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The growing need of the real-time traffic data has spurred the deployment of large-scale dedicated monitoring infrastructure
systems, which mainly consist of the use of inductive loop detectors. However, the loop sensor data is prone to be noised or even
missed under harsh environment. The state-of-the-art wireless sensor networks provide an appealing and low-cost alternative to
inductive loops for traffic surveillance. Focusing on the urban traffic data collection, this paper proposes a distributed algorithm
to collect the traffic data based on sensor networks and improve the reliability of data by quality analysis. Considering the certain
correlated characteristics, this algorithm firstly processes the data samples with an aggregation model based on the mean filter,
and then, the data quality is analyzed, and partial bad data are repaired by the cusp catastrophe theory. The performance of this
algorithm is analyzed with a number of simulations based on data set obtain in urban roadway, and the comparative results show
that this algorithm could obtain the better performance.

1. Introduction

Nowadays, the traffic jams is a difficult problem that con-
fronts the urban residents with environmental pollution,
traffic incident, and great financial loss every year. The intel-
ligent traffic system (ITS) has proved to be the most effective
approach to resolve this problem. In the ITS, the real-time
traffic data collection and data quality analysis play the
critical roles for studying and monitoring the traffic state.

As the ITS operations expand in major urban areas, vast
amount of traffic detectors are deployed in road networks
which provide the most abundant source of traffic data. But
the detectors are prone to errors and malfunctioning, data
samples are often missing or invalid. As reported, 30% out
of 25000 detectors do not work properly daily in California
[1]. And a program named Performance Measurement System
(PeMS) has been launched for the traffic data health
checking by the California Department of Transportation
and researchers of the University of California at Berkeley
[2, 3]. The PeMS currently collects more than 1GB per
day from thousands of loop detectors in the California [4].
According to statistics, only 32.78% of detectors worked well
and provided good data (reliable data), and the others worked
with failure and provided missing data or bad data. While,

some good data reported by the well-functioned detector
working in the severe environment such as incident or bad
weather were discarded as error data, because they were
apparent outliers in normal condition. In fact, these data are
more valuable to the ITS in some extent. To improve the
usability of traffic data, it is urgent to develop new technology
to collect the data and the effective algorithm to identify the
real bad data or repair them.

Wireless Sensor Network (WSN) is a distributed collec-
tion of sensor nodes having potential application in traffic
surveillance system with detection accuracy as good as that
of inductive loop detectors. As they have a much higher
configuration flexibility, which makes the system scalable
and deployable everywhere in the road network, the sensor
networks offer an attractive alternative to inductive loops for
traffic surveillance [5].

In this paper, we focus on studying the performance of
the traffic data detection based on WSN. And a distributed
traffic data detection and quality analysis (DTDDQA) algo-
rithm is proposed to process the traffic data collection and
data quality analysis. This algorithm firstly aggregates the
samples according to their correlated characters. Then, based
on the nonlinear and catastrophic characters of traffic data,
the algorithm analyzes the data quality and repairs partial
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bad data based on the cusp catastrophe theory. Furthermore,
a number of simulations are conducted to evaluate the per-
formance of the algorithm. The simulation results show that
this algorithm outperforms other data quality analysis algo-
rithms with better performance and robustness.

2. Related Work

2.1. Traffic Data Collected by WSN. WSN is an effected
technology and a revolution in remote information sensing
and collection applications. Sensor node has advantages such
as low costs, small size, wireless communication, and high
sensing accuracy, and it can be deployed with great quantity.
Compared with the traditional centralized data processing
mode, WSN provides a new solution for distributed method
to acquire and process traffic data [6]. In the prior research
publications [5, 7, 8], the possibility of replacing traditional
methods with WSN is creatively researched in the California
Partners for Advanced Transit and Highways (PATH) project
of University of California at Berkeley. In this three-year
research project, they focused on the prototype design,
analysis, and performance of WSN for traffic surveillance
using both acoustic and magnetic sensors. And in California,
they verified the feasibility of collecting information based on
WSN with a large number of on-road experiments. Jeahoon
deployed WSN in the road networks and introduced an
autonomous passive localization (APL) scheme to perform the
localization using vehicle-detection timestamps along with
the road map of target area. It was evaluated in Minnesota
roadways, and the results shown that it was effective [9].

