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Recently proposed distributed adaptive estimation algorithms for wireless sensor networks (WSNs) do not consider errors due to
noisy links, which occur during the transmission of local estimates between sensors. In this paper, we study the effect of noisy links
on the performance of distributed incremental least-mean-square (DILMS) algorithm for the case of Gaussian regressors. More
specifically, we derive theoretical relations which explain how steady-state performance of DILMS algorithm (in terms of mean-
square deviation (MSD), excess mean-square error (EMSE), and mean-square error (MSE)) is affected by noisy links. In our
analysis, we use a spatial-temporal energy conservation argument to evaluate the steady-state performance of the individual nodes
across the entire network. Our simulation results show that there is a good match between simulations and derived theoretical
expressions. However, the important result is that unlike the ideal links case, the steady-state MSD, EMSE and MSE are not
monotonically increasing functions of step size parameter when links are noisy. In addition, the optimal step size is found in a
closed form for a special case which minimizes the steady-state values of MSD, EMSE, and MSE in each node.

1. Introduction

In many wireless sensor network applications, multiple
displaced sensors are used to estimate and track an unknown
parameter, for example, average temperature, level of water
contaminants, or a target position [1, 2]. In general,
parameter estimation in WSN can be solved by either a
centralized approach or a decentralized approach [3]. In a
centralized approach, the spatially distributed sensor send
their locally processed data to a fusion center to form the
final estimate [4–6]. As the number of nodes increases,
centralized processing becomes computationally prohibitive,
since it would require communications over longer range
which leads to reduced battery life. On the other hand, in
decentralized estimation, spatially displaced sensors provide
local estimates by collaborating with other nodes in the
network [7–9].

In some WSN applications, the parameter estimation
task must be done whereas the statistical model for the
underlying processes of interest is not available, or it changes
over time. This issue motivated the development of special
class of decentralized approaches known as distributed
adaptive estimation schemes [10–14]. In these schemes,
every node is equipped with local computing ability to derive

a local estimate and share it with its predefined neighbors.
Using cooperative processing in conjunction with adaptive
filtering per node enables the entire network and also each
individual node to track not only the variations of the
environment but also the topology of the network.

Depending on the manner by which the nodes commu-
nicate with each other, they may be referred to as incremental
algorithms or diffusion algorithms. In the incremental mode,
a cyclic path through the network is required, and nodes
communicate with neighbors within this path [10–12]. The
given algorithms in [10–12] use different adaptive filter
in their structure, such as LMS, recursive least-squares
(RLS), and affine projection. When more communication
and energy resources are available, a diffusion cooperative
scheme can be applied where nodes communicate with all
of their neighbors, and no cyclic path is required. Both LMS-
based and RLS-based diffusion algorithms have been consid-
ered in the literature [13, 14]. In [15], we have considered
the quantization effects on the steady-state performance of
DILMS algorithm.

1.1. Problem Description. Analysis of distributed estimation
algorithms in the presence of noisy links is an important
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physical layer issue which has been considered for different
algorithms in the literature [16–21]. Nevertheless, this issue
has not been considered in distributed adaptive estimation
algorithms. Hence, in this paper, we study the performance
of DILMS algorithm in a WNS with noisy links between
sensors. The importance of such a study arises from the
following facts:

(i) The WSN with noisy links is more realistic assump-
tion than WSN with ideal links.

(ii) The performance of distributed adaptive estimation
algorithm (e.g., DILMS) can vary significantly when
they are used in noisy links WSN, which makes it vital
to analyze their performance.

Our aim in this paper is to derive some theoretical ex-
pressions that describe the steady-state performance of
DILMS algorithm with noisy links. It must be noted that
analyzing the DILMS algorithm in a WSN with noisy links
is challenging task, since an adaptive network comprises a
system of systems that processes data cooperatively in both
time and space in presence of noisy links. To be more specific,
the contributions of this paper are listed below.

