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The TDOA-based source localization problem in sensor networks is considered with sensor node location uncertainty. A total
least squares (TLSs) algorithm is developed by a linear closed-form solution for this problem, and the uncertainty of the sensor
location is formulated as a perturbation. The sensitivity of the TLS solution is also analyzed. Simulation results show its improved
performance against the classic least squares approaches.

1. Introduction

Driven by many practical applications such as environment
monitoring, traffic management in intelligent transporta-
tion, healthcare for the older and disabled, cyber-physical
system (CPS) has emerged as a new advanced system to
link the virtual cyber world with the real physical world
[1, 2]. Sensor network is crucial to enable CPS by efficient
monitoring and understanding the physical world. The main
purpose of a sensor network is to monitor an area, including
detecting, identifying, localizing, and tracking one or more
objects of interest. These networks may be used by the mili-
tary in surveillance, reconnaissance, and combat scenarios or
around the perimeter of a manufacturing plant for intrusion
detection. The problem of source localization involves the
estimation of the position of a stationary transmitter from
multiple noisy sensor measurements, which can be time-of-
arrival (TOA), time-difference-of-arrival (TDOA), or angle-
of-arrival (AOA) measurements or a combination of them
[3–5].

Source localization methods using TDOA measurements
locate the source at the intersection of a set of hyperboloids.
Finding this intersection is a highly nonlinear problem [6, 7].
Over the years, many iterative numerical algorithms have
been proposed for the problem, including the maximum
likelihood estimation methods [8, 9] and the constrained
optimization methods [10, 11]. In these approaches, linear

approximation and iterative numerical techniques have to
be used to deal with the nonlinearity of the hyperbolic
equations. However, it is difficult to select a good initial
guess to avoid a local minimum for them; therefore the
convergence to the optimal solution cannot be guaranteed.
The closed-form solution methods are widely used since no
initial solution guesses are required and have no divergence
problem compared with the iterative techniques [12–16]. For
real-time application in WSNs, the iterative procedure for
iterative algorithm is time consuming while the closed-form
method is computational efficient.

The aforementioned approaches need the precise loca-
tion of sensors. In practice, the receiver locations may not be
known exactly. For example, in sensor network applications,
the receivers can be with airplanes or unmanned aerial
vehicles (UAVs) whose positions and velocities may not be
precisely known. Hence, the inaccuracy in receiver locations
needs to be taken into account in practical applications which
is challenging and difficult as the estimation performance of
source location can be very sensitive to the accurate knowl-
edge of the receiver positions and a slight error in a receiver’s
location can lead to a big error in the source location
estimate. In [17], a closed-form solution is proposed that
takes the receiver error into account to reduce the estimation
error. The proposed solution is computationally efficient and
does not have the divergence problem as in the iterative
techniques. In [18], the maximum likelihood formulation



2 International Journal of Distributed Sensor Networks

of source localization problem is given and an efficient
convex relaxation for this nonconvex optimization problem
is proposed. A formulation for robust source localization
in the presence of sensor location errors is also proposed.
Both the above methods assume that the measurement noise
is Gaussian and characterize the uncertainty by stochastic
approach with the perturbation being white and Gaussian.

However, such white and Gaussian assumptions are
unrealistic in many practical applications [19–21]. Usually,
if the Gaussian assumption are not met, the maximum-
likelihood-based results under Gaussian assumption may
lead to poor estimation performance, which means that the
estimation performance is sensitive to the exact knowledge
of the parameters of the system (see, e.g., [22]). These
facts motivate us to further research on robust source
localization method without any distribution assumption for
measurements noise and sensor location error.

In this paper, we will develop a total least squares (TLSs)
algorithm for location estimation of a stationary source.
TLS is a least squares data modeling technique in which
observational errors on both dependent and independent
variables are taken into account. The uncertainty of the
sensor location is formulated as a perturbation on the given
sensor location. The sensitivity of the TLS solution will
also be analyzed to show the superiority of our proposed
algorithm. Compared with the existing methods which need
the Gaussian assumption for both measurements noise and
sensor location error, the TLS approach does not depend
on any assumed distribution of the noise and errors.
Simulation results support the above analysis and show good
performance of the proposed method.

The rest of this paper is organized as follows. In Section 2,
a linear closed-form solution is given for source localiza-
tion problem using TDOA measurements. The total least
squares method for source localization with sensor location
uncertainty is given in Section 3, and the corresponding
sensitivity analysis is derived in Section 4. Simulation results
are presented in Section 5 to show the improved performance
of the proposed method against the classic least squares
approaches. Concluding remarks are made in Section 6.

