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We study game-theoretic mechanisms for routing in wireless ad hoc networks. Our major results include a combination of
theoretical bounds and extensive simulations, showing that VCG-based routing in wireless ad-hoc networks exhibits small frugality
ratio with high probability. Game-theoretic mechanisms capture the noncooperative and selfish behavior of nodes in a resource-
constrained environment. There have been some recent proposals to use these mechanisms (in particular VCG) for routing in
wireless ad-hoc networks, and some frugality bounds are known when the connectivity graph is essentially complete. We are the
first to show frugality bounds for random geometric graphs, a well-known model for ad-hoc wireless connectivity. In addition,
we generalize the model of agent behavior by allowing sets of nodes to form communities to maximize total profit. We are the
first to analyze the performance of VCG under such a community model. While some recent truthful protocols for the traditional
(individual) agent model have improved upon the frugality of VCG by selecting paths to minimize not only the cost but the
overpayment, we show that extending such protocols to the community model requires solving NP-complete problems which are

provably hard to approximate.

1. Introduction

Reliable and cost-efficient routing in ad hoc networks is a
well-studied problem, with numerous proposals for routing
protocols. Many of these protocols assume that the nodes
in the network behave co-operatively; a node will always
agree to forward a packet to its recipient. In resource-
scarce environments (prevalent in ad-hoc networks), this co-
operativeness assumption is suspect. Forwarding a packet
incurs some cost to the node (i.e., the use of battery power),
and in the absence of other incentives, nodes belonging to
one community may refuse to forward packets belonging
to another community. Under these assumptions, it is often
more reasonable to model a network as a game played
between independent selfish agents and to apply game theo-
retic reasoning to develop incentive-based routing protocols
[1,2].

In an incentive-based routing protocol, a node is paid
monetary compensation in return for forwarding a packet.
The compensation covers the cost incurred by the node in
forwarding the packet. Specifically, in order to route a packet
from node s to node ¢, each node in the graph demands

some payment commensurate with the cost it incurs, and the
minimum cost path is chosen as the route, each node along
the path getting the payment it demanded. Unfortunately, in
most cases, the actual cost incurred is information private
to the community owning the node, and the protocol must
assume that the community sets its own price. This can lead
to cheating: communities will tend to inflate their operating
costs to maximize the benefits received, leading to instability
in the protocol. Thus, the protocol must be designed so
that individual communities have no incentive to cheat.
Such a truthful mechanism [1, 3, 4] will ensure that each
community will demand a payment equal to its actual cost.
This simplifies the protocol design by eliminating the need
to model each community’s knowledge of each other or their
cost distributions. For network routing, the VCG mechanism
[4-7] implements a truthful mechanism; the chosen route
is the minimum cost according to the demanded payments,
and each community gets paid the maximum amount it
could have demanded to still be part of the chosen route, all
other communities’ demands remaining the same.

Since VCG is truthful, the chosen route is indeed the
cheapest path with respect to the true cost. However, there is



a cost to truthfulness. The payment made to the communities
can be significantly greater than the cost of the solution.
Hence, one has to analyze the the amount by which the
mechanism overpays, called the frugality of the mechanism
[8-10]. This is measured by the frugality ratio, the maximum
over all source-sink pairs of the ratio of the total payment
made to the cost of the route.

The VCG mechanism and associated frugality ratio have
been studied for shortest path routing on graphs, where each
node or edge is considered an independent agent. In par-
ticular, some different routing protocols for wireless ad-hoc
networks that are based on variations of the VCG mechanism
have been proposed by the research community [2, 11-13].
We demonstrate in this work that the mechanism extends to
the presence of communities (i.e., where nodes of the graph
are partitioned into independent profit-making agents). This
captures the real-world nature of ad-hoc networks where
nodes are organized into companies or communities acting
together, for example, mobile users who group together
following common social interests [14-17], mobile users
that have a relation of trust [18], and so forth. While this
extension is simple for the standard VCG mechanism, we
show that many natural extensions to VCG that remain com-
putationally tractable in the usual case become intractable
once communities are explicitly added to the model.

We study the frugality ratio (a measure of cost-efficiency)
of the generalized VCG mechanism for reliable routing in
the presence of noncooperative behavior on wireless ad-hoc
networks. We provide theoretical bounds on the frugality
ratio and additionally validate VCG-based routing with
extensive simulations. We are the first to demonstrate frugal
bounds on VCG both for random geometric graphs and
under the generalized community model.

Random geometric graphs [19] are constructed by
placing nodes at random in the unit square and adding an
edge between two nodes if they are closer than the parameter
r, which represents the broadcast radius. Such graphs have
been well studied as theoretical models of wireless ad-hoc
networks [20-25]. We consider various organizations of
the nodes into k communities, including the traditional
individual agent model in which each node is its own
community (and k = ). In the theoretical bounds, we
consider both the model where each node belongs to a
uniformly at random selected community and the case where
the node belongs to an arbitrary community (with no known
underlying distribution). In simulations, we additionally
consider more clustered situations where the communities
have some locality. While we consider both the cases
where per-node costs amongst different communities are
distributed uniformly at random and distributed arbitrarily,
for any given community we assume that the per-node cost
is identical for all nodes of the community. We take this to
be a reasonable simplifying assumption which reflects the
cooperative nature of nodes within a community, including
that they may agree amongst themselves upon a fixed per-
node price. It may also reflect other forms of commonality
of a given community’s nodes, such as being of the same
provider, being of the same general type, or sharing some
locality in the clustered cases.
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For a random geometric graph with k communities pop-
ulated uniformly at random, where the costs are chosen
uniformly at random from the interval [c¢,c + B], we
prove that the frugality ratio is bounded by 2v2(1 +
2B(log log n)*/clogn) with high probability. For the (tradi-
tionally studied) individual node model (where each node
is a different community), we show that the frugality ratio
is bounded by 2(1 + B/c) (resp., 2(1 + Blog log n/clogn))
with high probability when costs are chosen arbitrarily (resp.,
uniformly at random) from the interval [¢,c¢ + B]. Our
proof techniques use the connectivity properties of random
geometric graphs [20], together with iterated applications
of the coupon collector’s problem [26]. We also show a
logarithmic bound in expectation when the number of com-
munities in the network is small.

We also perform a detailed study of VCG-based routing
and its frugality ratio through extensive simulation of
network models. We simulate random geometric graphs
with few (O(logn/log log 1)) big communities as well as
many (O(n/logn)) small communities. Our simulations
show that the frugality ratio obtained is lower (better) than
the theoretical upper bounds we provide. In addition, we
simulate networks where our theoretical results will not
directly apply; these include networks consisting of some
combination of large and small communities, and networks
where nodes belonging to a particular community exhibit
geographic locality. In all cases, the frugality ratios remain
low. We note that such extensive simulations properly extend
our conference paper [27] which included only theoretical
bounds.