In the state-of-the-art vehicle detection based on WSN,
magnetic sensor, such as Honeywell HMC1002, has been
integrated with sensor node of WSN. The magnetic sensor
can measure the change of Earth’s magnetic field with high
accuracy [10]. According to the magnetic field distortion
signal caused by moving vehicle, an efficient vehicle detection
algorithm (adaptive threshold detection algorithm, ATDA)
was developed with high precision of 97% [2]. Based on
WSN and ATDA algorithm, Ding used a 3-node WSN
to estimate the vehicle speed, and the precision was over
90% [11]. Similarly, Zhang developed a magnetic signature
and length estimation algorithm to identify the vehicle
type with binary proximity magnetic sensor networks and
intelligent neuron classifier, and the simulations and on-road
experiments obtained high recognition rate over 90% [12].

2.2. Traffic Data Quality Analysis. As the ITS applications
expand in major urban areas, traffic data collection becomes
more comprehensive. However, the quality of these traffic
data is not as good as expected. They always contain
many missing values or incorrect values and require careful
“cleaning” to produce reliable results. The bad data and
missing data have been an obstacle to ITS applications that
use the data for performance.

Missing data is mainly caused by traffic data detectors
failures or disruptions in communications. Given the con-
tinuous operation of most ITS traffic monitoring devices,
missing data are almost inevitable. But they are relatively easy
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Figure 1: Topology of the traffic data detection model.

to be handled. For short periods of missing data identifica-
tion, the method of time series analysis has been addressed.
And the linear interpolation and neighborhood averages are
natural methods to fill missing data with the data from the
neighbors’ data or the history [4].

Compared with the processing of missing data, how to
identify bad data and retrieve the good data from unreliable
detectors are relatively complicated. In order to identify the
bad data, there are many theories and practical methods pro-
posed in the literature surveys, such as internal range checks,
time series patterns, and historical patterns. For the single
detector, Nihan introduced the conception of an acceptable
region based on historical observations, which declared data
to be inaccurate if they fell outside the region [13]. Similarly,
Ki proposed an approach to check the error speed measure-
ment with a fixed error-filtering algorithm [14]. While for
the occasions of detectors extensively deployed in a large
scale, the distributed methods coordinated with the nearby
detectors should be proposed. C. Chen proposed a method
to detect bad data with modeling the relationship between
neighboring loops as linear and used linear regression to
evaluate them [4]. Based on the similarity theory of traffic
flow, Lelitha considered the conservation of traffic flow over
a set of adjacent detectors to identify unreliable data [15].
Rajagopal presented a distributed and sequential algorithm
for detecting multiple faults in a sensor network which
worked by detecting the correlation statistics of neighboring
sensors [16].

3. Modeling and Methodology

3.1. Traffic Data Detection and Aggregation

3.1.1. Traffic Data Detection by WSN. The model of dis-
tributed traffic data detection is shown as Figure 1, which
is proposed by [11]. Compared with the other traffic data
models based on WSN, it is more efficient with higher
detection accuracy and lower energy consumption.

In the model, it is composed of two sensing nodes and
one detecting node. The function of the sensing node is
mainly to detect vehicle presence, whether a vehicle passing
or not, and transmit the detection information (DI) as soon
as a passing vehicle is detected. And the detecting node
records the local time (TA and TB) as soon as the DIs of
node A and node B is received. According the each timestamp
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Figure 2: Aggregation model based on the mean filter.

(TA and TB), the corresponding values of speed, occupancy,
and traffic flow can be calculated. Furthermore, the detecting
node can control the working state of the two sensing nodes,
to reduce the sensing nodes energy consumption.

Based on the traffic data detection model, the traffic data
are detected as follows.

(a) Vehicle Passing Speed. The vehicle passing speed is calcu-
lated by

ΔT = TA − TB,

v′ = DAB

ΔT
,

(1)

whereTA andTB are separately the time of the vehicle passing
sensing nodes A and B in, respectively. DAB is the distance
between nodes A and B. v′ is an instant value. While for more
common, the vehicle speed v is the mean speed of vehicle
crossing the sensing nodes during an observation interval,
such as 5 minutes. The mean speed is calculated by (2).

v =
k∑

i=1

v′i
k

, (2)

where k is the number of vehicles passed in the observation
interval and can be set by the summation of accumulator.

(b) Occupancy. The occupancy p is the fraction of time when
the detector is covered by vehicles in the observation interval.
It can be calculated by

Tocc =
k∑

i=1

ΔTi,

p = Tocc

Tsegment
,

(3)

where Tsegment is the observation interval and k is the same as
in (2).

(c) Traffic Flow. The traffic flow q is the number of vehicles
crossing the traffic data detection model in an observation
interval, and it is given by

q = k, (4)

where k is the same as in (2).

3.1.2. Data Aggregation. Considering the distributed traffic
data sources with a certain correlated character, the collected
traffic data are correlated. Due to the correlation, the ap-
proach taking the correlation into account will outperform
those which use the data directly.

