Hindawi Publishing Corporation

International Journal of Distributed Sensor Networks
Volume 2011, Article ID 940751, 17 pages
doi:10.1155/2011/940751

Research Article

A Top-Down Clustering and Cluster-Tree-Based Routing Scheme

for Wireless Sensor Networks

H. M. N. Dilum Bandara,! Anura P. Jayasumana,! and Tissa H. Illangasekare?

! Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA
2 Division of Environmental Science and Engineering, Colorado School of Mines, Golden, CO 80401, USA

Correspondence should be addressed to Anura P. Jayasumana, Anura.Jayasumana@colostate.edu

Received 7 August 2010; Revised 8 December 2010; Accepted 22 March 2011

Copyright © 2011 H. M. N. Dilum Bandara et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Cluster-based organization of large sensor networks is the basis for many techniques aimed at enhancing power conservation and
network management. A backbone network in the form of a cluster tree further enhances routing, broadcasting, and in-network
processing. We propose a configurable top-down cluster and cluster-tree formation algorithm, a cluster-tree self-optimization
phase, a hierarchical cluster addressing scheme, and a routing scheme. Such self-organization makes it possible to effectively deliver
messages to a sink as well as within the network. For example, a circular sensor field with a sink in the center can establish cross-
links and circular-paths within the cluster tree to deliver messages through shorter routes while reducing hotspots and consequently
increasing network lifetime. Cluster and cluster-tree formation algorithm is independent of physical topology, and does not require
a priori neighborhood information, location awareness, or time synchronization. Algorithm parameters allow for formation of
cluster trees with desirable properties such as controlled breadth/depth, uniform cluster size, and circular clusters. Characteristics
of clusters, cluster tree, and routing are used to demonstrate the effectiveness of the schemes over existing techniques.

1. Introduction

Advances in wireless communications and miniature, low-
power, and low-cost sensors are enabling the deployment
of large-scale and collaborative wireless sensor networks
(WSNs). These networks enhance our perception of the
surroundings by sensing the physical world at far greater
temporal and spatial granularities than been hitherto pos-
sible. Numerous WSN systems are being proposed and
implemented leading to novel applications in areas such as
habitat monitoring, disaster response, eldercare, and battle-
field intelligence.

Energy-efficient operation, channel contention, latency,
and management of WSNs are complex and critical issues
that have to be addressed to facilitate large-scale deploy-
ments. Cluster-based organization of large sensor networks
is the basis for many techniques that address these issues
[1-13]. Applications that span large sensor fields and/or
support data aggregation are prime candidates for cluster-
based configuration. Clustering is particularly useful in
collaborative sensor applications that perform different tasks
and deployed in the same physical area [14]. In general, the

network is decomposed into a set of clusters, for example,
for administrative or communicating purposes, with each
cluster formed by grouping a set of nearby nodes. A
designated node, namely, the cluster head (CH), manages
each cluster. With many solutions based on clustering, the
nodes within a cluster communicate only with their CH. The
CHs are responsible for coordinating both intercluster and
intracluster communication. Communication among CHs
can be via either single or multiple hops.

Cluster formation can be either distributed or central-
ized. Many distributed clustering solutions including [1-
4] achieve longer network lifetime by selecting CHs based
on residual energy of nodes. LEACH-C [1] is a central-
ized solution that further enhances the network lifetime.
Typically, overhead of local knowledge-based distributed
clustering solutions is lower compared to that of centralized
solutions such as LEACH-C. However, their lack of global
knowledge limits the possibility of forming an optimum set
of clusters, that is, fails to achieve maximum spatial coverage
with least number of clusters. Even with the presence of
such information, selecting a minimum set of clusters with
maximum coverage is an NP-hard problem [15]. Hybrid

schemes that combine local and neighbors’ view of the
topology can form better clusters while having low overhead
[5]. For example, ACE [6] and FLOC [7] form more uniform
and circular clusters. Solutions in [1-3, 6-8] assume all
CHs are capable of directly communicating with the sink.
This may not be possible in a geographically large network
where the sink is beyond the transmission range of many
nodes.

Though many clustering solutions have been proposed
[16], only a few combines clustering with a data routing
scheme that is appropriate for large-scale WSNs [9-12, 17].
Hierarchical topologies are attractive for such large networks
because of the scalability. A backbone network that arranges
CHs in the form of a cluster tree can facilitate both the node-
to-sink and node-to-node communication. Cluster trees are
useful for a multitude of tasks such as delivering unicast,
multicast, and broadcast traffic, data fusion, and in-network
query processing.

A cluster tree can be formed using either a top-down or
a bottom-up approach. In top-down approach, a designated
root node first forms its own cluster. It then selects some of
its neighbors (as CHs) to form their own clusters, which
in turn causes some of their neighbors to form the next
level of clusters, and the process continues until the entire
sensor field is covered. The cluster tree is formed by keeping
track of the parent-child relationship among CHs, and it is
guaranteed to be connected as new child CHs are selected
from neighbors of existing CHs. The IEEE 802.15.4 cluster
tree follows this concept [18].