Our experiments demonstrate that the frugality ratio
goes up as the number of communities increases. This indi-
cates that in the presence of many communities, a mech-
anism which explicitly minimizes the frugality ratio by
weighting paths based on the number of communities
may be desirable. In fact, this is the intuition behind the
result of [10] to improve over the frugality ratio of VCG.
Unfortunately, we show that in the community model such
weighting schemes become computationally intractable (NP-
hard and even hard to approximate), implying that these
improved mechanisms will be difficult to implement in
practice.

While we only concentrate on the frugality of VCG mech-
anisms in this paper, our protocols can be implemented for
real-world networks using the techniques of [2], using real or
virtual payments [28].

2. Related Work

The theory of algorithmic mechanism design was initiated
by Nisan and Ronen in [4, 29], in which they considered the
generalized Vickrey-Clarke-Groves (VCG) mechanism [5-
7] for various computational problems, including shortest
path auctions. Since then, with the observation that VCG
overpayments can be quite excessive for path auctions in
worst cases, work has been put forth towards finding more
frugal truthful mechanisms [8, 9]. Much of this research
has resulted in similarly worst case bounds for any truthful
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mechanism [30]. However, the appropriate question to ask is
whether we can define a mechanism for a particular graph
which comes close to the best possible mechanism for
that graph. To resolve this question, [10] proposed the \/n
mechanism, which is within a /2 factor of the frugality
ratio for the best truthful mechanism on any given graph.
In some cases, this performs up to O(,/n) more frugally than
VCG. Although Nisan and Ronen’s original paper considers
VCG for general set systems, most subsequent work on
truthful mechanisms for path auctions and the frugality
thereof is restricted to the case where every edge is owned
by an independent agent. Du et al. [31] discuss a model
where communities can own multiple edges; however, in
their model, the identity of the community owning an
edge is private, and they show that for such a model no
truthful mechanism exists. In our work, we extend VCG
for path auctions in the presence of communities where
ownership is public, but costs remain private. In Section 7,
we show that it is NP-hard to generalize important classes
of truthful mechanisms for path auctions in the standard
model, including the ./n mechanism, to the community
model.

Although VCG performs badly in worst cases, it has
been observed that VCG yields small frugality ratio for
various random graph models such as random Bernoulli
graphs and random scale-free graphs [32—34]. Here, as we are
interested in path auctions for ad-hoc and wireless networks,
we study the performance of VCG for random geometric
graphs [19], a classical model for wireless networks that
has been considered in much theoretical work in this
area [20-25]. In particular, it is the model that has been
considered by Gupta and Kumar [20] in their analysis of
the critical radius required for asymptotic connectivity in
such networks, and in this work, we consider radii on
this order as we require connectivity and small radius.
Random geometric graphs have repeatedly been found to
share similar threshold properties with random Bernoulli
graphs [19, 21], such as asymptotic connectivity probability
and radius [20], optimal cover time [23], and, as we show in
this work, constant frugality ratio for VCG under unit costs
in the standard model. However, despite the similarities in
resulting thresholds, proof and analysis of these thresholds
have required strikingly different methodologies due to
inherent sharp differences between random Bernoulli graphs
and random geometric graphs [21, 23]. Similarly, here
we may not utilize previous methods of bounding VCG
overpayments derived from the results on random Bernoulli
graphs (or random scale-free graphs) as that analysis relies
heavily on expansion properties or short diameter of such
graphs, neither of which is shared by random geometric
graphs.

An alternative to the VCG is the first-path auction where
the agents on the winning path are paid their bid value.
Immorlica et al. in [35] characterized all strong e-Nash
equilibria of a first-path auction and showed that the total
payment of this mechanism is often better than the VCG
total payment. However, the drawback of this mechanism
is that there is no guarantee that the bidders will reach an
equilibrium; moreover, unlike the VCG, the preferred bid

may depend on the communicating pair, which might not
be known in advance.

VCG and variations thereof have been previously con-
sidered for routing in networks, fitting into a recent body
of research tackling the problem of game-theoretic formal-
ization of reliable routing incentives for various networking
domains, such as peer-to-peer networks and ad-hoc net-
works [2, 11-13], only [2]. Closest to our work in this regard
is the paper of Anderegg and Eidenbenz [2] in which they
propose VCG for routing in ad-hoc networks. Although
our work is nominally similar, there are crucial differences.
In particular, although both works consider VCG on ad-
hoc networks, in their mechanism they consider nodes to
have unbounded maximum potential radius, paying selected
nodes to set their actual radius as desired according to
how many bits they forward for the source-sink, and take
each node to be an independent agent. We, on the other
hand, consider a fixed topology in which radii are already
set (one may view this as assuming bounded transmission
radius) and pay nodes to transmit according to some cost
function set by the community that the nodes belong to
taking into account various factors (e.g., energy, quality
of service, etc.). Our work fits a more general framework
for routing mechanisms where we do not assume to know
exactly how forwarding costs are dictated. Also, our analysis
of frugality ratios considers both arbitrary and random
cost distributions both in the presence of communities and
for individual independent agents, and in simulations, we
further consider the case of clustered graphs as well.

Finally, we focus on previously unconsidered important
theoretical aspects of the problem in this work, leaving the
concrete implementation to a large body of work on imple-
mentation of internet currency [28] and other previous work
dealing extensively with the implementation of game-
theoretic multihop routing [2, 11-13]. We reiterate both our
results on NP-hardness and APX-hardness of natural exten-
sions as well as previous work on impossibility of ensuring
truthfulness for some extremely generalized agent models
[31]. In light of these, as well as our low frugality bounds for
VCG obtained via proofs and simulations, we recommend
VCG as both a reliable and cost-efficient routing protocol for
wireless ad-hoc networks under reasonable generalized (in
comparison to traditional models) modes of node behavior,
selfishness, and cooperation.

3. The Payment Model

In this section, we describe our model. We model an ad-
hoc network with kK communities as a connected undirected
graph G = (V, E) where the nodes in V are partitioned into
k subsets (the communities). Each community is assumed to
be independently profit maximizing. We assume that there is
no monopoly community in the graph, so that by removing
one community from the graph, the graph will still remain
connected.

Given a k-community ad-hoc network (V, E), and nodes
sand t from V, our goal is to design a protocol that will let
s route a packet to t by a cheapest-cost path from s to t.



Costs are incurred by the nodes in forwarding packets. A
community i charges money for any packet that one of its
node transmits. This cost reflects, for example, the power
and other resources required to forward a packet, as well as
other factors like the location and number of agents belong to
the community. We assume all nodes of a community charge
the same price; however, the exact determination of this cost
is information private to the community. While nodes can
change location and connectivity over time, we assume that
the network is static during the routing phase.

One protocol is to let each community declare its true
cost and then find a shortest path in the resulting graph, each
community along the path getting paid the amount it had
demanded for each of its nodes in the path. However, since
communities want to maximize their profit independently,
they might inflate their actual cost in order to maximize their
payment. Hence, what we want is a protocol that provides no
incentive for cheating. We use tools from mechanism design
[3, 4, 29] to design such a truthful mechanism.

We define our protocol as a mechanism design problem
as follows.

