , 0 ≤ j ≤ N + 1. Then SNi

partitions the (N + 2) encrypted data items into pages, each
page contains n encrypted data items except the last page
which contains (N + 2)%n encrypted data items. Each page
should satisfy the condition:

|e| × n ≤ |P|, (2)

where |e|, |P| are the size of an encrypted data item and
a page of NAND flash, respectively. In order to achieve the
highest storage utilization, n is set to the largest value that
satisfies (2). Based on each page, a lower tree is constructed.
Afterward an upper tree is constructed based on the roots of
the lower trees. Finally SNi computes the HAMC using the
root of the AI tree.

In order to record the structure of the AI tree, two labels
are attached to each digest, called descendant label and level
label. We use the notation hdes

level to represent the digest and
these two labels. When des is set to “left”, it indicates the
digest is the left child of its parent; while des is set to “right”,
the digest is the right child of its parent. level is an integer
indicating which level the digest is in the AI tree. If the height
of the AI tree is height, height ≥ 0, the level of the root is
height. And the level of a child node is one less than that of its
parent. Since the root of the AI tree has no sibling, des of the
root is set to “left” or “right” is inessential.

For visualization, here we use an example to describe the
process. Figure 3 illustrates an AI tree in a scenario where
there are N = 9 data items (except e0 and e10) sensed by
SNi in time slot t. The 11 data items are sorted in ascending
order. Each page can contain 4 data items. The leaf of the
AI tree is the encrypted data item; the internal nodes and
the root are the digests of their respective child nodes. Here
HMAC = hmac(keyti ,h0−10).

In order to minimize the energy consumption, SNi

does not send the entire AI tree to MN. Our scheme is
based on the observation that the energy consumption
of communication is significantly more than that of hash
operation. In order to verify this observation, we make
a experiment on TelosB motes [28]. Figure 4 presents the
energy consumption of communication and hash operation.
Note that the communication involves two parties: the
sender and the receiver; the energy consumption of com-
munication is the sum of the sender’s and receiver’s energy
consumption. It can be concluded that the consumption of
communication is much more than that of hash operation.
So in communication phase, SNi only sends the HMAC and
encrypted data items (e0 to e10) to MN. MN rebuilds the
AI tree using the encrypted data items received. Though
rebuilding the AI tree consumes a little energy, this approach
reduces a lot of communication cost, so reduces the total
energy consumption. More importantly, as SN is energy
limited but MN has more energy supply, by transferring the
communication task between SN and MN to the hash task at
MN, this approach significantly prolongs the network’s life
cycle.

5.3. Master Node Behavior. After receiving all encrypted data
items and HMAC, MN rebuilds the AI tree, then stores
all encrypted data items, HMAC and partial digests of the
AI tree in NAND flash. Considering the characteristic of
NAND flash, that is, NAND flash is divided into pages, in
Section 5.5, we will discuss which digests of the AI tree are
stored, and how to store these digests.

If the BS wants to query MN for the data items in
range [low, high] sensed by SNi in time slot t, it launches a
query request specified by [Enc(keyti , low), Enc(keyti , high)].
Upon receiving the range query request, MN returns the
query result S to the BS. S consists of all encrypted data
items in [Enc(keyti , low), Enc(keyti , high)] and two boundary
data items, Bmin and Bmax, which fall immediately to the
minimum and to the maximum of the query range. The
inclusion of Bmin and Bmax is to confirm that all qualified data
items are contained by S. Additionally MN returns to the BS
a verification object referred to as VO, which is used to verify
the authenticity and integrity of S by the BS. VO consists of
three components: (1) the HMAC, (2) all left sibling digests
to the path of h(Bmin), and (3) all right sibling digests to the
path of h(Bmax). After receiving S and VO from MN, the BS
makes use of S and component (2) and (3) of VO to compute
HMAC. If the computed HAMC is equal to component (1)
of VO, S is definitely both authentic and integral. Otherwise
S is incorrect.