In-network data aggregation is an important technique
in WSN which exploits correlated sensing data and has been
well studied in recent years [17].

For WSN that has irreplaceable batteries with limited
energy capacity and poor data processing capability in
practice, a distributed aggregation model based on the mean
filter is proposed. The processing of the aggregation is shown
as Figure 2.

Based on the distributed traffic data detection model,
traffic data samples ((vi,k, qi,k, pi,k), i = 0, 1, . . . ,n − 1, k =
0, 1, . . . ,m−1) are calculated by the detecting node according
to the DIs sent by n pairs of sensing nodes A and B. Here, m
is the amount of vehicle passed in one observation interval.
Finally, they are aggregated as (v, q, p).

The aggregation model is as follows:

v′i =
(∑m−1

k=0 vi,k
)

m
,

q′i =
(∑m−1

k=0 qi,k
)

m
,

p′i =
(∑m−1

k=0 pi,k
)

m
,

v =
(∑n−1

i=0 v′i
)

n
,

q =
(∑n−1

i=0 q′i
)

n
,

p =
(∑n−1

i=0 p′i
)

n
.

(5)

3.2. Model of Traffic Date Based on Cusp Catastrophe Theory.
The existing models of traffic data mainly assume that the
traffic data is at least locally gradual and linear, such as car
following or hydrodynamic principle. However, according
to recent researches, the discontinuity and catastrophe of
traffic flow have been identified. But the previous traffic
models are difficult to determine the breakpoint. The source
of breakpoint is complex. Some breakpoints lie between the
regime of free-flow condition and congested flow condition,
and others are caused by the traffic incident.
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The cusp catastrophe theory is used to describe the dis-
continuous phenomena of the natural. And researches have
discussed the discontinuous behavior using the cusp catas-
trophe theory in traffic [18–20].

According to the basic cusp catastrophe [21, 22], the total
potential energy (W) function of traffic data is

W(v) = av4 + bqv2 + cpv, (6)

where v represents the state variable of W . q and p represent
the control variable of W . And a, b and c are coefficients.

Based on the manifold function and the bifurcate
equation of the cusp catastrophe, the model of traffic data
based on the cusp catastrophe is defined as follows:

f
(
v, q, p

) = 4v3 + 2mvq + np,

g
(
q, p

) = 8m3q3 + 27n2p2,
(7)

where m = b/a; n = c/a.
In (7), m and n are coefficients, which can be captured by

using the methods of mathematical statistics.

3.3. The Evaluation Function of Traffic Data Quality. Based
on (7), the evaluation function of traffic data quality is
defined as below:

h1
(
f
(
v, q, p

)
, g
(
q, p

)) = ‖•‖ =
√
f 2 + g2,

h2
(
g
(
q, p

)) = ∥∥g∥∥,
(8)

(v, q, p) aggregated by the aggregation model is checked as
the input of the evaluation function, and whether it is good
or not, the data will be evaluated by (7). The conclusions of
real-time traffic data validity are the following.

Conclusion 1. speed, flow, and occupancy are good when

h1
(
f
(
v, q, p

)
, g
(
q, p

)) ≤ εh1. (9)

Conclusion 2. speed is error , but flow and occupancy are
valid , and the speed could be repaired when

(
h1
(
f
(
v, q, p

)
, g
(
q, p

))
> εh1

)
,

(
h2
(
g
(
q, p

) ≤ εh2
)
.

(10)

Conclusion 3. speed, flow, and occupancy are bad when

(
h1
(
f
(
v, q, p

)
, g
(
q, p

))
> εh1

)
,

(
h2
(
g
(
q, p

)
> εh2

)
,

(11)

where εh1 and εh2 are the corresponding threshold level.

In Conclusion 2, v can be repaired by q and p, where
f (v, q, p) = 4v3 +2mvq+np = 0. In this equation, according
to Cardano’s formula, v is solved. The value v could be more
than one solution, and the one is selected which is the most
closest to the value in previous interval.

4. DTDDQA Algorithm

In this section, we design a distributed traffic data detection
and quality analysis algorithm, named distributed traffic
data detection and quality analysis (DTDDQA) algorithm,
which consists of two steps. The first step is the traffic data
collection and aggregation which aggregates the traffic data
collected from n nodes in every 5 minutes. The second step
is the real-time data quality analysis according to the data
profiling of traffic data constructed by the model based on
cusp catastrophe theory. As the output, the good data can be
verified and some bad data can be repaired.