In bottom-up approach, individual clusters are formed
independently and later combined together to form a higher-
level structure. In [9], for example, nodes probabilistically
elect themselves as CHs at different levels of the hierarchy
and form their own clusters. The hierarchy is then formed by
directly connecting a set of CHs at level i to a CH at level i +1.
TEEN [10] follows a similar concept. The physical distance
between CHs of adjacent levels increases as we go up the
hierarchy [19]. Thus, upper level CHs become hotspots, as
they have to relay traffic from lower layers and require higher
transmission energy levels. Power balanced unequal cluster
formation [4, 12, 16] overcomes this issue by forming many
smaller clusters closer to the sink and making them larger
as the distance to the sink increases. However, clusters are
more likely to become arbitrarily large the further they are
from the sink. Therefore, schemes in [4, 9, 10, 12, 16] cannot
guarantee CH-to-CH connectivity in geographically large
networks because the intercluster distance is not bounded.
An alternative would be to use gateway nodes [17] or
reposition CHs [11]. ZigBee standard [17] proposes an
alternative scheme for clustering IEEE 802.15.4 networks
[18]. It first forms an independent set of clusters and later
combines them into a cluster tree through gateway nodes.
In [11], a set of CHs is selected to form an independent
dominating set. Some of those CHs are later repositioned
to obtain connectivity. However, CH repositioning is costly
and could deteriorate desirable properties of independent
dominating sets.

The bottom-up approach, although conceptually appears
to be relatively simple, involves considerable communication

International Journal of Distributed Sensor Networks

overhead for building a cluster tree [8-10, 17], and it pro-
vides very little or no control over depth and breadth of the
tree. Conceptually, the top-down approach provides better
control while forming clusters and the cluster tree. However,
the existing top-down approaches, such as the basic scheme
for IEEE 802.15.4 standard, result in undesirable cluster and
tree characteristics such as large variations in cluster size
and distance to leaf nodes [5, 13]. Within the framework
of the IEEE 802.15.4 standard, however, there is flexibility
to deploy alternative clustering approaches while still being
compatible with the standard. We propose a configurable
top-down clustering scheme in which parameters such as
the number of nodes in a cluster and the breadth/depth of
the cluster tree can be easily controlled while maintaining
compatibility with the IEEE 802.15.4 standard.

A good clustering and routing solution should achieve
the following desirable properties. Overlapping clusters add
redundancy [20] and increase intracluster signal contention
[2]. Thus, a given sensor field should be covered with
the least number of clusters. Hexagonal clusters have the
highest coverage area and cover the network with the least
number of clusters [6, 20]. None-overlapping clusters allow
better load balancing within clusters, bound the number of
clusters and depth of the cluster tree tighter, and generate
networks with predictable topology characteristics [6, 7].
Predictable topology characteristics, even on a randomly
deployed network, facilitate intelligent routing solutions
without being tied to the cluster tree. Aggregation is more
useful when the CH is in the center of the cluster and capable
of receiving sensor readings from all the directions [7].
Performance of upper layer functions such as routing and
data fusion depend on the number of hops between nodes
and the sink. As the hop count increases, both latency and
energy required to forward a message increase. Therefore, a
lower depth cluster tree is desirable. Less overlapped clusters
also reduce the breadth and depth of the cluster tree [13].
Furthermore, distance between two adjacent CHs needs to
be bounded to ensure the connectivity of the cluster tree. In
summary, a good clustering solution should form clusters
with minimum overlap, minimize the depth of the cluster
tree, and ensure connectivity.

We propose a compound solution that achieves the
aforementioned desirable cluster and cluster-tree properties
while enabling efficient communication within large-scale
WSNs. First, we propose the generic top-down cluster
and cluster-tree formation (GTC) algorithm. GTC achieves
desirable cluster and cluster-tree properties by combining
the controllability of the top-down approach with local and
neighbors’ views of the topology. The algorithm is indepen-
dent of the physical network topology and does not require
a priori neighborhood information, location awareness, or
time synchronization. Parameters in the algorithm allow
cluster and tree characteristics to be changed, for example,
a tree with controlled breadth/depth, while achieving more
uniform and circular clusters. The IEEE 802.15.4 cluster tree
[18], hereafter referred to as simple hierarchical clustering
(SHC), is a special case of GTC achievable by controlling
algorithmic parameters. Another special case, hop-ahead
hierarchical clustering (HHC), is presented that produces

International Journal of Distributed Sensor Networks

more circular and uniform clusters and a cluster tree with
lower depth. Cluster properties of HHC are comparable with
hexagonal packing, particularly for low-density networks.
The cluster tree is guaranteed to be connected as GTC
bounds the distance between a parent and its child CHs.
Second, we propose a post cluster-tree self-optimization
phase that further enhances the structure of the cluster-
tree, reduces its depth, and improves routability. Third,
a hierarchical addressing scheme that reflects the parent-
child relationship among CHs is proposed. Such hierarchical
addresses simplify routing and help to reduce the size of
routing tables. Fourth, a cluster-tree-based routing scheme
that can forward messages to the sink as well as within
the network is presented. Two routing extensions, namely
cross-link-based routing and circular-path-based routing,
are presented, that deliver more than two, and five-times
more messages, respectively. These routing schemes enable
multiple and shorter routes to a given destination.

Section 2 presents the GTC algorithm, controlling the
cluster and cluster tree properties, and the self-optimization
phase. Hierarchical addressing and routing schemes are
presented in Section 3. Section 4 presents the performance
analysis. Concluding remarks and future work are presented
in Section 5.

2. Cluster and Cluster Tree Formation

2.1. Top-Down Clustering Algorithm. A discussion of basic
algorithm steps is presented first, followed by the specific
details. The root node, one of the sensor nodes or a resource-
ful base station, initiates the cluster formation process by
sending a broadcast indicating its interest to form a cluster.
Nodes that hear the broadcast become members of the
cluster by sending an acknowledgment (ACK) to the root
node. Coverage of a cluster depends on whether a single-
hop or a multihop cluster is formed by forwarding the
broadcast through neighbors. The parameter hopsmay is used
to provide a bound on the number of hops to a cluster
member from the CH. After receiving ACKs from neighbors,
the root node selects several new child CHs from subset of
the nodes closer to the cluster boundary. Overlap among
clusters can be reduced by selecting child CHs from nodes
that are outside the cluster boundary. Such outside nodes can
be discovered by forwarding the broadcast beyond hopsmax
and their distance can be bound using the parameter TTLax
(TTLmax = hopsmax). The root node then requests those
selected child CHs to form their own clusters in turn by
sending a unicast message to each of them. New CHs form
their own clusters and then select the next set of child CHs
and the process continues. Meanwhile, the cluster tree is
formed by each CH keeping track of its parent and child
CHs. The algorithm continues until all the possible clusters
are formed.