6 International Journal of Distributed Sensor Networks

h0−3 h4−7 h8−10

h0−7

h0−10

left

left

right

right

rightright

right

right right

right

rightright

left

leftleft

HMAC

Query rangeBmin Bmax

A Page

Low
er

trees

left

left left

left

left

0 0 0 0 0 0 00

1 1 1 1

1 1

2

2

2

2

3

3

4

d0
d2 d3d1 d10dmax

U
pp

er
tree

A
I

tree

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

dmin

h0-1 h2-3 h4-5 h6-7 h8-9

Figure 3: An AI tree example.

0 20 40 60 80 100 120 140 160 180

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

E
n

er
gy

co
n

su
m

pt
io

n
(m

J)

Data (byte)
Communication
Hash

Figure 4: Average energy consumption of communication and
hash.

For example, suppose the BS wants to query the data
sensed by SNi in time slot t, and the query range is [e6, e7].
As shown in Figure 3, since e5 and e8 fall immediately to
the query range, the boundary data items are Bmin = e5

and Bmax = e8. The paths leading to h(Bmin) and h(Bmax)
are shown bold. S = {e5, e6, e7, e8}. Component (1) of VO
is the HMAC = hmac(keyti ,h0−10). Component (2) of VO
consists of all left sibling digests to the path of h5, that is,
h0−3 and h4. Component (3) of VO consists of all right sibling
digests to the path of h8, that is, h10 and h9. Here we omit the
descendant labels and level labels attached to digests. Note
that the AI tree in Figure 3 is not a full binary tree, h10 is
actually the right sibling of h8-9.

In a real-world scenario not all applications require the
authenticity and integrity guarantee. For example, some
resource-critical applications may favor an energy-saving
response over a verified one. In these situations, MN only
returns the query result S, achieving the performance of a

nonauthenticated range query scheme. But in some cases the
authenticity and integrity guarantee is required, MN returns
VO in addition to S. By keeping encrypted data separated
from verification information, our scheme provides much
flexibility and optimizes the performance of applications.
Though the MHT needs not be binary, that is, it can be a
multiway tree, the AI tree must be binary to minimize the
number of digests in VO. Suppose the AI tree is an x-way
tree (i.e., each parent node has x child nodes), the maximal
number of digests in VO is f (x) = (x−1) logx(N+2). Clearly
f (x) is a strictly monotonically increasing function. So only
x = 2, the size of VO is minimal.

5.4. Network Owner Behavior. After receiving VO and S,
the BS reconstructs the AI tree and computes HMAC, then
verifies that the computed HMAC is equal to component (1)
of VO. The details of the process is described as follows.

The BS uses a digest array to store the temporal digests
computed on the fly. For simplicity of expression, we call the
digest inserted into the digest array first the most left digest
denoted by hl, and that inserted into the digest array last is
the most right digest denoted by hr . First of all, the BS hashes
all encrypted data items in S, and stores these digest in the
digest array. On the level η, (η from 0 to height), according to
the number of digests inserted into VO, there are three cases.

(i) There are two digests to which the level label η is
attached, denoted by hdes

η (des is “left” and “right”).

The BS computes h(hl‖hleft
η) and h(h

right
η ‖hr) to derive

the parent digests.

(ii) There is only one digest to which the level label η is
attached, denoted by hdes

η (des is “left” or “right”). If

des is “left”, the BS computes h(hl‖hleft
η) to derive the

parent digest. Otherwise the BS computes h(h
right
η ‖hr)

to derive the parent digest.

(iii) There is no digest to which the level label η is
attached, the BS takes no action.

International Journal of Distributed Sensor Networks 7

Then, the BS processes the unprocessed digests (includ-
ing hl and hr in the (iii) case). These unprocessed digests are
concatenated pairwise from left to right to derive the parent
digests. As the AI tree may not be a full binary tree, the last
digest in the digest array may have no sibling. In this case,
the last digest is not processed temporarily. This process is
carried out until there is only one digest left in the digest
array, which is exactly the root of the AI tree.