1.2. Contributions.

(1) We show that the performance of distributed adap-
tive estimation algorithms drastically decreases when
links are noisy.

(2) We show that unlike the ideal link case [10], the
steady-state MSD, EMSE, and MSE curves are not
monotonically increasing functions of step size when
links are noisy. This result is very important in real-
world DILMS implementation and highlights the
importance of our work.

(3) The optimal step size is found in a closed form for a
special case which minimizes the steady-state values
of MSD, EMSE, and MSE in each sensor.

1.3. Paper Organization. The remainder of this paper is
organized as follows: in Section 2, we introduce the DILMS
algorithm. In Section 3, we present our analysis and explain
some results of the derived theoretical results in Section 4.
Simulation results are given in Section 5, and Finally, the
conclusions are drawn in Section 6.

1.4. Notation. Throughout the paper, we adopt boldface let-
ters for random quantities and normal font for nonrandom
(deterministic) quantities. The “∗” symbol is used for both
complex conjugation for scalars and Hermitian transpose for
matrices. The main symbols used in this paper are listed in
Table 1.

2. The DILMS Algorithm

Suppose that a WSN is deployed to estimate an unknown
vector wo from measurements collected at N nodes in
a network. Each node k has access to time realizations

Table 1: Symbols and their descriptions.

symbol description

(·)T transposition

| · |2 absolute squared operation

Re{a} real value of a

E(a) statistical expectation of a

col{a, b} column vector with entries a and b

‖x‖2
Σ weighted norm for a column vector x, x∗Σx

Tr[A] trace of matrix A

μ step size parameter in DILMS algorithm

IM M ×M identity matrix

{dk(i),uk,i} of zero-mean spatial data {dk, uk}, where each dk

is a scalar measurement and each uk is a 1×M row regression
vector. We collect the regression and measurement data into
global matrices as

U � col{u1, u2, . . . , uN} (N ×M),

d � col{d1, d2, . . . , dN} (N × 1),
(1)

then the estimation problem is formulated as

min
w

J(w), where J(w) = E
(
‖d−Uw‖2

)
. (2)

In the appendix, we introduce a motivating application
where an estimation problem (2) arises. The optimal solution
wo is given by [10]

Rdu = Ruw
o, (3)

where Rdu = E(U∗d) and Ru = E(U∗U). Note that the cost
function (2) can be decomposed as [10]

J(w) =
N∑

k=1

Jk(w), where Jk(w) = E
(
|dk − ukw|2

)
. (4)

Using this property, in [10], a distributed incremental LMS
strategy with a cyclic estimation structure is proposed, as
follows:

ψ(i)
0 ←− wi−1,

ψ(i)
k = ψ(i)

k−1
k=1,2,...,N

+ μku∗k,i

[
dk(i)− uk,iψ

(i)
k−1

]
,

wi ←− ψ (i)
N ,

(5)

where ψ(i)
k indicates the local estimate at the node k and time

i and wi indicates the overall estimate at iteration i. For each
time i, each node utilizes the local data dk(i), uk,i and ψ

(i)
k−1

received from the node k − 1 to obtain ψ(i)
k . At the end of

this cycle, ψ(i)
N is employed as both the global estimate wi

and the initial condition for the next time instant. Note that
to implement the DILMS, the time realizations {dk(i),uk,i}
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Figure 1: The effect of noisy links on the performance of DILMS
algorithm.

are used. The update equation for DILMS in noisy link
condition changes to

ψ(i)
k = ψ(i)

k−1 + qk,i + μku∗k,i

[
dk(i)− uk,i

(
ψ(i)
k−1 + qk,i

)]
, (6)

where the M × 1 vector qk,i is the channel noise term
between sensor k and k − 1 which is assumed to be additive
with zero mean and covariance matrix Qk. No distributional
assumptions are required on the noise sequence. To show
the effect of noisy links on the performance of DILMS
algorithms, we consider a network with N = 20 nodes. The
observation noise has a variance of σ2

v,k = 10−2, and also
we assume Qk = 10−3IM for channel noise. The curves are
obtained by averaging over 300 experiments with μ = 0.001
(see Figure 1). As it is clear from Figure 1, the performance
of DILMS algorithms drastically decreases when links are
noisy.