The Generic Top-down Cluster and cluster-tree forma-
tion (GTC) algorithm is shown in Algorithm 1. The root
node initiates the cluster formation process by executing
the Form_Cluster function. All the other nodes execute
the Join_Cluster function and listen for a cluster-formation
broadcast. Root node sends a cluster-formation broadcast

(Bcast_Cluster) indicating its node ID (NIDcy), Cluster ID
(CID¢p), maximum number of hops to a cluster member
from the CH (hopsmax), number of hops to forward the
broadcast (TTLmax), and its depth in the cluster tree.
Important algorithm parameters are listed in Table 1. A node
hearing this broadcast will join the cluster, if it is not already
a member of another cluster (my_CID = 0) and within
hopsmax. A node joins the cluster by initializing its cluster
parameters such as cluster ID, CH’s node ID, and depth in the
cluster tree (lines 17-19, Algorithm 1). An acknowledgment
(ACK) is then sent to the corresponding CH (line 20)
indicating its own node ID (my_NID), distance to the CH
(hops), and set of properties of the node (p;, p2) such as
residual energy and node degree. The CH receiving the ACK
adds the sender to its list of acknowledged nodes (ack_list).
After sending the ACK, the node waits a random back-
off time (line 22), and then forwards the cluster-formation
broadcast (Fwd_Bcast_Cluster), if TTL is still valid. Random
back-off time helps to reduce collisions among transmitting
nodes.

Intermediate nodes between (hopsmay, TTLmax) hops do
not join the cluster, instead help forward the broadcast
further. They do not send any ACKs. A broadcast from a par-
ticular CH is forwarded only once by a receiving node; hence,
broadcasts are forwarded outward from the CH. When the
broadcast reaches the last hop (i.e., TTL expires) the nodes
that received the broadcast are capable of being selected as
new CHs. Such a node is called a candidate cluster head
(CCH). At this stage, the CCH nodes are either at the edge
of the cluster (if TTLmax = hopsmax) or outside the cluster
(if TTLmax > hopsmax). By listening to the transmissions
from neighbors, the possibility of selecting two nearby nodes
as CCHs can be reduced. Therefore, each candidate node
waits a random time (Wait_Lstn_Neighbors) before sending
an ACK to the corresponding CH. While waiting, nodes keep
listening and try to detect any ACKSs sent by their neighbors
to the same CH. If such an ACK is detected (line 27, function
returns TRUE), the node gives up its candidacy to be a new
CH and retries to join a cluster, that is, reruns the Join_Cluster
function. If no ACK is detected by the time the function
timeouts (no neighbor is still interested in becoming a CCH),
node confirms itself as a CCH and informs this to the
corresponding CH by sending an ACK (line 28). Child CHs
are chosen from this spatially distributed set of CCHs, and
therefore generates a less overlapping set of clusters. After
sending the ACK, each CCH waits for a cluster formation
request (Lstn_Form_Cluster) from the corresponding CH.
Meanwhile, a CCH may join a different cluster if it hears a
new broadcast and is within hopsmax from the new CH. This
further prevents the formation of overlapping clusters and
ensures all nodes are covered by clusters.

In the meantime, the corresponding CH keeps receiving
ACKs until the Receive_ACK function timeouts (line 4). A
new set of child CHs are then selected from the CCHs
in the ack_list, using the Select_Child_CHs function. Finally,
a request is sent to each selected CCH asking them to
form their own clusters (Rgst_Form_Cluster). Each request
also includes the new cluster’s ID (CID;), a hold-up time
(delay;) before forming the new cluster, and other relevant

4
TaBLE 1: Algorithm parameters/variables.

Parameter Description

ack_list List of podes that responded to the cluster
formation broadcast

CCH Candidate cluster head

CID Cluster identifier

delay; Time delay before forming the ith child cluster

depth Depth in the cluster tree

hops Number of hops a message has gone through

hOpSmac Maximum number of hops to a cluster member
from the CH

" Number of nodes (candidate CHs) to be selected
as new child CHs

NID Node identifier

Pi> P2 Properties of a node

RSSI Rece.ived signal strength indicator value for a
received broadcast

timepackoff Random back-off time

timeoutuck Waiting time for acknowledgment messages

TTL,... Maximum number of hops to forward acluster

formation broadcast

parameters. Upon receiving the requests, selected CCHs
form their own clusters by executing the Form_Cluster
function. These CHs then select the next set of child CHs
and the process continues. The cluster tree is rooted at the
root node and formed by each CH keeping track of its parent
and child CHs. If a selected CCH is unable to attract any child
nodes, a cluster is not formed and the related branch in the
cluster tree is not expanded further. The algorithm continues
until all possible branches are expanded.