Recalling the example in Figure 3, the BS wants to query
the data sensed by SNi in time slot t, S = {e5, e6, e7, e8}
and VO = {h0−3,h4,h9,h10}. During verification, the BS
concatenates h4 and h5 to calculate h4-5, h6 and h7 to calculate
h6-7. Then the BS appends h6-7 to h4-5 to derive h4−7. After
that it appends h4−7 to h0−3 to derive h0−7. Similarly, it
calculates h8−10. Finally, BS gets h0−10 = h(h0−7 ‖h8−10), and
verifies whether hmac(keyti ,h0−10) is equal to component (1)
of VO.

5.5. AI Tree Compression. To reduce the storage overhead and
the cost of reading data from NAND flash, MN does not
materialize the entire AI tree. That is some internal nodes in
AI tree will not be stored in MN, but recomputed on the fly
when necessary. Since the I/O interface of NAND flash does
not provide a random-access external address bus, data must
be read on a pagewise basis, our scheme makes full use of
this characteristic to achieve the optimal storage utilization
and query processing efficiency.

Taking into account the characteristic of NAND flash,
with respect to the lower trees, MN only stores the leaves of
the lower trees (i.e., the encrypted data items). For example,
in Figure 3, when the BS wants to query e6 and e7, MN has
to load the entire page, so e4 and e5 are also loaded, then MN
computes h4, h5, h6, and h7 and finally gets h4−7. All these
digests are computed on the fly.

With regard to the upper tree, a basic approach is that
only the leaves of the upper tree are stored. The leaves of the
upper tree are read from NAND flash immediately, and the
internal nodes of the upper tree can be computed on the fly
using the leaves of the upper tree. For instance, in Figure 3,
assume that a page of NAND flash can accommodate more
than 3 digests, we use a single page to store h0−3, h4−7 and
h9-10. If h0−7 is a part of VO, MN only needs to load this page
and computes h0−7 = h(h0−3 ‖h4−7) on the fly. Though this
approach introduces little storage overhead, it is not efficient
if there is a lot of data, because the cost of reading leaves of the
upper tree from NAND flash may be expensive. For instance,
if there are p pages storing the leaves of the upper tree, but
the BS only wants to query a small fraction of the sensed data,
the roots of which are placed in p∗ pages, MN has to read at
least p − p∗ pages to get the other leaves of the upper tree.

To address the above issue, we apply the optimized
approach of [4]. Motivated by the characteristic of NAND
flash, that is, reading data from NAND flash is on a pagewise
basis, MN stores all digests of the upper tree required to
construct VO in one page. Following the same idea with
lower trees, MN also partitions the upper tree leaves (i.e.,
the lower tree root) into pages, suppose each page can
accommodate m upper tree leaves. For each page, MN

builds a binary compressed MHT. Afterward, a cusp tree is
constructed on top of all MHTs’ roots. For each MHT, only
the leaves and sibling digests to the path of the MHT’s root
are materialized; other nodes are not materialized, they are
computed on the fly when required. As shown in Figure 5,
the black rectangles represent the materialized nodes. Those
not materialized are represented by the striped rectangles.
Here we omit the descendant and level labels attached to
each digest and the unrelated nodes. Since data must be read
on a pagewise basis, in order to reduce the cost of loading
the upper tree, we place the m leaves and the sibling digests
to the path of the MHT’s root (h1 and h2) in one page of
NAND flash. The number of sibling digests to the path of the
MHT’s root is equal to the height of the cusp tree, which is
�log(�(�N/n)/m)	 (�	 means round up). Each page should
satisfy the condition:
(
m +

⌈
log
(⌈

(�N/n)
m

⌉)⌉)
× (|d| + |des| + |lev|) ≤ |P|,

(3)

where |d|, |des|, |lev|, |P| are the sizes of a digest, a
descendant label, a level label, and a page of NAND flash,
respectively. In order to minimize the storage overhead, we
set m to the largest value that satisfies (3).

As reading data from NAND flash is in pages, when
one page is loaded, all digests of the upper tree required to
construct VO are loaded. If Bmin and Bmax are covered by two
different MHTs, two page accesses are required; otherwise,
only one page access is required.