2. A Linear Closed-Form Solution

Assume that sensor i is located at point Si = {xi, yi, zi}.
Denote the unknown source location by S = {x, y, z}. Let c
be the signal propagation speed and N the number of sensor
nodes distributed in the network. A reference node, denoted
as S0, exists in the field. We define the distance from the
source to sensor i as Di. The TDOA that we derive from
the data, τ0i, for each sensor node i ∈ [1,N] relative to the
reference sensor S0 is

τ0i = 1
c
‖S− S0‖ − 1

c
‖S− Si‖ = 1

c
(D0 −Di). (1)

Denote the distance difference of arrival (DDOA) data for the
ith sensor as

d0i = τ0i × c = D0 −Di. (2)

We have

D2
0 −D2

i = ‖S− S0‖2 − ‖S− Si‖2,

= (x − x0)2 +
(
y − y0

)2 + (z − z0)2,

−
(

(x − xi)
2 +

(
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2
)

,
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,

+ z2
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2,

= 2D0d0i − d2
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(3)

Group all the known terms together and denote

bi = 1
2

[
x2
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0i

]
. (4)

Rearranging and substituting give

(x0 − xi)x +
(
y0 − yi

)
y + (z0 − zi)z + d0iD0 = bi, (5)

which is a linear model for unknown parameters x, y, z,
and D0. Stacking the N sensor measurements, we have the
linear system in matrix form

AX = b, (6)

where
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(7)

When the location of sensor nodes can be precisely known
and the TDOA measurements are noise-free, linear system
(6) is compatible. The solution is unique while the data
matrix A is of full rank.

In [16], a noise ε is considered at the right side of (6):

AX = b + ε. (8)

The least squares (LSs) problem seeks to

minimize : ‖b− bls‖,

subject to : bls ∈R(A),
(9)

where R(A) denote the vector space spanned by the column
vector of matrix A. Once a minimizing bls is found, then any
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X satisfying AX = bls is called an LS solution and b − bls the
corresponding LS correction. The unique LS solution can be
obtained while the data matrix A is of full rank:

Xls =
(
ATA

)−1
ATb. (10)

The ordinary LS problem amounts to perturbing the
observation vector b by a minimum amount b − AXls.
The underlying assumption is that errors only occur in the
vector b and that the matrix A is exactly known. However,
the TDOA measurements always have noise, that is, d0i

is perturbed by a noise. Hence, both sides of (5) have
perturbation according to term d0i. Besides, in practice, the
receiver locations may not be known exactly. As a result,
the inaccuracy in receiver locations needs to be taken into
account in practical environments. Therefore, considering
only the perturbation at the right side of (6) is not enough.
We should consider the perturbations at both sides.

3. Total Least Squares Solution

The definition of the total least squares method is motivated
by the asymmetry of the least squares method that b is
corrected while A is not. Provided that both A and b are
given data, it is reasonable to treat them symmetrically.
One important application of TLS problem is parameter
estimation in errors-in-variables models, that is, considering
the measurements in A [23, 24]. We assume that the m
measurement in Ã and b̃ by

ÃX = b̃, (11)

where Ã = A + ΔA, b̃ = b + Δb, and AX = b, is compatible.
The total least squares (TLSs) problem seeks to

minimize :
∥
∥
∥[Ã; b̃]− [Atls; btls]

∥
∥
∥
F

,

subject to : btls ∈R(Atls),
(12)

where ‖ · ‖F denotes the Frobenius norm of matrix A, that
is,

‖A‖F =
√
√
√√
√

m∑

i=1

n∑

j

∣
∣
∣ai j

∣
∣
∣

2 =
√

trace(ATA). (13)

Once a minimizing [Atls; btls] is found, then any X satisfying

AtlsX = btls is called a TLS solution and [Ã; b̃]− [Atls; btls] the
corresponding TLS correction [25].

When A is of full rank, the closed-form expression of the
basic TLS solution can be obtained as the following:

Xtls =
(
ÃTÃ− σ2

n+1I
)−1

ÃT b̃, (14)

where σn+1 is the smallest singular value of [A; b]. It can
be proved that the TLS solution Xtls estimates the true
parameter A+b consistently, that is, Xtls converges to the
solution of AX = b as the number of measurements tends to
infinity, where A+ denotes the Moore-Penrose pseudoinverse

of matrix A. This property of TLS estimates does not depend
on any assumed distribution of the errors. Note that the LS
estimates are inconsistent in this case.