(1) We define a game on a k-community ad-hoc network
(V,E) with k players, each corresponding to a com-
munity. We define the allowed outcomes O of the
game to be the finite set of simple paths between s
and t.

(2) For each path o € O, each community i has a private
cost t(0) which is a function of the number of com-
munity nodes in path o and the cost of forwarding a
packet by a node belonging to the community. This
is private information for the community: all and
only the nodes in community i know the function,
ti(o € 0O). We simplify the model by assuming
that all the nodes belong to the same community
have the same packet transmitting cost. Under this
assumption t/(0) = C; - n;(0), where C; is the cost
of transmitting one packet by a node of community i,
and n;(0) is the number of i’s nodes lying on path o.

(3) Each community defines a (private) valuation func-
tion #(0), which is the price it charges to transmit a
packet on path o.

(4) If the path o is chosen as the route from s to ¢, then
the utility function of community i will be u/(0) =
p'(0) — t'(0) where pi(0) > 0 is the payment the
community receives from the mechanism. The goal
of community i is to maximize its utility u/(0).

The payment p’ to the communities is used to ensure a
truthful implementation, that is, an implementation where
the dominant strategy of each community is to set its
valuation v* to be equal to t'. Such a truthful mechanism
is the Vickrey-Groves-Clarke (VCG) mechanism [5-7]. We
use the following payment (which is an easy generalization
of the payment scheme for shortest paths on graphs studied
in [4]) in our mechanism. Let dgji— be the shortest path
that does not contain any node belonging to community
i, and let dgji—o be the cost of the shortest path where all
nodes on the shortest path that belong to i have a zero cost.
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Then, the payment function p’(0) = 0 if i is not on the
shortest path o, and p'(0) = dgji—w — dgjizo measures the
maximum amount community i could have charged to still
be part of the chosen route, namely, the threshold bid for
that community. Since shortest path is a monotone selection
rule (i.e., a losing community cannot become part of the
shortest path by raising its valuation), standard techniques
[4, 8] show that this payment scheme implements a truthful
mechanism, that is, there is no incentive for any community
to lie about its cost.

The frugality ratio is the “overpayment” ratio of the
mechanism. Since VCG selects the shortest path o, the fru-
gality ratio will be FR = 3; pi(0)/ >; t(0).

4. Graph and Cost Model

We represent ad-hoc and wireless networks as random geo-
metric graphs with radius at least on the order of asymptotic

connectivity reon = Q(y/logn/n) [20]. To generate a random
geometric graph with # nodes and radius r, n points (nodes)
are picked uniformly at random from the unit square, and
there is an edge between nodes u and v if the distance
between u and v is less than or equal to r. As the random
geometric graph is a standard model in theoretical work on
ad-hoc and wireless networks [20], and as connectivity is a
minimum requirement for any routing in a network, we take
these to be reasonable assumptions.

Our models have four parameters: the number of nodes
(n), the radius of the random geometric graph (r), the
number and choice of communities (k), and choice of
transmission costs (F).

As explained above, we use r = rcn. In simulations,
we actually use r = O(rcon(n)) to study the behavior of
the network with the minimal radius that ensures network
connectivity. Our theoretical results are for general r = rcop.

We consider 3 types of cost distribution functions
F. First, we study arbitrary bounded cost distributions
F4(¢min, B), where community picks an arbitrary cost from
the interval [cmin, cmin + B]. As a special case, we study the
unit cost distribution Fc = Fa(1,0) where each community
charges unit cost per edge. Second, we study uniformly-at-
random bounded cost distributions Fy (cmin, B), where each
community j picks a cost ¢; uniformly at random from the
interval [ ¢min, cmin+B]. Third, we study uniformly-at-random
unbounded cost distributions F4 y(€), where € > 0, and each
community j picks a cost ¢; uniformly at random from the
interval [€,1]. As € — 0, this model represents the case
of unbounded differences in costs. Our worst-case bounds
depend on B, which becomes unbounded as € — 0. While
this is probably not a realistic case, we find it interesting to
see how bad the practical results can be.

In our theoretical results and our simulations, we study
the following models (obtained by varying the parameters)
in our paper. The models and the results are summarized in
Table 1.

Individual Agent Model. In the individual agent model
(IAM), each node of the graph is its own community. This
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TaBLE 1: Summary of all the models that we consider in this paper. “uar bdd” (resp., “uar unbdd”) is the uniformly at random bounded

(resp., uniformly at random unbounded) cost distribution.

Community Model Random G uar bdd Random G uar unbdd Clustured G uar bdd
Individual Agent Model Section 6.1, Theorem 5.3 Section 6.2 Section 6.3
Small number of large Comp, k = logn/loglog n Section 6.1, Theorems 5.5 and 5.6  Section 6.2, Corollary 5.8 Section 6.3
Mixed model Section 6.1 Section 6.2 Section 6.3
Large number of small Comp; k = n/logn Section 6.1, Theorem 5.5 Section 6.2, Lemma 5.9 Section 6.3

corresponds to the traditionally studied shortest path VCG
mechanism on graphs where each node is an independent
agent. We provide theoretical bounds on the frugality ratio
for the IAM for random geometric graphs with both arbi-
trary bounded cost distributions and uniformly-at-random
bounded cost distributions. We write NC = {n,r, F} for an
individual agent network cost model with n nodes, radius ,
and cost distribution F.

Random Graph with Communities. Given a number k of
communities, each node in the random graph is assigned
a community uniformly at random. We write NC =
{n,r,k,F} for the network cost model where there are
n nodes, the radius is r, there are k communities (each
node selecting its community uniformly at random), and
the costs are determined according to the cost distribution
F. We provide theoretical upper bounds on the frugality
ratio for {n,r,k, Fo(cmin,B)} where r > ren, as well as for
{n,7,k, Fy(cmin, B)} where r = reon and k < 8/12.

Further, for our simulation, we study three different
cases: a small number of large communities corresponding to
k = ©(logn/loglogn), a large number of small communities
corresponding to k = O(n/logn), and finally, a mixed
model with a small number of large communities and larger
number of small communities. In the last model, a node
will choose with high probability to be in one of the large
communities and with small probability to be in one of the
small communities.

Clustered Graph. In order to evaluate the VCG mechanism
in the presence of real-world structures, we also simulate a
clustered model that reflects geographical structure in the
real world. In the clustered model, each community i chooses
a center cnt; uniformly at random. There is a fixed radius r;.
Each node v belongs to community i is chosen uniformly at
random from within the circle centered at cnt; with radius
re. This represents geographical locality common in real
networks.

5. Theoretical Results

5.1. Frugality Ratio with High Probability. In many of the
bounds, we use the following well-known lemma on occu-

pancy.

Lemma 5.1 (balls in bins [23, 26]). For a constant ¢ > 1, if
one throws n = cflogp balls into 5 bins, then w.h.p. both

the minimum and the maximum number of balls in any bin
is @(n/). Moreover, for ¢ < 1 if one throws n < cflogf3 balls
into f3 bins, then w.h.p. there will exist an empty bin.