But there exists an extreme case in which N is so huge
that m is equal to 0. We define the page utilization ratio as

δ = m
⌈
log(�(�N/n)/m)⌉ . (4)

Given δ, we use λ pages to store these digests. That is,

m +
⌈

log
(⌈

(�N/n)
m

⌉)⌉
× (|d| + |des| + |lev|) ≤ λ|P|.

(5)

m is set to the maximum that satisfies (4) and (5). λ is set
to the minimum that satisfies (5). In this case, if Bmin and
Bmax are covered by two different MHTs, 2λ page accesses are
required; otherwise, only λ page accesses is required.

6. Security Analysis

6.1. Privacy Analysis. In a two-tiered WSN protected by our
scheme, even if an arbitrary number of MNs is compromised,
the adversary cannot obtain the actual values of data items
collected by SNs and the actual queries issued by the BS.
The reasons are given as follows. Both in the submission
and in the query, the data items and the query range sent to
the MNs are all encrypted using order-preserving encryption
algorithm. Without knowing the keys used in the encryption,
it is computationally infeasible for the adversary to get the
actual values of data items and query range.

If a SN is compromised, the collected data and key are
exposed to adversaries, and the compromised SN may send

8 International Journal of Distributed Sensor Networks

HMAC

Leaf

Materialized
node

Not materialized
node

U
pp

er
tree

C
u

sp
tree

C
om

pressed
M

H
T

h1

h2

Page of m leaves

Figure 5: An upper tree compression example.

10 20 30 40 50 60 70 80
0

50

100

150

200

250

300

E
n

er
gy

co
n

su
m

pt
io

n
(m

J)

SEF-basic/SEF-opt
SafeQ-Basic

SafeQ-Bloom
SL

Time slot (min)

Figure 6: Average energy consumption of processing data for a SN.

forged data to its MN; it is hard to prevent such an attack
without the use of tamper proof hardware. In our scheme,
the key is updated every time slot and the old keys are erased,
even a SN and its MN are compromised, adversaries cannot
obtain the data values before the compromise. Additionally,
as each SN shares a distinct key with the BS, even an SN is
compromised, other SNs will not be affected.

6.2. Integrity Analysis. Let [elow, ehigh] be the query range,
S∗ = {en∗1 , . . . , ei∗ , . . . , en∗2 } be the correct query result and
S = {en1 , . . . , ei, . . . , en2} be the query result from MN. Here
en∗1 = Bmin and en∗2 = Bmax. The BS can verify that MN has
not inserted any forged data item or excluded, tampered any
qualified data item.

(1) If there exists n∗1 ≤ i∗ ≤ n∗2 such that e∗i /∈ S (that is
a qualified data item is deleted) or e∗i is tampered, or
if there exists n1 ≤ i ≤ n2 such that ei /∈ S∗ (that is a
forged data item is inserted), the BS can detect this

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

140

160

180

200

E
n

er
gy

co
n

su
m

pt
io

n
(m

J)

SEF-basic/SEF-opt
SafeQ-Basic

SafeQ-Bloom
SL

Time slot (min)

Figure 7: Average energy consumption of submission.

error. Because the structure of AI tree constructed
by the BS using S and VO are different from the
structure of the AI tree constructed by SNi. The
collision resistance of the hash function guarantees
that adversaries cannot insert, delete or tamper any
data item in a way leads to an identical root of the AI
tree.

(2) Since Bmin and Bmax fall immediately to the query
range, if n1 > n∗1 , the BS can detect this error because
there is no item in S less than elow. If n1 < n∗1 , the
BS can also detect this error, because there are more
than one item in S less than elow. The same as n1,
if n2 > n∗2 , there is more than one item in S larger
than ehigh; and if n2 < n∗2 , there is no item in S larger
than ehigh. The use of Bmin and Bmax ensures that all
qualified encrypted data items are included in S.

International Journal of Distributed Sensor Networks 9

10 20 30 40 50 60 70 80
0

100

200

300

400

500

SEF-basic
SEF-opt
SafeQ-Basic

SafeQ-Bloom
SL

10 20 30 40 50 60 70 80
0

10

20

30

40

50

(k
)

St
or

ag
e

co
n

su
m

pt
io

n
(b

yt
e)

(k
)

Time slot (min)

Figure 8: Average storage consumption for MN.