In the following, the algorithm computation complexity
is analyzed by considering the number of floating-point
operations (FLOPS). The calculation of FLOPS is briefly
described as follows: additions and multiplications count as
one FLOP each. Adding matrices of sizes m × n requires mn
FLOPS. Multiplying matrices of sizes m×k and k×p requires
mnk FLOPS. Matrix inverse of size n× n requires n3 FLOPS.
Singular value decomposition of matrix with size n × m
requires nm2 FLOPS. The computation overhead of three
closed-form algorithms is investigated, that is, least squares
(LSs) method in [16], two-stage weighted least squares
(WLSs) method in [17] and the proposed TLS method.
For N-deployed nodes and p dimension of source location
parameter, the numbers of FLOPS in the LS, WLS, and the
proposed TLS algorithms are (2p + 3)(p + 1)N + (p + 1)3,
(2p + 3)(2p + 2)N + 2(p + 1)3, and (2p + 5)(p + 2)N +
(p + 2)2(p + 3), respectively. It is to show that LS method
is the most computationally efficient, whereas WLS method
is two-stage least square and TLS method has singular value
decomposition for matrix. It is clear that they all have
comparable computation complexity O(N) since p = 3 or
p = 4 for source localization problem.

4. Sensitivity Properties of the Solution

In this section, we will first examine how perturbations in
A and b affect the solution X . In this analysis the condition
number of the matrixA plays a significant role. The following
definition generalizes the condition number of a square
nonsingular matrix [26].

Definition 1. Let A ∈ Rm×n have rank r. The condition
number of A is

κ(A) = ‖A‖ · ∥∥A+
∥
∥ = σ1

σr
, (15)

where σ1, σ2, . . . , σr are the singular values of A by decreasing
order.

Matrices with small condition numbers are said to
be well conditioned while the ones with large condition
numbers are said to be ill-conditioned. Analyzing the effect
of perturbation on the solution of linear system AX = b, we
introduce the following lemma [27].

Lemma 1. If rank(Ã) = rank(A) and ‖ΔA‖‖A+‖ < 1, then
∥
∥∥Ã+

∥
∥∥ ≤ ‖A+‖

1− ‖A+‖‖ΔA‖ . (16)

Theorem 1. Denote Xls = A+b as the LS solution of

unperturbed system AX = b, and X̃ls = Ã+b̃ is the LS solution

of perturbed system ÃX = b̃ with Ã = A+ΔA, b̃ = b+Δb. One
further assumes that ‖ΔA‖ ≤ ε‖A‖, ‖Δb‖ ≤ ε‖b‖, κ(A) = κ.
Then, one has

∥
∥
∥X̃ls − Xls

∥
∥
∥

‖Xls‖ = O(εκ). (17)
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Proof. Noting that A and Ã are full rank and (I −AA+)b = 0
since b ∈R(A), we have

X̃ls − Xls = Ã+b̃− A+b

= Ã+(b + Δb)− A+b

= Ã+Δb +
(
Ã+ − A+

)
b

= Ã+Δb +
(
Ã+ + Ã+AA+ − Ã+AA+ − A+

)
b

= Ã+Δb +
(
Ã+ + Ã+AA+ − Ã+AA+ − Ã+ÃA+

)
b

= Ã+Δb + Ã+(I − AA+)b− Ã+
(
Ã− A

)
A+b

= Ã+Δb− Ã+ΔAXls.
(18)

Therefore, ‖X̃ls − Xls‖ = ‖Ã+Δb − Ã+ΔAXls‖. Dividing by
‖Xls‖ at both sides, we have

∥
∥
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∥
∥
∥
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∥
∥
∥Ã+Δb− Ã

+
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∥
∥
∥

‖Xls‖
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∥
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∥
∥
∥

≤
∥∥
∥Ã+

∥∥
∥
(‖Δb‖
‖Xls‖ + ‖ΔA‖

)

≤
∥
∥
∥Ã+

∥
∥
∥
(
ε‖b‖
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)

≤ ‖A+‖
1− ‖A+‖‖ΔA‖

(
ε‖b‖
‖Xls‖ + ε‖A‖

)

≤ ‖A+‖
1− ‖A+‖ε‖A‖

(
ε‖b‖
‖Xls‖ + ε‖A‖

)

= 1
1− εκ

(
ε‖A+‖‖b‖
‖A+b‖ + εκ

)

= 1
1− εκ

(
ε‖A+‖‖AA+b‖

‖A+b‖ + εκ
)

≤ 1
1− εκ

(
ε‖A+‖‖A‖‖A+b‖

‖A+b‖ + εκ
)

= 2εκ
1− εκ

= O(εκ).

(19)

From the theorem we can see that, only when the
perturbations are sufficiently small, the LS solution is a good
estimator of the true solution of AX = b.