Due to the critical nature of the above threshold, we
are able to give bounds with high probability for uniform
distributions of costs and communities.

As mentioned previously, we consider random geometric
graphs with radius chosen to guarantee connectivity with

high probability. Recalling that reon, = +/(logn+y,)/n,

for any increasing function y,, is the critical radius for
asymptotic connectivity [20], we require that r = reonp.
Although we will state results for such general radii, we are
primarily interested in small radii r such that r = ©(rcon,n)-
In particular, we will satisfy a slightly stronger guarantee
of geo-denseness [23], namely that, for any fixed arbitrary
partitioning of the unit square into simple convex Euclidean
regions f3; of area (r/2+/2) X (r/2+/2) each, every f3; will have
the same order of nodes with high probability. It follows
(2v2 + €)4/logn/n <
3(7con,n) satisfies the geodenseness property while still being
on the same order as the radius for asymptotic connectivity.
Henceforth, we will state some results for both general r
and for 7 as defined here. Note further that our following
theoretical results hold for geodense geometric graphs in
general, not only random geometric graphs. In order to
maintain continuity, most proofs have been deferred to the
appendix section.

Our first theorem considers the case of arbitrary costs in
the individual agents model (IAM), the standard model for
path auctions.

from Lemma 5.1 that radius 7 =

Theorem 5.2 (IAM with arbitrary costs). Given an IAM
NC = {n,r,Fs(cmin,B)}, for any r > 7, the frugality ratio
of VCG is at most 2(1 + B/cmin) w.h.p.

In particular, for IAM NC = {n,r,Fc} with unit cost
distribution, for any r > 7, the frugality ratio of VCG is
at most 2. While unit costs do not seem to be a realistic
assumption and do not require notions of truthfulness, it
yields insight into how the connectivity properties of a graph
affect the overpayment. After all, with arbitrary costs, one
may obtain arbitrarily bad overpayments for any graph, but
even with unit costs, the graph properties alone may yield
bad overpayments. Therefore, the frugality ratio of VCG
in the unit cost model is worthwhile to consider, and one
that has been considered for other random graph models,



namely Bernoulli graphs and random scale-free graphs, as
well. A notable difference between random geometric graphs
and those other two well-known random graph models is
that while the hop diameter of the latter models is short
w.h.p., the hop diameter of random geometric graphs is long
w.h.p.

In standard shortest path auctions [4], unlike our model,
costs are assigned on edges rather than nodes. For an IAM
NC = {n,r, Fa(cmin, B)} where the costs are on edges, we can
similarly show that the frugality ratio is bounded by 2(1 +
B/cmin) W.hep.

When costs are distributed uniformly at random (i.e.,
under the cost model Fy(cmin, B)), we may obtain provably
better bounds than in the arbitrary case.

Theorem 5.3 (IAM with random costs). Given NC = {n,r,
Fy(cmin, B)}, for any r > 7, the frugality ratio is at most 2(1 +
B/bcmin) where b = (nr?/8)/21og(nr?/8) w.h.p. In particular,
forr = 7, if B = O(cminlogn/loglogn), the frugality ratio of
VCG for NC is a constant w.h.p.

Now, we give our results for models with communities.
The bounds of arbitrary costs are almost identical to that of
the IJAM.

Theorem 5.4 (community model with arbitrary costs).
Given NCc = {n,r,k, Fo(cmin, B)}, for any r > 7, the frugality
ratio is at most 2+/2(1 + B/cmin) w.h.p.

In particular, for NC = {n,r,k, Fc}, with unit costs, for
any r > 7, the frugality ratio is at most 2+/2 w.h.p. Again,
for costs distributed uniformly at random, we obtain better
guarantees.

Theorem 5.5 (community model with random costs). Let
NC = {n,r,k,Fy(cmin, B)} with radius r = 7 and k < 8/r?

communities. For
. k nr/8
b_mm{Zlogk’Zlog(nﬂ/S)}’ M

the frugality ratio of VCG is at most 2+/2(1 + 2B/bcmin) w.h.p.
In particular, for r = 7 and logn < k < n/logn, if B =
O(cmin(logn/(log log n)%)), the frugality ratio is a constant
w.h.p.

Proof. Let s and t be an arbitrary source and sink pair and
SP = (v, V1,...,vq) denote the shortest path between s and
t. Since overpayments are made to communities rather than
merely to nodes, partition SP into blocks {(Ly,...,L,) where
each block belongs to a single community, and consecutive
blocks do not belong to the same community. For each
community j, let K; = (L;,...,L; ) denote the set of blocks
owned by community j. For each community j and block
L; denote by v o and v, the nodes in SP immediately
preceding and succeeding L;, respectively, and let 1; be the
line between s = v and ¢ = v ¢. Partition [ into
r/2+/2 length intervals (with at most one partial interval at
the end of negligible effect) y € {1,2,...,d(s',t')/r/2:/2}.
Depending on how close [ is to a boundary of the unit
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square, it is clear that there must exist a (r/2+/2) X d(s',t")
rectangular area Aj, with [ as one of the sides lying entirely
inside the unit square. Depending on the orientation of
this rectangular area, for each interval y, let S, denote the
(r/2~/2) x (r/2+/2) square in Aj, with interval y as one of the
sides.

By Lemma 5.1 and the choice of r, there are @(nr?/8)
nodes in each S, w.h.p. Each node chooses amongst the k
communities uniformly at random. Each of kK communities
chooses its cost uniformly at random from [¢mins - - - > Cmin +
B]. By the choice of b, wh.p. the number of communities
in each cost interval of the form [¢min + (&« — 1)(B/b), Cmin +
a(B/b)] (for « from 1 to b) is ®(k/b). Therefore, since
the number of communities in each cost interval is on the
same order, each node in S, picks amongst the cost intervals
uniformly at random as well up to constant factors. Again,
also by the choice of b, the number of cost intervals and reap-
plication of Lemma 5.1, we have that for each cost interval
« there are ®(nr?/8b) nodes of S, having cost in interval
a. Then, recalling that consecutive bins form a clique, we
may route along nodes in the first two cost intervals in
each square bin, depending upon which cost interval the
corresponding community in SP lies. Then, for each A, we
obtain a path of cost at most 2+/2(d(v;, o, Vi, f)/7)(Cmin+2B/b)
other than Lj which has cost at least d(vj, 0, Vj,f)7Cmin. SO,
for Lj, the frugality ratio is at most 2+/2((2B + cmin)/bCmin).
Summing over each Lj, we just obtain the same ratio.
This characterizes the payment to community j. Moreover,
clearly, the argument is the same for any community since
the scaling by distance is lost. Thus, the theorem follows. [J

5.2. Frugality Ratio in Expectation. The bounds so far are
all with very high probability. However, in the case of fewer
communities we may find significantly improved bounds
of VCG with communities for RGGs in expectation. When
the number of communities, k is O(logn/log log n) (or,
for general r, when k is O(nr?/log(nr?))), we may note
once again that every community occurs in every bin (of
(r/2~/2) % (r/2/2) size). So, due to the aforementioned bin
properties for RGGs, we need only to bound the expected
ratio of the second cheapest community to the cheapest
community.