10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

E
n

er
gy

co
n

su
m

pt
io

n
(m

J)

SEF-basic
SEF-opt

SafeQ-Basic/SafeQ-Bloom
SL

Time slot (min)

Figure 9: Average energy consumption of query processing for MN.

(3) If elow (ehigh) is the minimum (maximum) for all
possible data items, the lower bound (upper bound)
for all possible data items, dmin (dmax), takes the
role of the boundary value, that is, Bmin = E(dmin)
(Bmax = E(dmax)). These two boundary values, dmin

and dmax, guarantee that any query range can be
processed correctly.

7. Implementation and Performance Evaluation

In this section, we evaluate the performance of our scheme
and perform side-by-side comparison with SL scheme
SafeQ-Basic, and SafeQ-Bloom in a test-bed. We analyze
the performance comparison in five aspects: the energy
consumption of processing sensed data for an SN; the energy
consumption of submission from an SN to MN; the storage

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

E
n

er
gy

co
n

su
m

pt
io

n
(m

J)

SEF-basic
SEF-opt

SafeQ-Basic/SafeQ-Bloom
SL

Selectivity (80 minutes)

Figure 10: Average energy consumption of query processing for
MN.

10 20 30 40 50 60 70 80

0

5

10

15

20

25

30

35

40

45

50

55

60

65

E
n

er
gy

co
n

su
m

pt
io

n
(m

J)

SEF-basic/SEF-opt
SafeQ-Basic/SafeQ-Bloom
SL

Time slot (min)

Figure 11: Average energy consumption of sending response for
MN.

consumption for MN; the energy consumption of query
processing for MN; the energy consumption of sending
response to a query to the BS for MN. As the BS is a powerful
device, the cost for the BS is neglectable. In our experiments,
we do not choose the schemes of [9, 10] for side-by-side
comparison for two reasons. First the techniques used in
[9, 10] are similar to [8] except the optimization for integrity
verification. Second the optimization incurs serious security
problems, a compromised SN can easily breach the integrity
verification of the network by sending false bit maps.

7.1. Experimental Test Bed and Setup. The test-bed consists
of eleven TelosB motes as SNs and one TelosB mote as

10 International Journal of Distributed Sensor Networks

MN. Note that the number of SNs in a cell is application
dependent. If the number of SNs is large, the storage or
the energy of MN is exhausted quickly and reduces the life
cycle of the WSN. While, if the number of SNs is small, the
efficiency of the WSN is very low. SNs should be carefully
deployed to achieve the best equilibrium. The TelosB mote
is equipped with an 8 MHz CPU, 10 KB RAM, 48 KB ROM,
1024 KB flash, and an 802.15.4/ZigBee radio [28]. The flash
of the TelosB mote is divided into pages of 256 bytes. These
TelsoB motes run on the operating system Tinyos-2.1.0 [29].

We use SHA-1 [30] as the hash function. Note that it has
been pointed out that there are collision attacks on SHA-1
[31]. However, since it requires about 269 hash operations, it
is difficult to launch the attacks in practice [32]. The HMAC
operation also uses SHA-1 as the underlying hash function,
both the size of a digest and an HMAC is 20 bytes. The size
of an encrypted data item is set to 4 bytes. An 8-bits array is
used to represent the descendant label and level label, which
can record as much as 2128 encrypted data items. We use
the DES encryption algorithm in implementing SL scheme,
SafeQ-Basic and SafeQ-Bloom as in [8, 11, 12]. We employ
the OPSE function proposed in [24] as the underlying OPSE
function.

To present which portion of the data are queried, we
introduce the query selectivity. Assume that the number of
all possible sensed data items is Z, the accuracy of sensed
data is a. If the BS wants to query the data items in range
[low, high], selectivity = ((high−low)/a+1)/Z. For example,
here we suppose the values of sensed data are integers, the
number of all possible sensed data items Z = 100, and the
query range [low, high] = [25, 50]. In this case, the selectivity
should equal (50− 25 + 1)/100.