3. Performance Analysis

3.1. Data Model and Assumptions. In order to pursue the
performance analysis, we will rely on the energy conservation
approach of [10, 22]. Also, to carry out the performance
analysis, we first need to assume a model for the data as is
commonly done in the literature of adaptive algorithms. In
the subsequent analysis, the following assumptions will be
considered.

(A.1) The desired unknown vector wo relates to the
{dk(i), uk,i} via

dk(i) = uk,iw
o + vk(i), (7)

where vk(i) is white noise term with variance σ2
v,k and

is independent of {dl( j), ul, j} for all l, j.

(A.2) uk,i is independent of ul,i for k /= l.

(A.3) uk,i is independent of uk, j for i /= j.

(A.4) qk,i is independent of {ul, j , vl( j), ql, j} for all l, j.

3.2. Weighted Energy Conservation Relation. In steady-state
analysis, we are interested in evaluating the MSD, EMSE, and
MSE for every node k which are defined as

ηk � E
(∥∥∥ψ̃(∞)

k−1

∥∥∥
2
)
= E

(∥∥∥ψ̃(∞)
k−1

∥∥∥
2

I

)
(MSD),

ζk � E
(∣∣ea,k(∞)

∣∣2
)
= E

(∥∥∥ψ̃(∞)
k−1

∥∥∥
2

Ru,k

)
(EMSE),

ξk � E
(
|ek(∞)|2

)
= ζk + σ2

v,k (MSE),

(8)

where ek(i)� dk(i)− uk,iψ
(i)
k−1, ea,k(i)� uk,iψ̃

(i)
k−1, and ψ̃

(i)
k �

wo − ψ(i)
k . Note that due to incremental cooperation (cyclic

path), for k = 1 we use k − 1 = N in (8). We further define
the weighted a priori and a posteriori local errors for each
node k as follows:

eΣa,k(i) = uk,iΣψ̃
(i)
k−1, eΣp,k(i) = uk,iΣψ̃

(i)
k . (9)

Using (6) and the definition of ek(i), we have

ψ (i)
k = ψ(i)

k−1 + μku∗k,iek(i) + qk,i − μku∗k,iuk,iqk,i. (10)

By subtracting wo from both sides of (10), we get

ψ̃
(i)
k = ψ̃(i)

k−1 − μku∗k,iek(i)− qk,i + μku∗k,iuk,iqk,i. (11)

Multiplying the previous equation from left by uk,iΣ and
using the definitions in (9), we have

eΣp,k(i) = eΣa,k(i)− μk
∥∥uk,i

∥∥2
Σek(i)− uk,iΣqk,i

+ μk
∥∥uk,i

∥∥2
Σuk,iqk,i.

(12)

By replacing the ek(i) from (11) and equating the weighted
norm of both sides of the resultant equation, we arrive to the
following relation:

∥∥∥ψ̃(i)
k

∥∥∥
2

Σ
+

∣∣∣eΣa,k(i)
∣∣∣2

∥∥uk,i
∥∥2
Σ

=
∥∥∥ψ̃(i)

k−1

∥∥∥
2

Σ
+

∣∣∣eΣp,k(i)
∣∣∣2

∥∥uk,i
∥∥2
Σ

+
∥∥qk,i

∥∥2
Σ − 2 Re

{
ψ̃

(i)∗
k−1Σqk,i

}

+ 2 Re

⎧⎨
⎩
ψ̃

(i)∗
k−1Σu∗k,iuk,iΣqk,i∥∥uk,i

∥∥2
Σ

⎫⎬
⎭−

q∗k,iΣu∗k,iuk,iΣqk,i

‖uk,i‖2
Σ

.