2.2. Control of Clusters and Cluster Tree Characteristics.
GTC algorithm can achieve a wide range of solutions by
varying the implementation of functions Select_Child_CHs
and Select_Delay, and controlling the parameters hopsmax
and TTLmax. hopsmax controls the coverage of a cluster while
TTLmax controls the distance between a parent and its child
CHs. Multihop clusters are formed when hopsmax > 1. When
TTLmax = hopsmax, CCHs are selected from nodes that are
at the edge of the parent cluster. Figure 1(a) illustrates the
best theoretical cluster packing that can be achieved when
hopsmax = TTLmax = 1. For simplicity, only a selected set of
CCHs is shown and one branch is expanded into several
levels. It is sufficient for a CH to select three CCHs, if
those are separated physically as widely as possible. Let n;
denote node i and ¢; denote cluster i. The root node (1)
forms cluster ¢; by connecting all one-hop neighbors. It then
requests three of its neighbors n,, n3, and ny that are at the
edge of the cluster, to form their own clusters ¢, ¢3, and c4.
How those three neighbors can be selected is addressed later.
They are called level I clusters while the root node belongs
to level 0. Then n, requests ns, 16, and n7 to form their own
clusters. Even in this conceptual case, the shapes of clusters
are not circular except for ¢;. Many overlapped clusters are

International Journal of Distributed Sensor Networks

formed as we go down the tree. As the effective coverage of
a cluster is small, many clusters and a longer cluster tree are
required to cover the sensor field. This approach reflects the
basic scheme proposed in the IEEE 802.15.4 standard and
hereafter referred to as simple hierarchical clustering (SHC).

The overlap between parent and child clusters can be
reduced by selecting nodes that are outside the parent cluster
as CCHs. Cluster-formation broadcasts can be propagated
beyond the parent cluster (i.e., TTLmax > hopsmay) through a
set of intermediate nodes to select some of the distant nodes
as CCHs. When TTLmax = 2hopsmax, the overlap between a
parent and its child clusters is reduced. It also ensures that
both clusters have the same hop count. Though this is a
significant improvement over SHC, clusters can still overlap
due to random node placement, that is, it is not always
possible to find an optimum set of CCHs that is furthest from
the parent CH. For minimum overlap, the ideal distance
between a CH and its CCHs should be just above 2hopsmay.
Hence, it is more appropriate to select TTLmax = 2hopsmax
+ 1. This multihop forwarding approach is named hop-
ahead hierarchical clustering (HHC). Figure 1(b) illustrates
the ideal circular packing with single-hop HHC. The root
node (n1) sends a cluster-formation broadcast and all one-
hop neighbors join ¢;. The broadcast is then forwarded until
TTL expires. For example, after hearing the broadcast from
ny, ny joins the cluster. The broadcast is then forwarded from
n, to n3 and from 73 to ny. Finally, 14 is three-hops away from
the CH, and hence it becomes a CCH. The root node selects
six such nodes (14 to n9) that are in different directions of
the sensor field as child CHs. Different mechanisms that can
be used to select those six nodes are discussed later. For all
the other levels it is sufficient that each parent CH selects up
to three nodes as child CHs, for example, cs, ¢9, and ¢ are
formed by c4. Due to this setup, HHC scheme forms larger
clusters, more circular clusters, and has a better distribution
of CHs.

Each parent CH uses the Select_Child_CHs function to
select child CHs from a set of CCHs. Implementation of
the function depends on the availability of node properties
such as node degree, residual energy, cryptographic key
identifiers, or location information. When a node sends
an ACK to the CH, such properties are reported using
parameters p; and p,. Load balancing can be achieved by
selecting CCHs based on higher residual energy or lower
node degree [2]. If the cluster setup phase is cycled like in
[1, 2], such parameters play a key role in selecting different
sets of CHs in different cycles. In [21], we illustrate the
use of GTC algorithm with predistributed cryptographic
key identifiers to build a secure backbone. Node location
information is essential to select a precise set of child CHs.
However, due to constraints on cost, size, energy consump-
tion, and implementation environment, most sensor nodes
are not location aware [22]. The received signal strength
indicator (RSSI), available in most wireless devices, can be
used to estimate the distance between two nodes. RSSI is
attractive because it has minimum impact on hardware,
power consumption, and cost. Though RSSI is not very
reliable, it has been demonstrated that RSSI measurements in
new radios such as CC2420 [23] are stable over time [24, 25]

International Journal of Distributed Sensor Networks

(1) Wait (delay)
(2) TTL <« TTLpa

(5) IF (ack_list = NULL)

Join_cluster()
(13) Lstn_Bcast_Cluster (NIDcp, CIDcy, hops
(14) TTL—~TTL-1
(15) hops — TTLmax — TTL
(16) IF (hops < hops, .. AND my_CID = 0)

max’

max

(32) Join_cluster ()

Form_Cluster (NIDcy, CIDch, delay, n, hopsmax, TTLmax, depth)

(3) Beast_Cluster (NIDcy, CIDcy, hops,,.» TTLnax, TTL, depth)
(4) ack_list —Receive_ACK (NIDpiia, hops, p1, pa, timeoutacx)

(6) Join_Cluster()

(7) FORi=1TOn

(8) CCH; —Select_Child_CHs (ack_list)

9) CID; —Select_Next_ CID (i)

(10) delay;— Select_Delay (i)

(11) depth;— depth + 1

(12) Rgst_Form_Cluster (CCH,, CID;, delay;, n, hops,,, TTLmax, depth;)

TTLuax, TTL, depth)

(17) my_CID — CIDcy

(18) my_CH — NIDCH

(19) my_depth — depth + 1

(20) Send_ACK (my_NID, hops, p1, p>)

(21) IE(TTL > 0)

(22) Wait (Random (timepackof 5))

(23) Fwd_Bcast_Cluster (NIDcy, CIDcy, hops s TTLmax, TTL, depth)

(24) IF (hops < hops,..)