As in [8], we use their optimal bucket partition algorithm
for computing the optimal bucket partition in implementing
SL scheme. Note that in some situations, it is hard to get
the accurate distribution of sensed data in advance, the BS
is unable to obtain the optimal bucket partition. This factor
will greatly influence the performance of SL scheme. We use
SEF-basic and SEF-opt to denote our schemes with basic and
optimized AI tree compression, respectively.

7.2. Result Summary

(1) Figure 6 depicts the energy consumption of processing
sensed data for an SN. Our experiments show that, compared
with SL scheme, SEF-basic/SEF-opt consume 3 times more
energy since it has to perform some operations (such as
hash operation) to construct the AI tree. But they have great
advantage compared with SafeQ-Basic and SafeQ-Bloom.
Compared with SEF-basic/SEF-opt, SafeQ-Basic consumes
1.67 times more energy and SafeQ-Bloom consumes 4.3
times more energy, because SafeQ-Basic and SafeQ-Bloom
adopt the prefix membership verification scheme which
requires a large number of hash operations. As SafeQ-Bloom
has to perform a lot of additional hash operations to obtain
the Bloom filter, it consumes the most energy.

(2) Figure 7 shows the energy consumption of submitting
data from an SN to MN. Note that the submission involves

two parties: the SN and MN, so the energy consumption
is the total energy consumption of the SN and MN. Our
experiments show that SL scheme performs almost as well
as SEF-basic/SEF-opt. In comparison with SEF-basic/SEF-
opt, SafeQ-Basic consumes 11.8 times more energy and
SafeQ-Bloom consumes 2.5 times more energy. Due to a
mass of HMACs produced by prefix membership verification
scheme, SafeQ-Basic pays a lot of energy on submission.

(3) Figure 8 illustrates the storage consumption for MN.
As we can see that the storage consumption of SEF-basic and
SEF-opt is very close to that of SL scheme. Compared with
SL scheme, SEF-opt incurs only 11% storage overhead on
average. And compared with SEF-opt, SafeQ-Basic requires
up to 10.6 times more storage. Though employing the Bloom
filter technique, SafeQ-Bloom still consumes 1.8 times more
storage compared with SEF-opt.

(4) We carry out two kinds of experiments to measure
the energy consumption of query processing for MN. One is
to vary the time slot and generate range queries randomly.
The other is to fix the time slot (we set the time slot to
80 minutes) and vary selectivity. Given a selectivity, low is
generated randomly.

In the first case, as shown in Figure 9, SEF-opt consumes
the least energy, it saves 21% energy compared with SEF-
basic and 6.7% energy compared with SL scheme. SafeQ-
Basic/SafeQ-Bloom is always consuming the most energy.
Compared with SEF-opt, they consume as much as 2 times
more energy. When time slot is 80 minutes, SL scheme con-
sumes 2.37 mJ energy, SafeQ-Basic/SafeQ-Bloom consumes
4.47 mJ energy, SEF-basic consumes 2.69 mJ energy, while
SEF-opt consumes only 2.23 mJ energy.

In the second case, as shown in Figure 10, SEF-opt is
overall the most efficient scheme for any ratio. With the
increase of selectivity, the energy consumption of SEF-basic
is close to that of SEF-opt more and more. When the selec-
tivity is 0.1, SEF-opt consumes the least energy, 0.7 mJ, SEF-
basic consumes 1.1 mJ energy, SafeQ-Basic/SafeQ-Bloom
consumes 1.18 mJ energy, SL scheme consumes 0.8 mJ
energy. It is apparent that SafeQ-Basic/SafeQ-Bloom con-
sumes the most energy except selectivity is less than 0.07.
Compared with SEF-opt, SafeQ-Basic/SafeQ-Bloom con-
sumes nearly 2 times more energy.

(5) Figure 11 presents the energy consumption of send-
ing response to a query to the BS for MN. The response
includes the query result and verification information. Since
the false positive problem incurred by bucketing technique,
the performance of SL scheme is a little worse than that
of SEF-basic/SEF-opt. Both our schemes consume about 2
times less energy than SafeQ-Basic/SafeQ-Bloom.