Additionally, we will show when the TLS solution has
better performance than the LS solution for the perturbed

model ÃX ≈ b̃. Denote the singular value decomposition
(SVD) of A by

A = UΣVT , (20)

where

U = [u1,u′2, . . . ,um
]
, U ′ ∈Rm, UTU = Im,

V = [v1, v′2, . . . , vn
]
, V ′ ∈Rn, VTV = In,

Σ = diag(σ1, σ2, . . . , σn) ∈Rm×n, σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0,
(21)

denote the singular value decomposition (SVD) of Ã by

A + ΔA = Ã = U ′Σ′V
′T , (22)

where

U ′ = [u′1,u′2, . . . ,u′m
]
, U ′ ∈Rm, U ′TU ′ = Im,

V ′ = [v′1, v′2, . . . , v′n
]
, V ′ ∈Rn, V ′TV ′ = In,

Σ′ = diag
(
σ ′1, σ ′2, . . . , σ ′n

) ∈Rm×n,

σ ′1 ≥ σ ′2 ≥ . . . ≥ σ ′n ≥ 0,

(23)

and denote the SVD of [Ã; b̃] by

[
A + ΔA; b + Δb, Ã; b̃

]
= ŨΣ̃ṼT , (24)

where

Ũ = [ũ1, ũ2, . . . , ũm], Ũ ∈Rm, ŨTŨ = Im,

Ṽ = [ṽ1, ṽ2, . . . , ṽn], Ṽ ∈R(n+1), ṼTṼ = In+1,

Σ̃ = diag(σ̃1, σ̃2, . . . , σ̃n, σ̃n+1) ∈Rm×n+1,

σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃(n+1) ≥ 0.

(25)

The accuracy of TLS and LS solutions related to the per-
turbation effects on singular values and associated singular
subspaces [23]. Several papers have analyzed the bounds on
the perturbation effects related to singular subspaces [28–
30]. The most interesting results for sensitivity analysis of
TLS solution are given in [30].

Definition 2. Denote two subspaces as L and M. For any
unitary invariant norm, the distance between two subspaces
is defined as the sine of the largest canonical angle

dist(L,M) = ‖sinΘ(L,M)‖ = ‖(I − PM)PL‖, (26)

where PM and PL are the projection operators [29, 30].

Theorem 2. Let the SVD of A ∈ Rm×n,m ≥ n, be given by
(20), rank(A) = r. Add perturbations ΔA to A, and let SVD of
Ã be given by (22). If σ ′r − σr+1 > 0, then

dist
(
R(A), R

(
Ã
))
≤ ‖ΔA‖

σ ′r − σr+1
. (27)

Theorem 2 is a special case of the generalized sin θ-theorem
in [30].
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Recall the perturbed system ÃX ≈ b̃; LS projects Ã and b̃
into the singular subspaces

L
(
u′1,u′2, . . . ,u′m

) =R
(
Ã
)

, (28)

while the TLS projects Ã and b̃ into the singular subspaces

L(ũ1, ũ2, . . . , ũm) =R
([
Ã; b̃

])
. (29)

Furthermore, the real source location X∈R(A), since AX =
b. Therefore, it is important to analyze the distance between

R(Ã), R([Ã; b̃]) and R(A). Assumeing that A and Ã have
full rank, we can obtain the following corollary according to
Theorem 2.

Corollary 1. One has

dist
(
R(A), R

(
Ã
))
≤ ‖ΔA‖

σ ′n
,

dist
(
R(A), R

([
Ã; b̃

]) )
≤ ‖ΔA‖

σ̃n
.

(30)

The interlacing theorem (see [31]) implies that

σ ′1 ≥ σ̃1 ≥ · · · ≥ σ ′n ≥ σ̃n. (31)

Therefore,

‖ΔA‖
σ̃n

≤ ‖ΔA‖
σ ′n

. (32)

From Corollary 1 we can see that the upper bound of
the distance between R(Ã) and R(A) is smaller than the
upper bound of distance between R([Ã; b̃]) and R(A). This
implies that the TLS solution is expected to be closer to
its corresponding unperturbed subspace. Hence, the TLS
solution is expected to be more accurate than the LS solution.

5. Simulations

5.1. Simulation Setup. In this section, simulations are carried
out to show the effectiveness of the proposed method. Two
scenarios are investigated for their effects on localization
performance, including Gaussian distribution and truncated
Gaussian distribution for measurement noise and sensor
node location error. In our simulation, unless otherwise
specified, sensors are randomly deployed in a 5000 m ×
5000 m area with uniform distribution. An example is shown
in Figure 1, where 30 nodes are uniformly distributed. The
source is denoted as a triangle with red and the reference
node is denoted as a square in blue. The exact location of
the reference node can be known.