Based on DTDDQA algorithm, the processing of traffic
data analysis is shown as Figure 3. The whole processing is
running on the AP node. TAi and TBi sent by the sensor nodes
Ai and Bi, when vehicles passed. As the input of DTDDQA
algorithm, they are firstly calculated to (vi, qi, pi) by (2) (3),
and (4). Then, they are aggregated to (v, q, p) with other
sensor nodes every 5 minutes. Finally, (v, q, p) is checked by
data quality analysis, and the good data and the repaired data
stored as (v, q, p) are outputted.

Based on the method mentioned above, a state machine
is designed to perform the processing of DTDDQA algorithm
adaptively for traffic data detection and quality analysis, as
shown in Figure 4. The TAi and TBi are the input, and the
good data are the output. The transition states in state
machine have several steps as follows.

(1) Initialization state. It is mainly to set the initial
value of system (m,n, εh1, and εh2) and then transit to
Distributed detection state.

(2) Distributed detection state. In this state, (vi, qi, pi) is
calculated according TAi, and TBi sent by the sensor
nodes Ai and Bi and then transit to Aggregation state.

(3) Aggregation state. It is aggregated to (v, q, p) every 5
minutes and then transit to Analysis state.

(4) Analysis state. It uses cusp catastrophe theory to
evaluate (v, q, p). If it is evaluated as good, it will
transit to Output state. While the data is invalid, it
will roll back to distributed detection state in the case
of Conclusion 3, or transit to repair state in the case
of Conclusion 2.

(5) Output state. Store good data and repaired data, or
transmit these data to the data center, and then transit
to distributed detection state.

(6) Repair state. According to (7), the average speed is
rectified by q and p. Then, it will transit to distributed
detection state.

As a result, the state machine can be running automati-
cally without the end state. In actual operations, the system
needs to be stopped or restarted manually at a pinch.

5. Simulation Results and Analysis

The presented traffic data collection and data quality analysis
are investigated in this paper via simulation with VISSIM
which is a professional traffic simulation software.
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5.1. Simulation Setup. The traffic data set adopted in this
paper comes from the Dalian Transportation Management
Center. It has been collected by the inductive loop detectors
deployed in the Huanghe Road, Dalian, China. And the data
set contains the traffic data (speed, flow, and occupancy)
from 0:00 AM to 12:00 PM, December 2, 2008.

The Huanghe Road is a road with four-lane in each direc-
tion. The traffic flow is quite complicated, and the traffic state
varies obviously.

Based on the traffic data set, we reinstate the traffic scene
using VISSIM. In the simulation, a distributed traffic data
collection model based on WSN is deployed on the west-
bound direction’s entrance of Huanghe Road, as shown in
Figure 5.

The traffic data collection model is deployed at point A
in Figure 5(a). The model contains four observation points
(OP) and one AP node. Each OP is composed of 3 sensor
nodes and deployed in each lane. The functions of each
sensor nodes are described in the Section 3.1. The AP node
collects the traffic flow data from OPs and performs the
algorithm DTDDQA to analyze and clean the traffic data.

5.2. Performance of Traffic Data Detection and Aggregation.
In this subsection, we focus on the traffic data collection
based on WSN and study the characters of traffic flow,
especially whether the traffic flow has correlation and
catastrophe. Furthermore, we analyze the performance of the
aggregation of distributed collection model based on WSN.

Using the experimental data collected with the platform
as above, the statistics of average speed, average occupancy
rate, and flow from OP1 to OP4 in every 5 minutes of 24-
hours are shown in Figure 6.

It is obvious that the traffic flow is catastrophic and non-
linear.

For the performance of the aggregation and the cor-
relation of distributed collection model based on WSN,
both standard deviation and relative performance indices are
utilized in this paper.

The standard deviation index of ith OP (SDi) is defined
as

SDi =

√√√√
∑M−1

j=0

(
x′i, j − x j

)2

M
.

(12)

According to [23], the corresponding relative perfor-
mance index of ith OP (PIi) is defined as

PIi = SDi

1/M
∑M

j=0 x
′
i, j

, (13)

where x′i, j is the jth value of ith OP, x could be the value of
v, p, or q. i = 0, 1, . . . ,N − 1,N is the number of OP, here
N = 4; j = 0, 1, . . . ,M − 1, M is the amount of sample, here
M = 288, and x j is the jth value of aggregation processing.
The better corresponding relative performance, the smaller
value of PIi.

So, the performance of the aggregation of distributed
collection model is shown as Table 1 in which the SD and
PI between the value of aggregation processing and the
collection of OP every 5 minutes are analyzed.