Theorem 5.6. Let NC = {n,r,k,Fy(cmin,B)} with radius
r = 7and k < nr?/log(nr?) communities, then the expected
frugality ratio of VCG for NC is O(min {log(B/¢min), B/kcmin })
w.h.p.

Proof. Due to aforementioned geometric bin properties and
normalization, it suffices to show that the expected ratio
of the second cheapest to the cheapest of k costs chosen
uniformly at random from [1, B] is O(log B). As such, note
that the probability that the cheapest is in [x,x + dx] is
k(dx/(B — 1))((B — x)/(B — 1))k71, corresponding to the
choices for the cheapest variable and the event that variable
is in [x,x + dx] and all the rest are in (x, B]. Moreover, the
expected value of the second cheapest given that the cheapest
is x is the expected value of the cheapest of the k — 1 restricted
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to interval (x, B], which is easy to check to be (B + x(k —
1))/xk. Thus, we have

S NIRRT SR
S ) ) e

< B (infiogn, 1] )
=B-1 085 T k)

O

5.3. Unbounded Distributions. We may generalize the ex-
pected ratio of the second cheapest to the cheapest of k i.i.d.
random costs given cumulative distribution F and density
function f as follows. The probability that the minimum is
in [x,x + dx] is, taking over the k choices of the minimum
variable, kf (x)(1 — F (x))kil. Similarly, the probability that
the second cheapest is in [y, y +dy] given that the cheapest is
x is the probability that the minimum of the remaining k — 1
isin [y, y + dy] given that all k — 1 have cost greater than x.
Thus, the expectation in the question is

E"[%] - Lw iCIC ;F(x))"*ldx

k-2

fy)(1-F(y))
(1—F(x)*!
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Substituting accordingly, we immediately obtain the fol-
lowing corollaries for some natural distribution functions.

Corollary 5.7. Let NCy = {n,r,k,F),B} with radiusr > 7
and k < nr?/log(nr?) communities and F) the exponential
distribution translated by +1 with parameter A. The expected
frugality ratio of VCG for NC) is at most 4/2 w.h.p.

Now, consider the distribution Fr., obtained by taking
reciprocals of random variables chosen according to the
uniform distribution on the unit interval (0, 1].

Corollary 5.8. Let NCrecip = 11,1, k, Frecip, B} with radius r >
7 and k < nr*/log(nr?) communities. The expected frugality
ratio of VCG for NCyeip is 2/2((k — 1)/(k — 2)) w.h.p.

In fact, for this distribution, we may say something much
stronger.

Lemma 5.9. Let NCyip = {n,7,k, Frecip, B} with radius r >
tand k > nr* communities. The frugality ratio of VCG for
NCrecip is at most 2e>~/2 w.h.p.

Proof. Due to the geometric bin properties, all that is needed
is to show that within each bin the probability that the second

cheapest in that bin is more than e* times the cheapest in that
bin which is O(1/nm), where m = 8/r? is the number of bins.
Let g denote the number of communities occurring w.h.p. in
every bin. By choice of k and r, it is clear that ¢ = ®(nr?/8)
by coupon collection. The event that 1/X > ¢*(1/Y) implies
that g — 1 reciprocals chosen uniformly at random all lay
in (0,1/¢%), the probability of which is g/e*@~V. Thus,
Pr[Y/X > ¢&] = Pr[l/X = €*(1/Y)] < q/e*4™V, where
X is the cheapest and Y is the second cheapest. Moreover,
g/e’1™1) < g/n*> = r?/n by choice of g, completing the
proof. O

By noting, for F), the exponential distribution translated
by +1, the probability that g — 1 costs are higher than A is
at most ke *4-D@=1; 3 very similar argument to the above
gives the following.

Lemma 5.10. Let NCy = {n,r,k,F),B} with radiusr = 7 and
k > nr? communities. The frugality ratio of VCG for NC, is
O(1) w.h.p.

6. Experimental Results

We now complement our theoretical investigations using
network simulations. For this, in addition to the IAM and
communities model on the random geometric graph (for
which we provided theoretical bounds), we simulate several
models of realistic wireless networks. While the theoretical
bounds pertain to worst-case guarantees on the frugality
ratio, in the simulations we can observe the distribution of
frugality ratios, in many cases seeing much better perfor-
mance than the worst-case bounds.

In our simulations, we consider networks consisting
of 500 nodes. The primary reason for considering such a
network is that while we have theoretical justification of
bounds for the asymptotic case, we may obtain experimental
justification for smaller numbers of nodes. This is particu-
larly important as most realistic ad-hoc networks do not have
more than 500 nodes [36]. Thus, 500 nodes is a reasonable
size to consider; not so small that the FR obtained would be
small trivially, something that we confirmed by simulations
that showed that the FR is lower when the number of nodes
in the graph is smaller. On the other hand, 500 nodes is not
so large as to be redundant to the theoretical bounds and
unrealistic in most circumstances.

We take the radius to be on the order to guaran-
tee asymptotic connectivity. In particular, we take r =
1.5\/logn/n = 0.16723, where n is the number of nodes. For
some distribution of the 500 nodes on the unit square, every
pair of nodes within distance r of each other is connected by
an edge.

As mentioned in Table 1, we ran simulations on 4 differ-
ent community models.

(1) The first model has a small number of communities
with a large number of nodes in each community. In
this model, we choose the number of communities
k = 5 (note that logn/log log n = 3);



(2) The second model has a large number of com-
munities with a small number of nodes in each
community. Here, we choose k to be [ n/logn] = 55;

(3) The mixed model has a small number of large
communities (4) mixed with a large number of small
communities (20). With probability of 0.7, a node
decides to join a large community and then chooses
one of the large communities uniformly at random.
With probability 0.3, a node decides to join a small
community and then chooses one of the small
communities uniformly at random. We choose these
numbers so that the large communities will be about
the same size as in the log#/log log n model, and the
small communities will be about the same size as in
the n/logn model;

(4) The individual agent model (IAM) where all nodes
are independent agents.

Each community chooses a price uniformly at random
P € [cmin> Cmin + B]. We distinguish the case where (cmin +
B)/cmin 1s small (the UAR-BDD model) from the case where
(Cmin + B)/cmin is large (approximating the UAR-UNBDD
model). In the UAR-BDD model, we chose cmin to be 1 and
B = 2. This model is close to reality; in fact, we checked the
prices in the wireless market (for a single area) and found
that the ratio between one community’s price to another’s is
less than 2.5 (our ratio can be maximum 3). In the UAR-
UNBDD model, we chose € = 107°. The price is chosen
uniformly at random from the range [€,1], this models a
large variation in prices.

We ran simulations on two different graph structures, the
random geometric graph G(#n,r) with n nodes and radius r
and the randomly clustered structure Gcp (which we refer
to simply as the clustered graph model). In G, a realistic
model when incorporating communities, each community
has a territory determined by a center and territory radius 7.
We fix the same radius for all the communities, allowing each
community to choose its center uniformly at random. For the
model with small number of communities, we chose r; = 0.6,
for the rest of the models, we chose r; = 0.5. We chose these
numbers so that the assumption that there is no monopoly
is preserved. An agent chooses its location uniformly at
random within 7 of the center of its community.