(13)

We find from (13) that the cross terms are canceled out.
Equation (13) is a space-time version of the weighted energy
conservation relation used in [10] in the context of regular
adaptive implementations.

3.3. Weighted Variance Relation. In this section, we use the
energy conservation relation to evaluate the steady-state
performance of the DILMS algorithm in every node when the
links between nodes are noisy. To this aim, we need to have
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a recursive equation for ‖ψ̃(i)
k ‖

2

Σ. To obtain such a recursion
we replace eΣp,k(i) from (12) into (13) to get

∥∥∥ψ̃k

∥∥∥2

Σ
=
∥∥∥ψ̃k−1

∥∥∥2

Σ
− 2 Re

{
ψ̃
∗
k−1Σqk

}
+
∥∥qk

∥∥2
Σ

+ 2μk Re
{

eΣ∗a,k ukqk

}
− μkq∗k Σu∗k ukqk

− μkq∗k u∗k ukΣqk + μ2
k‖uk‖2

Σq∗k u∗k ukqk

− μkeΣ∗a,k ek − μke∗k eΣa,k + μ2
k‖uk‖2

Σ|ek|2

+ μke∗k ukΣqk − μ2
k‖uk‖2

Σe∗k ukqk

+ μkq∗k Σu∗k ek − μ2
k‖uk‖2

Σq∗k u∗k ek.

(14)

We have dropped the time index i for compactness of
notation. Now, we can relate the ek to ea,k via

ek = ea,k + vk. (15)

If we replace (15) into (14), take expectation of both sides,
and use assumptions (A.1)–(A.4), we obtain

E
(∥∥∥ψ̃k

∥∥∥2

Σ

)
= E

(
‖ψ̃k−1‖2

Σ

)
+ E

(∥∥qk

∥∥2
Σ

)

− μkE
(

eΣ∗a,kea,k

)
− μkE

(
e∗a,keΣa,k

)

+ μ2
kE
(
‖uk‖2

Σ

∣∣ea,k
∣∣2
)

+ μ2
kσ

2
v,kE

(
‖uk‖2

Σ

)

+ μ2
kE
(
‖uk‖2

Σq∗k u∗k ukqk

)

− μkE
(

q∗k Σu∗k ukqk

)
− μkE

(
q∗k u∗k ukΣqk

)
.

(16)

By considering the error definitions eΣa,k and ea,k , we can
obtain the following relations:

E
(

e∗a,keΣa,k

)
= E

(∥∥∥ψ̃k−1

∥∥∥2

u∗k ukΣ

)
,

E
(

eΣ∗a,k ea,k

)
= E

(∥∥∥ψ̃k−1

∥∥∥
2

Σu∗k uk

)
,

E
(
‖uk‖2

Σ

∣∣ea,k
∣∣2
)
= E

(
‖uk‖2

Σ

∥∥∥ψ̃k−1

∥∥∥2

u∗k uk

)
.

(17)

Using the property ‖x‖2
A + ‖x‖2

B = ‖x‖2
A+B and (17), we can

expand (16) as

E
(∥∥∥ψ̃k

∥∥∥2

Σ

)
= E

(∥∥∥ψ̃k−1

∥∥∥2

Σ′

)
+ E

(∥∥qk

∥∥2
Σ

)
+ μ2

kσ
2
v,kE

(
‖uk‖2

Σ

)

+ μ2
kE
(
‖uk‖2

Σq∗k u∗k ukqk

)

− μkE
(

q∗k Σu∗k ukqk

)
− μkE

(
q∗k u∗k ukΣqk

)
,

(18)

where in (18), we have

Σ′ � Σ− μkΣu∗k uk − μku∗k ukΣ + μ2
k‖uk‖2

Σu∗k uk. (19)

Invoking the independence of the regression data {uk} allows
us to write

E
(∥∥∥ψ̃k−1

∥∥∥2

Σ′

)
= E

(∥∥∥ψ̃k−1

∥∥∥2

E(Σ′)

)
, (20)

so that (18) becomes

E
(∥∥∥ψ̃k

∥∥∥
2

Σ

)
= E

(∥∥∥ψ̃k−1

∥∥∥
2

Σ′

)
+ E

(∥∥qk

∥∥2
Σ

)
+ μ2

kσ
2
v,kE

(
‖uk‖2

Σ

)

+ μ2
kE
(
‖uk‖2

Σq∗k u∗k ukqk

)

− μkE
(

q∗k Σu∗k ukqk

)
− μkE

(
q∗k u∗k ukΣqk

)
.