(25) Exit()

(26) ELSE

(27) IF (Wait_Lstn_Neighbors (Random(timepackof r))= FALSE)

(28) Send_ACK(my_NID, hops, p1, p2)

(29) IF (Lstn_Form_Cluster(CCH, CID, delay, n, hops, .., TTLmay, depth, timeoutccy) =TRUE)
(30) Form_Cluster (my_NID, CID, delay, n, hops, ., TTLmay, depth)
(31) Exit ()

ArcoriTaM 1: The generic top-down cluster and cluster-tree formation algorithm.

and tend to decrease exponentially with the distance [24].
As cluster formation does not need highly accurate distance
information, rather relative distance relationships between
neighboring nodes, RSSI can serve as a reasonable first-order
approximation needed for the relative distance values.

An RSSI-based heuristic to select a spatially distributed
set of CCHs is presented next. Clusters overlap if CCHs are
pushed by 2hopsmax, but coverage holes are created if they
are pushed all the way up to 2hopsmax + 1 (Figure 1(b)). A
better alternative would be to select a node that is just above
2hopsmay asa CCH [13]. An RSSI-based heuristic can be used
to forward the cluster-formation broadcast to the maximum
distance within 2hopsmax and then select a nearby node as a
CCH. The heuristic can be implemented by modifying lines
22 and 27 of the GTC algorithm:

(22) Wait (RSSI + Random (timepackoff))
(27) IF (Wait_Lstn_Neighbors (1/RSSI + Random
(timebackoff)) = FALSE)

The waiting time now depends on the RSSI value of the
received broadcast and the random back-off time. Random

back-off time is used to differentiate the waiting time among
nodes with the same RSSI. According to line 22, a node
with a lower RSSI (i.e., higher distance) gets priority in
forwarding the broadcast than a node with a higher RSSI.
This allows the nodes that are furthest away from the CH
and within 2hopsmax to forward the broadcast first. Then
in the last hop, a nearby node (i.e., one with higher RSSI;
note 1/RSSI in line 27) gets priority in becoming a CCH
than a distant node. Therefore, the time that such a node
keeps listening for ACKs (sent by neighbors) is shorter than
the nodes that are further away. If such an ACK is detected,
the node gives up its candidacy to be a new CH and retries
to join a cluster. Thus, the waiting time is used to prevent
nodes in the same neighborhood from becoming CCHs and
thereby achieve spatial separation. Distant nodes are selected
only if they do not hear any ACKs from their neighbors.
Consequently, CCHs are primarily selected from a spatially
separated set of nodes that are just beyond 2hopsmax. Then
n (n = 6 for first round of HHC, and n = 3 otherwise)
CCHs are randomly selected as child CHs. As the set of CCHs
is spatially separated, child CHs selected from that set are
also spatially separated. The RSSI based heuristic minimizes

International Journal of Distributed Sensor Networks

(b)

FIGURrk 1: Physical shape of ideal single hop clusters: (a) simple hierarchical clustering, hopsma.x = TTLmax = 15 (b) hop-ahead hierarchical
clustering, hopsmax = 1, TTLmax = 3. Straight lines indicate the parent-child relationship among CHs.

coverage holes, produces more uniform clusters, and reduces
depth of the cluster tree. If no location information or RSSI
is available, child CHs can still be selected randomly from the
set of CCHs.

Cluster properties are affected when multiple child CHs
try to form clusters at the same time. Therefore, we reduce
collisions among cluster-formation broadcasts by a random-
ized scheduling scheme. Each parent CH determines a time
delay (delay;) that each of its child CHs needs to wait before
forming its own cluster, using the Select_Delay function.
Furthermore, the shape of cluster tree can be controlled by
appropriately selecting delay; values. For breadth-first tree
formation, delay should ensure that cluster formation of level
j completes before the start of level j + 1. Thus, a parent CH
can estimate when its first child CH should form the cluster
using [13]:

tj = jten + (j — 1)(n = Dtcen, (1)

where j is the child CHs level in cluster tree, tcy is the
time required to form a cluster, tccu (fccu = tcn) is the
scheduled delay between formation of two child clusters
of the same parent, and n is the number of child CHs
(i.e., branching factor of the tree). Each of the remaining
child clusters needs to be delayed by tccu. Depth-first tree
formation can be facilitated by allowing a branch to complete
its expansion before start of another branch by the root
node. This approach forms a longer tree that provides more
opportunities for data aggregation. However, a longer tree
increases latency and energy consumption therefore may not
be desirable in many applications. Note that waiting time is
just a delay, and thus the algorithm does not require time
synchronization.

The cluster tree starts from the root node and is formed
by each CH keeping track of its parent and child CHs. Parent
and child CHs can be physically linked using either single-
hop (high-power) or multihop (low-power) transmissions.
Typically, long-range intercluster communication is desir-
able due to low latency and simplified routing [11, 16].
It further enables non-CHs to sleep while not sensing or

transmitting [16]. Because any node is capable of becoming
a CH, this approach is suitable if either the nodes can tune
their transmission power or the CHs are later replaced by
energy-rich actor nodes [11]. Henceforth, we assume high-
power transmissions among CHs.

In top-down clustering, a set of child CHs is always
selected from the nodes that are at a bounded distance from
the parent CH. The cluster tree that connects those CHs
is therefore guaranteed to be connected, if the intercluster
communication range of CHs is higher than the distance
bound. The same property holds for the GTC algorithm
as the distance between a parent and its child CHs is
bounded by TTLmax. Thus, the cluster tree is guaranteed
to be connected if R = r X TTLga, where R and r
are the intercluster and intracluster transmission ranges,
respectively. Hence, GTC algorithm guarantees a connected
topology compared to [1, 2, 9, 10] and does not require CH
repositioning as in [11].