8. Conclusions

In this paper, we have proposed a secure, efficient, and
flexible scheme, called SEF, for range queries in two-tiered
WSNs. Our scheme employs the order-preserving symmetric
encryption algorithm to preserve data privacy. We have
proposed a novel data structure called AI tree to guarantee
the authenticity and integrity of query results. We first

International Journal of Distributed Sensor Networks 11

consider the storage media issue in the design of range query
schemes and present how to use the characteristic of NAND
flash to achieve high storage utilization and query processing
efficiency. The experiments have shown that SEF significantly
achieves efficiency.

Acknowledgments

This work is supported by the National Science Foundation
of China under Grants no. 61070155 and no. 60903153,
Program for New Century Excellent Talents in University
(NCET-09-0685), the Fundamental Research Funds for the
Central Universities (DUT10ZD110), and the SRF for ROCS,
SEM.

References

[1] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and D.
Estrin, “Datacentric storage in sensornets,” ACM SIGCOMM
Computer Communication Review, vol. 33, no. 1, pp. 137–142,
2003.

[2] P. Desnoyers, D. Ganesan, H. Li, and P. Shenoy, “Presto:
a predictive storage architecture for sensor networks,” in
Proceedings of the 10th Workshop on Hot Topics in Operating
Systems (HotOS X), June 2005.

[3] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin, “Dynamic
authenticated index structures for outsourced databases,” in
Proceedings of the 2006 ACM SIGMOD International Confer-
ence on Management of Data, pp. 121–132, June 2006.

[4] K. Mouratidis, D. Sacharidis, and H. Pang, “Partially mate-
rialized digest scheme: an efficient verification method for
outsourced databases,” The Very Large Data Bases Journal, vol.
18, no. 1, pp. 363–381, 2009.

[5] H. Pang, J. Zhang, and K. Mouratidis, “Scalable verification
for outsourced dynamic databases,” in Proceedings of the Very
Large Data Bases Conference (VLDB), pp. 802–813, 2009.

[6] D. He, Y. Gao, S. Chan, C. Chen, and J. Bu, “An enhanced
two-factor user authentication scheme in wireless sensor
networks,” Ad Hoc & Sensor Wireless Networks, vol. 10, no. 4,
pp. 361–371, 2010.

[7] D. He, J. Bu, S. Zhu et al., “Distributed privacy-preserving
access control in a single-owner multi-user sensor network,” in
Proceedings of the IEEE International Conference on Computer
Communications (IEEE INFOCOM) mini-conference, 2011.

[8] B. Sheng and Q. Li, “Verifiable privacy-preserving range
query in two-tiered sensor networks,” in Proceedings of the
27th IEEE Communications Society Conference on Computer
Communications, IEEE INFOCOM 2008, pp. 457–465, April
2008.

[9] J. Shi, R. Zhang, and Y. Zhang, “Secure range queries in tiered
sensor networks,” in Proceedings of the 28th IEEE Conference on
Computer Communications, IEEE INFOCOM 2009, pp. 945–
953, Rio de Janeiro, Brazil, April 2009.

[10] R. Zhang, J. Shi, and Y. Zhang, “Secure multidimensional
range queries in sensor networks,” in Proceedings of the 10th
ACM International Symposium on Mobile Ad Hoc Networking
and Computing, MobiHoc, pp. 197–206, May 2009.

[11] F. Chen and A. X. Liu, “SafeQ: secure and efficient query
processing in sensor networks,” in Proceedings of the 29th IEEE
Conference on Computer Communications, IEEE INFOCOM
2010, pp. 1–9, East Lansing, Mich, USA, March 2010.

[12] F. Chen and A. X. Liu, “Privacy and integrity preserving
range queries in sensor networks,” Tech. Rep. MSU-CSE-09-
26, Michigan State University, Ann Arbor, Mich, USA, 2010.