(21)

Note that in (21), Σ′ is a deterministic matrix as

Σ′ � Σ− μkE
(
Σu∗k uk + u∗k ukΣ

)
+ μ2

kE
(
‖uk‖2

Σu∗k uk

)
. (22)

Recursion (21) is a variance relation that can be used to
infer the steady-state performance at every node k. Note that
Σ′ is solely regressors dependent and, therefore, decoupled
from the weight error vector. For simplicity, in this work, we
consider the following assumption.

(A.5) The regressors {uk} arise from a source with circular
Gaussian distribution with covariance matrix Ru,k.

We introduce the eigndecomposition Ru,k = UkΛkU∗k , where
Λk is a diagonal matrix with the eigenvalues of Ru,k and Uk is
unitary, that is, UkU

∗
k = U∗k Uk = I . Define the transformed

quantities

ψk � U∗k ψ̃k, ψk−1 � U∗k ψ̃k−1, uk � ukUk,

qk � U∗k qk, Σ � U∗k ΣUk, Σ
′
� U∗k Σ

′Uk.
(23)

Using the above definitions, (21) and (22) can be rewritten
in the equivalent forms

E
(∥∥∥ψk

∥∥∥2

Σ

)
= E

(∥∥∥ψk−1

∥∥∥2

Σ
′

)
+ E

(∥∥qk

∥∥2
Σ

)

+μ2
kσ

2
v,kE

(
‖uk‖2

Σ

)
+ μ2

kE
(
‖uk‖2

Σq∗k u∗k ukqk

)

−μkE
(

q∗k Σu∗k ukqk

)
− μkE

(
q∗k u∗k ukΣqk

)
,

Σ
′ = Σ− μkE

(
Σu∗k uk + u∗k ukΣ

)
+ μ2

kE
(
‖uk‖2

Σu∗k uk

)
.

(24)

To proceed, we need to evaluate the moments in (24) as
follows:

E
(∥∥qk

∥∥2
Σ

)
= Tr

[
BkΣ

]
,

E
(
‖uk‖2

Σ

)
= Tr

[
ΛkΣ

]
,

E
(
‖uk‖2

Σq∗k u∗k ukqk

)
= Tr

[
Bk

(
Λk Tr

[
ΣΛk

]
+ γΛkΣΛk

)]
,

E
(

q∗k Σu∗k ukqk

)
= Tr

[
ΛkBkΣ

]
,

E
(
‖uk‖2

Σu∗k uk

)
=
(
Λk Tr

[
ΣΛk

]
+ γΛkΣΛk

)
,

(25)
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where Bk = U∗k QkUk and γ = 1 for circular complex data
and γ = 2 for real data. Replacing these moments, (24) can
be written as

E
(∥∥∥ψk

∥∥∥
2

Σ

)
= E

(∥∥∥ψk−1

∥∥∥
2

Σ
′

)
+ Tr

[
BkΣ

]
+ μ2

kσ
2
v,k Tr

[
ΛkΣ

]

+ μ2
k Tr

[
Bk

(
Λk Tr

[
ΣΛk

]
+ γΛkΣΛk

)]

− 2μk Tr
[
ΛkBkΣ

]
,

(26)

Σ
′ = Σ− μk

(
ΣΛk + ΛkΣ

)

+ μ2
k

(
Λk Tr

[
ΣΛk

]
+ γΛkΣΛk

)
.