We split the results into three parts: (1) UAR-BDD for
G(n,r), (2) UAR-UNBDD for G(n,r), and (3) UAR-BDD for
Gcr. Finally, we also discuss the sensitivity for price changes.

In general (unless we mention otherwise), the figures that
will be shown below are combined from 3 different seeds,
with measurements for around 75,000 (source, destination)
pair samples.

6.1. The UAR-BDD Cost Model on RGG. In this section, we
focus only on random geometric (RG) graphs where each
community chooses uniformly at random a price P € [1,3].

We compare the frugality ratio (FR) between the different
community models. Figure 1 shows that, overall, we get a
very good ratio; in fact, more than 95% of all the cases have
frugality ratio below 1.4, which is much lower than the upper

International Journal of Distributed Sensor Networks

Commulative distribution of the frugality ratio

1 T T

CDF

O 1 1 1 1 1
1 1.1 1.2 1.3 1.4 1.5 1.6

Frugality ratio

Company number log n/loglog n
Company number mixed
Company number n/logn
Company number n

x < O %

FiGure 1: Comparing FR in the RGG with UAR-BDD cost distribu-
tion.

bounds that were proven in Theorem 5.3 for the IAM and
Theorem 5.5 for the community models. In addition, we can
see that when there are a small number of big communities
in the graph, we get better results. For example, 88% of the
cases in the logn/log log n model and 80% of the cases in
the mixed models have a frugality ratio FR < 1.2. In the
n/logn model only 70% of the cases have a frugality ratio
FR < 1.2. We propose the following explanation for this.
When there is a large number of small communities, any
particular community will have few agents in a given area
(if at all). This, combined with the range of costs being
bounded, may cause the shortest path to contain many
communities. When a path contains many communities,
there are more overpayments to make, which leads to a
higher frugality ratio. In fact, Figure 2 supports the first part
of our explanation, showing that 98% of the cases for the
logn/log log n model, and 70% for the mixed model have at
most 3 communities in the shortest path compared to only
48% of the cases in the n/logn model.

We further justify the proposed explanation by showing
that when there are more communities on the shortest path
the frugality ratio is higher. In Figure 3, we represent each
community by a box and whisker plot. The box has lines at
the lower quartile, median, and upper quartile values. The
whiskers are lines extending from each end of the box to show
the extent of the rest of the data.

Outliers are data with values beyond the ends of the
whiskers. We can see that, in general, the frugality ratio
slowly increases as the number of communities on the
shortest path increases (One may notice that when the
number of communities is 5 and the number of communities
on the shortest path is 5, the FR actually decreases; however,
looking at Figure 2, we can see that we have few samples in
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Distribution of the number of companies in the shortest path
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F1GUrEe 2: CDF of the number of communities in the spath (shortest
path) on the RGG with UAR-BDD cost distribution.

this case since the curve almost reaches the 100%, and this
is in fact an unusual case to happen). However, we can see
that the worst-case frugality ratio is higher when the shortest
path has fewer communities since the cheapest community is
more dominant (a fact which we confirmed by the data).

In summary, a model with a small number of commu-
nities has lower frugality ratio. We will show next that this
trend is consistent even when the costs are not bounded by
a small constant, and therefore longer fluctuate in FR values
may be expected.

6.2. The UAR-UNBDD Cost Model on RGG. In this subsec-
tion, we still focus on the random geometric graph, but now
we will observe the UAR-UNBDD cost distribution model
where a community’s price P € [107>, 1]. This represents a
large variation in cost.

Overall, the results are consistent with the results of the
previous section. Figure 4 shows that the frugality ratio in
more than 99% of the cases is bounded by 4. The frugality
ratio is, as expected, much larger than in the previous
bounded case since the ratio between one community’s price
and another can be very big; however, it is still bounded by a
small constatnt. Here, again, the n/logn model has the worst
results overall. For example, in the n/logn model, only 83%
of the cases have FR < 2, whereas in the rest of the models,
this happened for at least 95% of the cases. We give a similar
explanation here, claiming that when all of the communities
are small and there are many communities there is a higher
probability to have more communities in the shortest path.
Further, now the extra cost that is paid to each community
can be much larger due to the price distribution. Figure 5
verifies that the likelihood of having more communities on

the shortest path grows as the number of small communities
grows. For example, we can see that almost 100% (resp., 70%,
40%) of the paths have up to 3 communities in the shortest
path in the logn/log log n (resp., mixed, #n/log n) models.

As in the previous sections, Figure 6 shows that when the
number of communities on the shortest path grows, the FRis
higher. Also, we can see very clearly again that the worst-case
frugality ratio is higher when the number of communities in
the shortest path is smaller.

The difference here is in the individual agent model
results. In the previous section, the individual agent model
had similar results to the n/logn model (large number of
communities); however, in the unbounded cost distribution,
it behaves like the other models. The reason for this may be
that agents with very low prices have less effect on paths in
comparison to the n/logn, in which it is likelier to have a
very cheap community in every bin.

We can see that even with weaker assumptions on the
cost distribution we still obtain very low frugality ratios.
The results remain consistent with the previous results, and
models with smaller numbers of communities still yield
better results in terms of the frugality ratio.

6.3. The UAR-BDD Cost Model on a Cluster Graph. We
now consider the clustered graph model with UAR-BDD
cost distribution. Figure 7 shows one example of a clustered
graph in the mixed model. For a better clarity, we present
only 8 communities (4 large communities and 4 small
communities) out of 24 communities in total.

As Figure 8 shows compared to Figure 1, there are some
differences in these results. The frugality ratio of the
log n/1og log n model is not as good as it was in the random-
geometric graph, for example, 70% of the clustered cases
have FR < 1.2 where in the random geometric graph 88% of
the cases have FR < 1.2. Our explanation is that in the cluster
graph with small number of communities the probability
of having more communities on the shortest path is higher
since now the nodes of every community are located only in
the community’s territory and not spread all over. Figure 9
confirms our explanation. We can see in the figure that
in 21% of the logn/loglog n cases there is only one
community in the shortest path, compared to the random
geometric graph (Figure 2) where 37% of the cases have one
community in the shortest path.

We can see another big difference in the results of the
n/logn model. In the random geometric graph, the n/logn
model had the worst results (Figure 1); however, in the
clustered graph (Figure 8), it has the best results, for example,
81% of the cases in the clustered graph have FR < 1.2
compared to 70% in the random geometric graph. In
contrast to the previous case, here we have large number
of small communities, so in the random geometric graph,
the probability of having more communities on the shortest
path increases since each community has small number of
nodes that spread all over the space. On the other hand,
in the clustered model, the community’s nodes are located
inside the community’s territory, and the shortest path
crosses territories where within a cheap territory it probably
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FiGuRre 3: Frugality ratio versus number of communities in the spath, on the RGG with UAR-BDD cost distribution.

uses only its nodes. Figure 9 confirms our explanation, for
example, 58% of the cases in the clustered graph has 3
communities or less in the shortest path compared to 48%
in the random geometric graph.