Based on hexagonal packing, lower and upper bounds
are derived for the depth of a cluster tree formed by
interconnecting single-hop clusters. Assume a circular sensor
field (see Figure 2) with uniform node distribution. The root
node is placed in the center of the sensor field. Let C be the
radius of the sensor field and r be the transmission range of
a node. Let 2h (h = /3r/2) be the height of a hexagon (see
Figure 2(c)). First, consider the cluster formation along the
Y-axis. Distance to the edge of the sensor field from root node
is C, and it is (C — h) from the edge of first cluster. Therefore,
the number of clusters between the edge of first cluster and
the edge of sensor field is =[(C — h)/2h]. As each cluster is a
child of another (e.g., ¢, is a child of ¢, ¢s is a child of ¢;, 20
is a child of cg, etc.), the number of clusters along the Y-axis
indicates the depth of the cluster tree. In reality, clusters will
not form along the same axis; therefore, analysis along the
Y-axis provides only a lower bound.

Analysis along the X-axis provides an upper bound.
Consider inset (b) in Figure 2, which shows analysis of a
border case. If the edge of the sensor field is beyond the line
QS drawn through point P (C > distance to P from the root

International Journal of Distributed Sensor Networks

(a) (c)

FIGURE 2: Hexagonal packing of a circular sensor field. C-radius of
the sensor field, r- transmission range of a sensor node.

node) an additional level of clusters needs to be formed. It
can be shown that OP = r/2 and [= +/3h. If the edge of the
sensor field is before point P, then the depth of the cluster
tree is = | C/+/3h]. If the edge is beyond point P, the depth
increases by one more hop. Therefore, by replacing h with r,

c 1
depthyy, = | == =5 | 2)
[EJ if (C%S'l) s
depth,,, =1 5% 22 (3)
[—J +1 else.
3r

Lemma 1. Worst-case message complexity of the GTC algo-
rithm is O(N?2).

Proof. Let us first analyze the cost to form a single cluster
and then analyze the number of clusters to be formed.
Suppose N nodes are uniformly distributed within a sensor
field (with area A) such that the network topology forms a
connected graph for a given transmission range r. Because
a node forwards the cluster-formation broadcast only once,
the number of broadcast messages per cluster is the same as
the number of nodes within (TTLmax — 1) hops from the CH.
Let N, be the number of nodes within (TTLy. — 1), which
indicates the broadcast cost. All nodes within hops,,,, send
ACKs to the CH. ACKs from nodes that are more than one
hop away from the CH have to be forwarded multiple times
(assuming no piggybacking). Similarly, a subset of nodes
that are at TTLmax hops also sends ACKs as CCHs. These
messages travel TTLm, hops. Thus, total number of ACK
messages per cluster is

hops

'max

TTLmax X Nrr+ >, i X N, (4)
i-1

where Ntrr, and N; are number of nodes that are at exactly
T'TLmax and i-hops from the CH, respectively. Each CH then
sends #n unicast messages to newly elected child CHs. Hence,
the total number of messages is:

hops,

Ny + Nt X TTLmax + 2 X TTLiax + >, ixXNi. (5)

i=1

Recall that n = 3 for SHC and n = 6 for HHC. hopsmax
and TTLnay are constant for a given network, and hopsmay <
TTLyax < N. In the worst case, all the nodes in the
network can be within either hopsmax 0r TTLmax from the
CH. Therefore, each term Nj, Ntt1, and N; is bounded by
O(N). Thus, the message complexity per cluster is bounded
by O(N).

Largest number of clusters is formed when nodes are
placed along a line with internode distance of r. If the root
node is placed at one end of the line, first cluster will contain
hopsmax + 1 nodes. Rest of the clusters will have TTLpax
nodes. Thus, the number of clusters can be given by

N —hops,,, — 1
’7—TTLmax w + 1. (6)

The number of clusters therefore is bounded by O(N). In
practice, most clusters have more than TTLy.c nodes, and
therefore the number of cluster is lower than that in (6).
However, as both the number of messages per cluster and
the number of clusters are bounded by O(N), the worst-case
message complexity is O(N?). O

Lemma 1 is a very loose bound, thus average complexity
is derived next. Let A = N/A be the node density. Let us
derive the message complexity of single-hop HHC scheme,
that is, hopsmax = 1 and TTLmax = 3, and similar arguments
follows for SHC and multihop clusters [13]. In HHC, 1-hop
and 2-hop neighbors further forward a cluster-formation
broadcast. Altogether there will be 1 + {Azr? — 1} +
AMn(2r)*—nr?} = 4Anr? broadcasts. Only nodes at a distance
of 1-hop and 3-hops send ACKs back to the CH. Cost of
forwarding these ACKs is Anr? — 1 + 3M{n(3r)* — 7(2r)*} =
16Anr? — 1. Up to six CCHs are selected as child CHs, and
respective cluster formation requests travel up to 3-hops.
Then the total overhead per cluster is 4Azr? + 16A7r2 — 1 +
18 = 20Anr? + 17. There are A/knr? clusters in the network,
where k is a constant that reflects the circularity of a cluster.
Therefore, the total overhead is 20N/k + 17A/knr?. Hence,
the average message complexity is O(N).

2.3. Cluster Tree Self-Optimization Phase. Though the cluster
tree formed with the HHC scheme is significantly better,
it is suboptimal as the breadth and depth of the tree
depend on several factors such as node distribution, which
nodes are randomly selected as CCHs, and which of those
selected CCHs are able to form clusters. A cluster-tree self-
optimization phase is presented next that could further
improve the breadth and depth of the tree.