(27)

Note from (27) that choosing Σ to be diagonal, Σ
′

will be
diagonal as well, suggesting a more compact notation. Thus,
we introduce the M × 1 column vectors

σ
Δ= diag

{
Σ
}

, σ ′ Δ= diag
{
Σ
′}

, λk
Δ= diag{Λk},

(28)

where the diag{} notation will be used in two ways: λ =
diag{Λ} is a column vector containing the main diagonal
of Λ, and Λ = diag{λ} is a diagonal matrix whose entries
are those of the vector λ. Therefore, using the diagonal
notation, we obtain the following linear relation between the
corresponding vectors {σ , σ ′}:

σ ′ = Fkσ , (29)

where Fk is a M ×M matrix that includes statistics of local
data and given by

Fk
Δ= I − 2μkΛk + γμ2

kΛ
2
k + μ2

kλkλ
T
k . (30)

As a result, (26) becomes

E
(∥∥∥ψk

∥∥∥2

diag{σ}

)
= E

(∥∥∥ψk−1

∥∥∥2

diag{Fkσ}
)

+ gkσ , (31)

where gk is a row vector as

gk � μ2
kσ

2
v,kλ

T
k +

(
diag{Bk}

)T[
I + μ2

kλkλ
T
k + γμ2

kΛ
2
k − 2μkΛk

]
.

(32)

Using (30), gk can be rewritten in a more compact form as

gk = μ2
kσ

2
v,kλ

T
k +

(
diag{Bk}

)T
Fk. (33)

For the sake of clarity, we reintroduce the time index i but
drop the diag{} notation from the subscripts in (31) for
compactness. Expression (31) becomes

E
(∥∥∥ψ(i)

k

∥∥∥2

σk

)
= E

(∥∥∥ψ(i)
k−1

∥∥∥2

Fkσk

)
+ gkσk. (34)

We replaced {σ , σ ′} by {σk, σ ′k} in order to indicate that the
weighting matrix can be node dependent.

3.4. Steady-State Behavior. By comparing (34) with the
similar equation for DILMS algorithm with ideal links (i.e.,
equation (55) in [10]), we can conclude that the desired
steady-state MSD, EMSE, and MSE for DILMS algorithm
with noisy links at node k can be expressed as

ηk = ak
(
I −Πk,1

)−1
r, (MSD), (35)

ζk = ak
(
I −Πk,1

)−1
λk, (EMSE), (36)

ξk = ζk + σ2
v,k, (MSE), (37)

where

Πk,l � Fk+l−1Fk+l · · ·FNF1 · · ·Fk−1, l = 1, . . . ,N , (38)

ak � gkΠk,2 + gk+1Πk,3 + · · · + gk−2Πk,N + gk−1, (39)

r � diag{I}, λk � diag{Λk}. (40)

Note that in (38), the subscripts are all modN . It is
evident that the effect of channel noise is addition of term
(diag{Bk})TFk to gk in the case of ideal link.

4. Discussion on Derived Theoretical Results

An important result is that unlike the ideal links case, in the
presence of noisy links, the MSD, EMSE, and MSE curves are
not monotonically increasing functions of step size. To show
this result more clearly and to make (35)–(37) analytically
more tractable, we assume that

(A.6) μk = μ, Ru,k = λI , Qk = σ2
c,kI .

We further assume that μ is small enough so that Fk can be
approximated as

Fk ≈ I − 2μλI. (41)

So, Fk is now a diagonal matrix and as a result, matrix Πk,� =
Π = F1F2 · · ·FN will be diagonal as well. For small μ, we
have (1− 2μλ)N ≈ (1− 2μNλ), then Π can be approximated
as

Π = (I − 2μλI
)(
I − 2μλI

) · · · (I − 2μλI
)

≈ (1− 2μNλ
)
I ,

(42)

so that

I −Π ≈
N∑

k=1

2μλI = 2NμλI. (43)