In order to show the improved performance of our
proposed method with the existing closed-form method, we
investigate LS method in [16] and WLS method in [17].
Root mean square error (RMSE) is used as the criterion
for localization performance. The following simulations are
performed with 500 Monte Carlo trials. In all figures, the red
solid line with square, black dash line with circle, and blue
dotted dash line with triangle represent the results of TLS,
WLS, and LS solutions, respectively.
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0
0 1000 2000 3000 4000 5000

Nodes
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Figure 1: Simulation scenario.
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Figure 2: Localization errors versus noise variance (Gaussian case).

5.2. Gaussian Case. In this case, we consider the Gaussian
distribution for both measurement noise and sensor node
location error. The effect on estimation performance for
different measurement noise variance value is investigated.
Measurement noise variance (σn) is changed in the range
10–100. The variance of perturbation (σp) is set to be a
constant number 25. The localization performance variation
with noise variance is depicted in Figure 2. As noise variance
increases, localization performance degrades in all LS, WLS,
and TLS algorithms. The TLS algorithm outperforms the LS
and WLS algorithms.
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Figure 3: Localization errors versus perturbation variance (Gaus-
sian case).

In the second simulation, the effect on estimation perfor-
mance with different variance of perturbation is investigated.
The variance of perturbation is set to be varied from 10 to
100 and sensors are deployed uniformly. The measurement
noise variance is set to be 50. The localization performance
variation with variance of perturbation is depicted in
Figure 3. The TLS algorithm outperforms the LS and WLS
significantly with high-level variance of perturbation.

The estimation performance of three algorithms is also
investigated with different numbers of deployed nodes.
Figure 4 shows the RMSEs versus the number of nodes. Fifty
nodes are uniformly generated in the field. Localization starts
by using five randomly selected nodes for each algorithm,
followed by adding more nodes of five in a group until all
fifty nodes are used. The number of FLOPS is considered
to evaluate the algorithm computational complexity with
variation of the number of nodes. Results are given in
Figure 5 with 2-dimensional source location parameter and
5–50 nodes. It can be seen that LS required the fewest FLOPS
while TLS required the most FLOPS with SVD of matrix.
Although the estimation performance is improved with
more nodes for all algorithms, the computation overhead
is also increased. t is to show that LS method is the most
computationally efficient, whereas WLS method is two-stage
least square method and TLS method has singular value
decomposition for matrix.

5.3. Truncated Gaussian Case. Since the white and Gaussian
assumptions are unrealistic in many applications, we con-
sider the truncated Gaussian distribution for both measure-
ment noise and sensor node location error in this case. Let X
be a random variable with zero mean Gaussian distribution
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0
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40
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R
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)
Figure 4: Localization errors versus number of nodes (Gaussian
case).
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Figure 5: Computation cost versus number of nodes.

truncated in the interval x ≤ ασ ; its probability density
function (pdf) is given by

p(x) =

⎧
⎪⎪⎨

⎪⎪⎩

b
√

2piσ

(

exp
−x2

2σ2
− exp

−(αx)2

2σ2

)

, |x| ≤ ασ ,

0, |x| ≥ ασ ,
(33)
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Figure 6: Localization errors versus noise variance (truncated
Gaussian case).
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Figure 7: Localization errors versus perturbation variance (trun-
cated Gaussian case).

where b is a normalizing constant, σ2 is the variance, and α is
the factor to extend the interval that the random variable X
lies at.

Compared with the Gaussian case, similar results can
be obtained and are shown in Figures 6, 7, and 8. The
estimation performance for the WLS algorithm distinctly
degrades significantly. This is because the weight matrix for
this WLS method is calculated according to the Gaussian
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14
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Number of nodes

R
M

SE
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)
Figure 8: Localization errors versus number of nodes (truncated
Gaussian case).

assumption for the measurements noise and sensor node
location error. The proposed TLS algorithm still maintains
good estimation performance.

6. Conclusions

In this paper, the TDOA model for source localization in
sensor networks has been considered. The total least squares
(TLSs) algorithm has been developed for location estimation
of a stationary source with sensor location uncertainty
in which the uncertainty of the sensor location has been
formulated as a perturbation. The sensitivity of the TLS
solution has also been analyzed to show the advantages of our
proposed algorithm. Compared with the existing methods
which need the Gaussian assumption for both measurements
noise and sensor location error, the TLS approach does not
depend on any assumed distribution of the noise and errors.
Simulation results show the superior performance of the
proposed method.
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