Cluster tree self-optimization is performed by exchang-
ing another set of messages among CHs. After the cluster

formation phase, each CH (staring from the root node) sends
at least one broadcast announcing its depth to neighboring
CHs. A neighboring CH receiving this broadcast, checks
whether the received depth is lower than its parent CH’s
depth. 1f so, the neighboring CH selects the broadcasting
CH as its new parent CH and reorganizes its cluster tree
membership. It then sends a new broadcast enabling its child
and neighboring CHs to upgrade their depth. This approach
increases the breadth of the cluster tree, while consequently
reducing its depth.

Algorithm 2 formally describes this process. After the
cluster formation phase, each of the CHs (except the root
node) executes the Lstn_Optimize_Tree function to upgrade
its depth in the cluster tree. The root node initiates the opti-
mization phase by sending a broadcast (Bcast_CH_Presence)
with its NIDcy, CID, and depth. When a broadcast is
received, each CH compares its current depth (my_depth)
with what was heard from its neighbor. If the new depth
is lower, it sets the broadcasting CH as its new parent CH.
After receiving the first broadcast, each CH generates a
new broadcast with its own data (line 8). Even a CH that
does not benefit from the new depth information, that is,
current depth is lower, has to send its own broadcast once.
This ensures that each CH receives at least one broadcast,
and therefore gets the opportunity to upgrade its tree
membership. If a CH hears a subsequent broadcast with
even lower depth, it reorganizes the tree membership and
regenerates a new broadcast with the updated depth.

The self-optimization algorithm is independent of the
intercluster communication mechanism. Therefore opti-
mization messages can be forwarded as either single (TTL
= 1) or multiple (TTL = TTLnax) hop broadcasts. Single-
hop broadcasts utilizing high-power therefore can directly
reach nodes that were not reachable during the cluster
formation phase (due to lack of intermediate nodes). This
enables many CHs to improve their cluster tree membership.
Consequently, breadth of the tree increases and depth
reduces. During this phase, non-clustered nodes can join a
nearby cluster if they hear a broadcast.

3. Routing

3.1. Cluster-Tree-Based Routing. Though many hierarchical
routing schemes are designed to deliver data only towards
the sink [1, 2, 9, 10], many WSN applications also require
communication within the network [8, 14, 26]. If root node
is either the sink or capable of forwarding messages to the
sink, node-to-sink communication can be easily facilitated
by forwarding data to upper levels in the cluster tree.
However, an addressing scheme is required to facilitate node-
to-node communication. Assume that the sender knows
the destination address, through some other mechanism.
In [27], we propose a mechanism to determine destination
addresses in virtual sensor networks [14].

Our routing scheme makes use of the cluster tree
formed with the HH C scheme (Figure 3) because of its
desirable cluster and tree properties. Assume CH J wants to
communicate with CH P. The message is first forwarded to
C, as it is the parent CH of J. C only knows about its parent

International Journal of Distributed Sensor Networks

A and children], K, and L. Therefore, C has to either drop
the message or forward it to parent A. Even A does not know
about P. This problem can be overcome by each CH keeping
track of all its descendants. If C was aware that P is the child
CH of L, it could have directly forwarded the message to
L, which can forward it to P. As we go up the tree, more
and more data about descendant CHs needs to be stored
and the root node has to keep track of the entire network.
This approach is not scalable in supporting communication
among the nodes.

A variable length hierarchical addressing scheme
(Figure 3(b)) that reflects the parent-child relationship
among CHs to overcome these issues is proposed next. A
hierarchical address is assigned to a CH based on its branch
number and parent CH’s address. Branch numbers are
relative to the parent CH and are determined based on the
order that child CHs are selected from the set of CCHs.
Branch numbers have a zero-based index. The root node (A)
does not have a parent CH hence we assign its address as 0.
B is the first child CH of A therefore gets address 00, second
child C gets address 10, and G being the sixth child CH gets
address 50. When B assigns addresses to its child CHs, it
merges its address 00 with the child’s branch number. Thus,
the first child H gets address 000 while the second child I
gets address 100. The branch related to H is discontinued as
it does not have any child CHs. Q is the one and only child
of I hence gets the address 0100. Address 210 is not assigned
because the child CH that was given the address did not form
its own cluster. Each CH is aware of the addresses of child
CHs that were not able to form a cluster. If needed, such
addresses can be reassigned to new child CHs that are added
during the self-optimization phase. Then L, the fourth child,
gets the address 310. The hierarchical addresses of each child
CH is generated by the Select_Next_CID function of the GTC
algorithm. Our addressing scheme satisfies all the necessary
properties defined in [26].

To enable routing, each CH needs to keep track of only
the addresses of its parent and child CHs. Root node keeps
track of its immediate child CHs. Therefore, hierarchical
addresses significantly reduce the number of routing entries
at a CH. Given the hierarchical address of a destination,
entire path to the destination can be determined. Next hop to
forward a message can be determined using the pseudocode
in Algorithm 3. A hierarchical address can be represented as
an array of digits (Figure 3(b)) with the least significant digit
(LSD) indicating the root node’s branch number. The input
variables current and destination indicate the hierarchical
addresses of the CH that is trying to determine the next
hop and the destination CH, respectively. Individual digits of
the two addresses are compared starting from the LSD (line
4), until a mismatch is found. When the loop terminates,
variable i indicates the number of matching digits. Digits
that match indicate the address of the CH that two addresses
converge. If i < Depth (current), the rendezvous is above the
current CH hence the message should be forwarded to the
parent CH. Otherwise, the rendezvous is below the current
CH (line 9) and the message should go to one of the child
CHs. Child CHs branch number can be determined from
the (i + 1)th digit in the destination address. For example,

International Journal of Distributed Sensor Networks 9

Bcast_CH_Presence(NIDcy, CID, depth, TTL)

Lstn_Optimize_Tree()
(1) Lstn_Bcast_CH_Presence (NIDcy, CID, depth)
(2) IF (my_depth > depth + 1)

(3) my_CID —CID

(4) my_CH — NID(;H

(5) my_depth —depth + 1

(6) opt_msg_send —FALSE

(7) IF (opt_msg_send = FALSE)

(8) Bceast_CH_Presence (NID g, my-CID, my_ depth, TTL)
9) opt_msg_send —TRUE

ArgoriTHM 2: Cluster tree self-optimization algorithm.