[13] B. Hore, S. Mehrotra, and G. Tsudik, “A privacypreserving
index for range queries,” in Proceedings of the Very Large Data
Base Conference, pp. 720–731, Toronto, Canada, 2004.

[14] D. Comer, “Ubiquitous b-tree,” ACM Computing Surveys, vol.
11, no. 2, pp. 121–137, 1979.

[15] J. Cheng, H. Yang, S. H. Y. Wong, P. Zerfos, and S. Lu, “Design
and implementation of cross-domain cooperative firewall,”
in Proceedings of the 15th IEEE International Conference on
Network Protocols, ICNP 2007, pp. 284–293, Beijing, China,
October 2007.

[16] S. Nath and A. Kansal, “FlashDB: dynamic self-tuning
database for NAND flash,” in Proceedings of the IPSN 2007: 6th
International Symposium on Information Processing in Sensor
Networks, pp. 410–419, New York, NY, USA, April 2007.

[17] G. Mathur, P. Desnoyers, P. Chukiu, D. Ganesan, and P.
Shenoy, “Ultra-low power data storage for sensor networks,”
ACM Transactions on Sensor Networks, vol. 5, no. 4, 2009.

[18] K. Ren, W. Lou, and Y. Zhang, “LEDS: providing location-
aware end-to-end data security in wireless sensor networks,”
IEEE Transactions on Mobile Computing, vol. 7, no. 5, Article
ID 4358997, pp. 585–598, 2008.

[19] Y. Zhou and Y. Fang, “A two-layer key establishment scheme
for wireless sensor networks,” IEEE Transactions on Mobile
Computing, vol. 6, no. 9, pp. 1009–1020, 2007.

[20] Q. Wang, K. Ren, W. Lou, and Y. Zhang, “Dependable and
secure sensor data storage with dynamic integrity assurance,”
in Proceedings of the 28th Conference on Computer Communi-
cations, IEEE INFOCOM 2009, pp. 954–962, Rio de Janeiro,
Brazil, April 2009.

[21] Y. Zhou, Y. Zhang, and Y. Fang, “Access control in wireless
sensor networks,” Ad Hoc Networks, vol. 5, no. 1, pp. 3–13,
2007.

[22] W. Du, Y. S. Han, J. Deng, and P. K. Varshney, “A pairwise
key pre-distribution scheme for wireless sensor networks,”
in Proceedings of the 10th ACM Conference on Computer and
Communications Security, CCS 2003, pp. 42–51, October 2003.

[23] D. He, L. Cui, H. Huang, and M. Ma, “Design and verification
of enhanced secure localization scheme in wireless sensor
networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 20, no. 7, pp. 1050–1058, 2009.

[24] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order-
preserving symmetric encryption,” Advances in Cryptology—
EUROCRYPT 2009, vol. 5479, pp. 224–241, 2009.

[25] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order
preserving encryption for numeric data,” in Proceedings of the
ACM SIGMOD International Conference on Management of
Data, SIGMOD 2004, pp. 563–574, June 2004.

[26] R. C. Merkle, “A certified digital signature,” in Advances in
Cryptology (CRYPTO’89), Lecture Notes in Computer Science,
pp. 218–238, Springer, New York, NY, USA, 1989.

[27] H. Pang and K. L. Tan, “Authenticating query results in edge
computing,” in Proceedings of the 20th International Conference
on Data Engineering—ICDE 2004, pp. 560–571, April 2004.

[28] http://www.willow.co.uk/TelosB Datasheet.pdf.

[29] http://docs.tinyos.net.

[30] National institute of standards and technology, U.S. depart-
ment of commerce, secure hash standard, U.S. federal infor-
mation processing standard publication, 2002.

12 International Journal of Distributed Sensor Networks

[31] X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in the full
SHA-1,” in Advances in Cryptology (CRYPTO’05), V. Shoup,
Ed., vol. 3621 of Lecture Notes in Computer Science, pp. 17–36,
Springer, New York, NY, USA, 2005.

[32] “IAIK Krypto group-description of SHA-1 collision
search project,” http://www.iaik.tugraz.at/content/research/
krypto/sha1/SHA1CollisionDescription.php.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