Similarly, using the assumptions in (A.6), we have

gk = μ2σ2
v,kλr

T + σ2
c,k

(
1− 2μλ

)
rT , (44)

so that ak becomes

ak ≈
N∑

k=1

gk =
⎛
⎝

N∑

k=1

(
μ2σ2

v,kλ + σ2
c,k

(
1− 2μλ

))
⎞
⎠rT . (45)
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Now, replacing (43) and (45) into (35) and using rTr = M,
we obtain

ηk = M

2μλN

N∑

k=1

(
μ2σ2

v,kλ + σ2
c,k

(
1− 2μλ

))
, (46)

similarly, we can find the following approximations for
EMSE and MSE as

ζk = M

2μN

N∑

k=1

(
μ2σ2

v,kλ + σ2
c,k

(
1− 2μλ

))
,

ξk = ζk + σ2
v,k.

(47)

We can easily conclude from (46)-(47) that the MSD, EMSE,
and MSE curves are not monotonically increasing function
of step size parameter. In Figure 2, we have shown the MSD
as a function of μ when N = 20, M = 5, λ = 1, σ2

v = 0.02 and
for different values of σ2

c . As it is clear from Figure 2, for σ2
c =

0 (i.e., noiseless links), the MSD curve is a monotonically
increasing function of μ.

Remark 1. To explain this behavior, we consider again the
update (6). For small μ, the channel noise term say qk,i is
dominant term in update equation, so as μ → 0 the steady-
state performance deteriorates. As μ increases, the effect
of channel noise term decreases, and finally as μ becomes
larger, the steady-state performance deteriorates again like
any adaptive algorithm.

Remark 2. The optimal step size for MSD is given by

μo =
√√√√√
∑N

k=1 σ
2
c,k∑N

k=1 λσ
2
v,k

. (48)

It must be noted that (48) is also the optimal step size for
EMSE and MSE curves.

Remark 3. Note that according to the given results in [10],
as step size becomes smaller (μ → 0), steady-state values of
MSD, EMSE, and MSE in each node should be more smaller
too, but this is not the case in the presence of noisy links. In
fact, μ must be chosen more carefully in real world.

5. Simulation

In this section, we provide computer simulations to compare
the theoretical expressions with simulation results. To con-
duct our simulation results, we consider the following steps:

(1) consider a network with noisy link and generate the
measurement and regression data,

(2) select a parameter wo (which is known for us but
unknown for DILMS algorithm),

(3) let the DILMS algorithm estimate wo in WSN with
noisy links and data (generated in step 1),

(4) obtain the MSD, EMSE, and MSE simulation results,
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Figure 2: The steady-state MSD (in dB) curve as a function of μ
and for different values of σ2

c .

(5) we apply the data (generated in step 1) to our derived
theoretical results,

(6) finally, we compare the resultant simulation results
with derived theoretical results.

To this aim, we consider a distributed network with N = 20
nodes, and choose M = 4 and wo = [1 1 · · · 1]T/

√
M.

5.1. Regressors with Shift Structure. Although the analysis
relied on the independence assumptions, simulations pre-
sented in this subsection were carried out using regressors
with shift structure to cope with realistic scenarios. The
regressors are generated at each node k according to the
following recursion:

uk(i) = αkuk(i− 1) + βkτk(i). (49)

The expression above describes a first-order autoregressive
(AR) process with a pole at αk, τk is a white, zero-mean,
Gaussian random sequence with unity variance or a uniform
random sequence with unity variance, αk ∈ (0, 0.5] and

βk =
√
σ2
u,k(1− α2

k). In this way, the covariance matrix Ru,k

of the regressors uk,i is M ×M Toeplitz matrix with entries
rk(m) = σ2

u,kα
|m|
k , m = 0, 1, 2, . . . ,M − 1 with σ2

u,k ∈ [0, 0.5).
The MSD, EMSE, and MSE are obtained by averaging the
last 200 samples. Each curve is obtained by averaging over
100 independent experiments. The steady-state curves are
generated by running the network learning process for 2000
iterations. We consider real data (γ = 2).