Consistent with Sections 6.1 and 6.2, Figure 10 shows
that as the number of communities in the shortest path
increases, the FR increases, and the worst-case FR decreases.

In summary of this subsection, we can see that there
are some major differences between the random geometric
graph results and the clustered graph results. In particular, a
model with large number of small community in clustered
graph has better results in terms of frugality ratio.

In addition, we checked the sensitivity of payments when
the prices changed by individual community, and the other
communities’ costs remain the same. We ran two different
sets of simulations one on the random geometric graphs
and another on the clustered graphs both using the UAR-
UNBDD cost model. The simulations show that as expected

from a truthful mechanism, a community gets about the
same revenue if it has the cheapest price, and it does not
matter what the price is. Overall, a community has a lower
probability to be affected by price changes in the clustered
model. However, once it is effected, the effect will be stronger
in the cluster model. We omit the simulation results due to
space constraints.

7. Hardness of Extensions

As has been noted, both simulation results and related work
on the traditional path auction model [8-10, 30] suggest that
a mechanism that minimizes some weighting of total path
costs by the number of communities on the path may have a
lower frugality ratio than VCG. Another immediate question
is how one might generalize the ,/n mechanism [10] which
is known to be up to /n times more frugal than VCG for the
traditional model to our community model. In the context
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of extensions and variations of truthful mechanisms for the
community model, it is further worthwhile to investigate
VCG for the community model under other cost models.
Unfortunately, we have found that many approaches in these
general directions turn out to be NP-complete, some even
strongly approximation hard.

11

7.1. NP-Hardness of Extending /n. The first step of the
/n mechanism is to find the least cost edge-disjoint cycle
through s and t, and then the winner of each vertex disjoint
partition of the cycle is decided according to a function
weighting the cost of each side of the partition by square-
root of the number of edges on that side. In terms of the
community model, this would correspond to finding at least
some community disjoint cycle through s and t (It should be
noted that two community disjoint paths are not necessary
for the no-monopoly condition. E.g., consider k = 3 and
a graph consisting of three length-two paths Py, P», P3 from
s to t where each path P; excludes only community i.).
By representing each community with a unique color, we
color the nodes (or, alternately, edges, as we shall see that
results apply to both cases) according to the communities
they belong to. Finding a community disjoint cycle is the
same as finding a color-disjoint cycle. We can show that
this problem is NP-complete by a reduction from 3-SAT. A
similar problem has independently been shown to be NP-
complete in [37] as well.

Lemma 7.1. Consider the problem €. Given a graph G =
(V,E) with nodes arbitrarily colored from k colors, and a de-
signated source-sink pair (s,t), find two color-disjoint paths
through s and t. € is NP-complete. The same is true considering
edge colorings instead of node colorings.

7.2. APX-Hardness of Natural Extensions. Here, we show
that any natural truthful mechanism with a selection rule
incorporating some kind of minimization of the number of
communities on the path is strongly approximation hard to
compute. The same proof also implies the approximation
hardness of even computing VCG for various other cost
functions involving the community model, such as fixed
community-network entrance fees (i.e., a one-time fee C;
for using any positive number of community s nodes,
which may be a more natural model for some service
providers). Our reduction is an approximation preserving
reduction from the minimum monotone satifying assign-

ment (MMSA3) problem, which is known to be 2log"*"n
hard to approximate [38, 39]. While there are closely related
approximation hardness results under various names [40,
41], our result and reduction are both more general and more
direct.

First, for ease of notation, let us note the following:

lfo(l)n

VOo<x<1, 298 > n*. (4)

Now, define a natural class of truthful mechanisms for
path auctions in the community model.

Definition 7.2. We call a truthful mechanism for path
auctions in the community model (with per unit costs)
a min-agent mechanism if its monotonic selection rule is
of the following form. Given source s and destination ft,
select the path P from s to ¢ that minimizes the product
f(q)g(p), for some strictly increasing, efficiently invertible
function f and nondecreasing function g, where g is the
number of communities on P and p is the total cost of P.
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FIGURE 6: Frugality versus number of communities in the spath, with UAR-UNBDD cost distribution, in the RGG.

In particular, denote such a mechanism as a ( f, g) min-agent
mechanism.

Now, we proceed to our hardness results.

Theorem 7.3. Forany 0 < x < 1, for any increasing, efficiently
invertible function f and non-decreasing function g, the
selection rule of a (f,g) min-agent mechanism is f(kY) hard
to approximate, where k, is the total number of communities
and n is the number of nodes.

Proof. Let ¢ be an instance of MMSA3;, and let € be
the corresponding circuit. Let Cj,Cs,...,C; be the high-
est level (3rd level) ANDed clauses. For each i, let
Ei1,Eip,...,Eiy be the (2nd level) corresponding ORed
clauses within. Finally, for each i, j, let x; j1,%ij2,. ., Xijp;;
be the (1st level) corresponding ANDed variables within.
The entire structure has a straightforward representation as

a SERIES-PARALLEL-SERIES (SPS) graph with variables
corresponding to colored nodes in the most internal SERIES
layers. Thus, we convert into an instance of the min-agent
problem as follows. Let G be the SPS graph of ¢ with
C; connected to s and C, connected to t, and each color
corresponding to a community. Note that adding copies of
the same variable within the innermost layer does not change
the solution of the MMSA; problem in any way, not even
approximately. Set cost function ¢ to be simply a unit cost
function. Now, what we want is for all the E;;s for fixed
i to become the same length within C; so that g(p) is the
same for all paths from s to t. So, let L; = max;|E;;|, and
for each E;; choose some variable x;; = x;;, and make
Li — |E;;| copies of x;; in E;;. We have that p = X7 L;
for all s — t paths. Feed the resulting graph G into a (f,g)
min-agent mechanism. It is clear that if the path selected is
o factor of the optimum path with respect to minimization
function f(k)g(p), then since the optimum path also has
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FiGure 7: Example for a clustered graph in the mixed model, the
figure shows only 8 communities (out of 24 communities in total).
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FiGure 8: Comparing frugality ratio in the cluster graph with UAR-
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the same g(p), the path selected must be within « factor
of optimal f(k), thus solving MMSA; to within an f~!(«)
factor approximation as well. Thus, the theorem follows from
Remark 2 and approximation hardness of MMSA. O

Taking g to be a constant function, we may obtain the
following corollary.
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Corollary 7.4. VCG for the community model under fixed
community subnetwork entrance fees is hard to approximate
to within k*, for any 0 < x < 1, given k total communities.