It is obvious that the collection data of each OP is
certainly correlated. While the SD and PI of OP4’s values
to the aggregation values are largest, it is mainly because
that the lane of OP4 is the right-turn entrance of the upper
intersection and the traffic flow is a slightly different from
that the other three lanes.

5.3. Performance of Traffic Data Quality Analysis. In this
subsection, we focus on performance of the DTDDQA
algorithm. Without loss of generality, we compare the per-
formance of the following two traffic data quality analysis
algorithms:

(1) the DTDDQA algorithm,

(2) the error data identification method in [14].

We analyze these two algorithms based on the data set
achieved from loop sensor. Firstly, the data set is aggregated
by (5), and then, we analyze the traffic data quality using
these two algorithms based on the aggregated data set.
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Figure 5: Traffic scene reinstated by VISSIM: (a) The test bed of WSN in VISSIM; (b) The layout of WSN.

Table 1: Performance of the aggregation.

Speed Flow Occupancy

SD (km/h) PI (%) SD (veh/5 min) PI (%) SD (%) PI (%)

OP1 4.490278 9.02 3.62934 15.3 1.594184 12.89

OP2 2.760417 7.10 6.164063 19.2 1.653906 15.07

OP3 6.361632 10.21 10.42795 17.95 5.290885 24.09

OP4 11.99531 19.54 11.93663 29.2 7.017274 32.37

In order to evaluate the algorithms, 40 of 288 in the
aggregated data set are modified to bad data manually.
Among the 40 bad data, 20 samples are only the speed value
altered (regarded as repairable data) and in the other 20
samples’ speed and flow are altered (regarded as error data).
The new data set will be analyzed separately using these two
algorithms. The results illustrate that the performance of
DTDDQA algorithm is better. The performance detailed is
as follows.

5.3.1. Performance of DTDDQA. The new data set is analyzed
by DTDDQA algorithm, and the result is shown in Figure 7.
The samples of the aggregated data set are input, and three
integer values predefined (1, 2 and 3) are output. Based on
the three Conclusions of (8), 1 represents that the sample is
good; 2 is stated that the sample is repairable (occupancy and
flow are exact, but velocity is error); 3 means that this sample
is error and irreparable. The performance analysis result is
shown in Table 2. The identification of good data is about
87.71%, and it increases to 94.40% if the repaired data are
included. And the identification of bad data is 75.00%.

5.3.2. Performance of the Data Quality Algorithm in [14]. The
existing traffic data quality analysis algorithms mainly focus

Table 2: DTDDQA results.

Good data Repairable data Error data

Actual data set 248 20 20

Output data set 220 33 25

on the data collected from freeway. However, the traffic flow
of freeway tends to linear and gradual. In order to study
whether the algorithms are fit for the traffic data in urban
roadway, the algorithm in [14] is tested. It is proposed with a
filter to process traffic data, which is only dealt with the speed
value. When the data deviation is more than 5%, the sample
will be removed.

Using this algorithm to analyze the aggregated data set,
the result is shown in Figure 8. Similarly, the speed values
of the aggregated data set are the input, and two integer
values predefined (0 and 1) are output, where 0 means
the data is good and 1 represents the data is error. As a
result, there are 176 samples out of 288 considered to be
good data, so the identification rate is 70.97%, which shows
that the performance of the algorithm to the data from
the urban roadway is not as good as it does from the
freeways.
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Figure 6: 24-hours traffic data samples collected from OP1 to OP4 in every 5 minutes: (a) Speed; (b) Flow; (c) Occupancy.

6. Conclusions

WSN is a revolution in applications of information sensing
and collection, and consequently, it has broad prospect in
the ITS. In this paper, we develop a distributed algorithm

(DTDDQA) for urban traffic data detection and quality
analysis based on WSN. In this algorithm, we firstly propose
an aggregation model based on the mean filter to process
the distributed data samples collected by WSN and then
present an evaluation equation and data quality analysis
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Figure 7: The traffic data quality analysis results with DTDDQA.
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Figure 8: The traffic data quality analysis results with the algorithm
in [14].

model based on the cusp catastrophe theory to identify the
bad data and try to repair them. A number of simulations
are conducted based on the real data samples collected from
on-road detectors. As a result, with the processing of data
quality analysis and data recovery, this algorithm improves
the correctness and robustness of traffic data collection using
WSN.

Although we focused on the effort in developing a
general algorithm for urban traffic data detection and quality
analysis, the difference and variation of traffic flow characters
in the live detection scenario should be taken into account.
For future work, we propose to study the algorithm further
to be more self-adaptable and self-adjustable according
to the traffic data detection based on the active-learning
mechanism.
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