We assume that for node k, covariance matrix Qk is a
diagonal matrix and has different values at the diagonal so

Qk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

δk,1 0 · · · 0

0 δk,2 · · · 0

...
...

. . .
...

0 0 · · · δk,M

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
M×M

. (50)
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Figure 3: Node profile and channel noise information.
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Figure 4: Steady-state MSD versus node, μ = 0.03.
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Figure 5: Steady-state EMSE versus node, μ = 0.03.

In fact, at each node k, the noise term qk,i is generated
to result the required (assumed) covariance matrix Qk.
The statistical profiles for the mentioned parameters are
illustrated in Figure 3.

In Figures 4–6, the steady-state of MSD, EMSE, and
MSE for μ = 0.03 are plotted, respectively. It is clear from
Figures 4–6 that there is a good match between simulation
and theory. Note also that despite the diverse statistical pro-
file, the MSD in Figure 4 is roughly even over the network.
On the other hand, the EMSE and the MSE are more sensitive
to local statistics, as depicted in Figures 5 and 6.

In Figures 7 and 8, the MSD and EMSE for different
values of μ for node k = 10 are plotted. We note that unlike
the ideal link case [10], here, the steady-state MSD and EMSE
(and also MSE) are not a monotonically increasing function
of μ.
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Figure 6: Steady-state MSE versus node, μ = 0.03.
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Figure 7: Steady-state MSD versus μ, node k = 10.

5.2. Independent Regressors. In this case, we assume that
the regressors data arise from independent Gaussian, where
their eigenvalue spread is ρ = 5. We assume Qk = 10−3IM
for channel noise. The observation noise variance σ2

v,k and
Tr[Ru,k] are shown in Figure 9. In Figures 10 and 11, the
steady-state of MSD and EMSE for μ = 0.001 are plotted.
It is clear from Figures 10 and 11 that there is a good match
between simulation and theory.

6. Conclusions and Future Work

In this paper, we derived theoretical relations to predict
the performance of incremental distributed least-mean
square algorithm (DILMS) when the links between nodes
were noisy. Starting with the weighted energy conservation
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Figure 8: Steady-state EMSE versus μ, node k = 10.
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Figure 9: The Observation noise power profile, (a) σ2
v,k and (b)

Tr[Ru,k].

relation, we derived a variance relation for our problem.
However, The important result is that unlike the ideal link
case, the steady-state MSD, EMSE, and MSE are not a
monotonically increasing function of step size when links
are noisy. The simulation results revealed that there is
good match between the derived closed-form expressions for
MSD, EMSE, and MSE for every node in the network and
the simulation results. Note that although in this paper we
focused on the LMS adaptive filter, we can extend it for other
adaptive filters. In our future work, we will consider more
sophisticated cooperation modes (rather than incremental
mode), such as diffusion mode.
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Figure 10: Steady-state MSD versus node, μ = 0.001.

Appendix

Consider that a network with N sensors is deployed
to observe a physical phenomenon such as temperature,
humidity, or any other events in a specified environment. At
time i, the kth node collects a measurement dk(i) (a time-
realization data). By assuming an autoregressive (AR) model
to represent these measurements, we have

dk(i) =
M∑

m=1

βmdk(i−m) + vk(i), (A.1)

where vk(i) is additive zero-mean noise and the coefficients
{βm} are parameters of the underlying model. If we define
the M × 1 parameter vector

wo = col
{
β1,β2, . . . ,βM

}
, (A.2)

and the 1×M regression vector

uk,i =
[

dk(i− 1) dk(i− 2) · · · dk(i−M)
]

, (A.3)

then (A.1) at each node k can be rewritten as an equivalent
linear measurement model

dk(i) = uk,iw
o + vk(i). (A.4)

The objective becomes to estimate the model parameter
vector wo from the measurements dk(i) and uk,i over the
network and thereby has the form of a system identification
problem.
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