8. Discussion

8.1. Summary. We have considered the cost of the gen-
eralized second price path auction (VCG) for incentive-
compatible source-destination routing in a random ad-hoc
network setting in which nodes may potentially be grouped,
where we refer to each grouping as a community. We have
proven bounds on the frugality ratio in this setting, namely,
the ratio of the total payment made to every independent
agent in order to ensure truthfulness over the actual cost
of the shortest path. Whereas it is well known that this
ratio may be arbitrarily bad for VCG as well as for truthful
mechanisms in general, even when every edge or node is
of unit cost, we are motivated by the understanding that
worst-case results are often exhibited on pathological rather
than typical case graphs and cost distributions. Therefore,
we have asked our questions on a model of the typical
case class of graphs for ad-hoc networks, namely, random
geometric graphs. And, we have considered both arbitrary
costs without any assumption made on the distribution, as
well as costs drawn from natural probability distributions.
In all such cases, we have shown that VCG extended to
capture communities exhibits constant frugality ratio with
high probability given some reasonable assumptions on the
maximum cost offset as well as certain natural unbounded
cost distributions, and when no assumption is made on
the maximum cost offset, the performance of VCG with
communities is still very efficient (logarithmic in the offset)
in expectation. Simulation experiments demonstrate even
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FiGure 10: Frugality versus number of communities in the spath, with UAR-BDD cost distribution, in the clustered graph.

smaller frugality bounds than those given via theoretical
results, and simulations also demonstrate small constant
frugality ratio in the clustered community setting which
was not considered in the theoretical bounds. We are the
first to prove bounds on frugality for random geometric
graphs. We are also the first to consider path auctions in the
community setting, as well as the first to consider frugality
bounds under natural cost distributions. None of our bounds
follow from previous work and, thus, indeed pose as pleasant
surprises.

Despite the positive note obtained from low frugality
ratio in many natural settings for random ad-hoc networks,
experimental results do suggest that frugality would still be
improved had the truthful mechanism taken the number
of communities on the chosen path (and thus the number
of overpayments made) into account in addition to the
total cost of the path which it already considers. Therefore,
we examined general ways in which a truthful mechanism

may take into account such considerations, but in all
cases came across hurdles in computational complexity. We
proved that for such classes of truthful mechanisms, even
approximately computing the winning path is provably hard
theoretically. Therefore, we contend with the positive note
on low frugality ratio for VCG extended for communities,
which we see is not only good but also “as good as it
gets.”

8.2. Robustness of Results. We would like to note the robust-
ness of our results under some alternative modeling assump-
tions. First, the assumption that all nodes in a community
have the same cost is in a way strongly defining the commu-
nity concept. If this assumption was wanting of relaxation,
then note that one may take the bounds we have proven
for the individual agent models (in which each node is
its own community) as an extreme worst case, or simply
enlarge the number of communities (change parameter k)
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considered to obtain tighter bounds. Second, if we were to
relax the assumption of bounded broadcast radii, but rather
assume a completely connected graph with only the cost
distribution affecting payments, then this corresponds to the
special case of taking the radius r = +/2, and correspondingly
low frugality bounds follow from such one (as in fact taking
larger radius only relaxes the hypothesis statement for the
bounds given). Lastly, we would like to note the benefit of
generality in our theoretical results and experimental model-
ing. The results do not depend on any particular application
or network type save that the fundamental communication
medium is wireless. Similarly, the community concept is
independent of application and may thus apply to any setting
from providers in a cellular network to nodes grouped
together based on trust or similarity in a sensor network.
As costs too are kept general, nodes may dictate their own
valuations based on any number of objectives they wish
to optimize (e.g., broadcast energy, remaining power, the
general desire or lack thereof to participate in the transfer of
information from particular source-destination pairs, etc.).
The only assumption required for the employment of game-
theoretic principles, as we have considered in this work, is the
existence of autonomous agents in the network. Like much
recent work in this selfish autonomous network setting,
while the assumption of true autonomy may yet be suspect
in most current applications, it is a state of affairs that we
must be prepared for.

Appendix

Proof of Theorem 5.3. Let s and t be an arbitrary source and
sink pair, and let SP = (vy, v1,v2,...,vq) with s = vy, t = vy,
ISP| = d be a shortest path between s and ¢. By Lemma 5.1
and the choice of r, every (1/2) X (r/2) square region has
®(nr?) nodes. So, for each i, let I; be the line between v;_;
and v;y. Partition [; into d(vi_1, vi+1)/(r/2) intervals of length
r/2 each. Depending on how close /; is to a boundary of the
unit square, it is clear that we may partition part of the area
between v;_; and v;; with at most four diagonally adjacent
(r/23/2) x (r/2+/2) squares S1,5,,S3,S4 as in Figure 11. By
Lemma 5.1 and the choice of , each S; has @(nr?/8) nodes
w.h.p. Moreover, each S;US;;; forms a clique. Now, partition
the range R = [cumin, cmin +B] into b = (nr?/8)/2log(nr?/8) <
nr?/4log(nr?) intervals of length B/b each. Since each node
picks a cost independently and uniformly at random from
range R, by Lemma 5.1 and the choice of b, w.h.p. for each
Sj, for each interval ¢ € {I,...,b}, there exist at least
log|S;| = log log(nr?/8) nodes in S; with cost in the first
interval [¢min, cmin + B/b]. Since the probability that any two
nodes pick the exact same cost from a continuous range of
costs is zero, then we have that w.h.p., the second cheapest
community for each S; has cost at most cmin + B/b, w.h.p.
Choosing such nodes u; and u3 in S, and Ss, respectively,
and connecting edges (vi_1, u2), (42, u3), and (u3, vir1) by the
clique property, we have that the cost of the cheapest path
between s and t without node v; is at most 2((B+ ¢min)/bCmin)
more than the cost of SP with node v;. Thus, the lemma
follows. O
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Proof of Theorems 5.2 and 5.4. Let s and t be an arbitrary
source and sink pair, and let SP = (vg,v1,v2,...,v4) with
s = vo,t = vk, |SP| = d be a shortest path between s and t.
By Lemma 5.1 and the choice of 7, every (r/2) X (r/2) square
region has @(nr?) nodes. So, for any pair of points v; and
Vit1, since d(vi,vis1) < r w.h.p., there exists another point
Vi such that v; # v; for j and d(v;,vi) < r and d(v;,vis1) < 1.
Therefore, the VCG payment in the edge-agent model to edge
e; = (vj,viy1) 1s at most 2(cmin + B), whereas the actual cost
of e; is at least ciin.

Regarding the node-agent IAM, for each v;, partition the
line between v;_; and v;;; as in the proof of Theorem 5.3.
Proceeding similarly, it is easy to see that due to the choice
of r, the worst-case frugality ratio in the node agent model is
2(1 + B/cmin)-

Regarding the community model in either case, partition
according to the proof of Theorem 5.5. Then, for each A,
we obtain a path of cost at most Zﬁ(d(vj[,o,vj[,f)/r)cmin +
B other than L; which has cost at least d(vj,0,V;, f)7Cmin.
So, for Lj, the frugality ratio is at most 2+/2(1 + B/cmin).
Summing over each Lj, we just obtain the same ratio.
This characterizes the payment to community j. More-
over, clearly, the argument is the same for any commu-
nity since the scaling by distance is lost. Thus, the lemma
follows. O
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