)
H(000) I(100) J(010) K(110) L(310) M(020) N(030)

A(0)

B(00 C(10) D(20) E(30) F(40) G(50)

0(050)

Q(0100) P(0310)

(b)

FIGURE 3: (a) A hypothetical sensor field covered with ideal HHC clusters; (b) corresponding cluster tree with hierarchical addresses. Scat-

tered lines indicate cross-links among neighboring CHs.

suppose CH L in Figure 3(b) wants to communicate with CH
M. L’s address is 310 while M’s address is 020. Both addresses
converge at the root node (A) as 0 is the only common digit
between the two addresses (i.e., i = 1). Because i < Depth
(current), the message will be forwarded to the parent CH C.
Similarly, when C compares its address with M’s address, it
realizes that the message needs to be forwarded to its parent
CH A. As A is the rendezvous for the two addresses, the next
hop should be one of A’s child CHs. By looking at address
020, A can determine that message needs to be forwarded
to child CH in the second branch, D. The message will be
then forwarded from A to D. Two addresses 20 and 020 are
compared again at D. Addresses are identical up to 20 hence
next hop should be the child CH in branch zero. Thus, the
message will be forwarded to the destination M.

3.2. Cross-Link-Based Routing. The root node is a single
point of failure in hierarchical topologies. It spends energy
much faster than the rest of the nodes, as it handles all the
traffic going either to the base station or across different

branches. If it is not energy constrained, its power limited
child CHs will run out of energy faster than the remaining
nodes as they share the traffic going through the root node.
Multiple high-energy nodes can be placed closer to the root
node to handle more traffic [28]. Yet such solutions are
unable to utilize the energy available in rest of the network,
which is critical in enabling communication within the
network. We propose two routing approaches that make use
of the energy available in rest of the CHs.

In a clustered network, neighboring clusters may belong
to different branches of the cluster tree, for example, CHs H
and J in Figure 3 belong to completely different branches of
the tree. As they are in the same neighborhood, they can hear
each other’s messages and figure out each other’s hierarchical
addresses. Cross-links formed among such neighboring
clusters can be used to forward messages across different
branches of the cluster tree. For example, suppose H wants
to communicate with K. A message travelling through the
cluster tree will take the path H -— B - A - C — K,
which is four-hops long. If H knows that its neighbor J is in

10

the same branch as K, it can use J to relay the message. Then
the new path H —] — C — K requires only three-hops.
More importantly, it does not go through the root node.
Ability to utilize such cross-links reduces the workload on
the root node therefore increases the network lifetime.

It is not desirable to go through cross-links, just because
they are available. The same hierarchical addresses can be
used to determine whether it is shorter (or same) to go
through the root node or across one of the cross-links. Given
addresses of CHs H (000) and K (110), their rendezvous is
the root node. Both H and K have two-hops to the root
node hence the distance is four-hops. If H compares J's
address (010) with K’s address (110), their rendezvous is
at a CH with address 10. Both J and K have a hop to the
rendezvous and H also needs to forward the message to
J, which requires another hop. Altogether, three-hops are
required. Thus, shorter path through] is preferred. These
changes can be easily incorporated into Algorithm 3 [13].

3.3. Circular-Path-Based Routing. More uniform and cir-
cular clusters of the same depth tend to be somewhat
localized and lie on approximately concentric set of rings (see
Figure 2). Therefore, as seen in Figure 4, cross-link based
routing can be further extended by combining multiple
cross-links that are at the same depth of the cluster tree
to form circular-paths within the network. A path can
be formed by sharing cluster addresses not only with the
neighbors but also with neighbors of neighbors, if they lead
to a better route. Such circular-paths enable many alternative
routes without being tied to the cluster tree.

Suppose a node in CH U (see Figure 4) wants to
communicate with a node in CH K. A message going from
U to K has to travel five-hops if it goes through the cluster
tree. U is not in a circular-path; therefore, tree can be used to
forward the message to its parent CH M. M is in the circular-
path hence has the option of selecting either the circular-path
(needs three-hops) or the cluster tree (needs four-hops). The
route through circular-path is preferable as it is shorter and
avoids the root node. The resulting route U= M — P - L - K
is four hops long and utilizes both the tree and the circular-
path.

To determine the path length, M has to know about K’s
address through neighboring CHs P and L, beforehand. It is
not useful to share each CH’s address with all the other CHs
in a circular-path. For example, CHs H and P require four-
hops to communicate with each other using either the tree or
the circular-path. Circular-path is preferred as it reduces the
burden on the root node. Therefore, it is useful for H and P
to know about each other. For P’s neighbor M, it takes four-
hops to reach H through the tree and five-hops through the
circular-path. Therefore, H’s address is not useful to M and
should not be propagated any further. Hierarchical addresses
are useful in determining path lengths and making sure
that only relevant addresses are shared among CHs along a
circular-path. Though it is not possible to form a complete
set of circles in a randomly deployed network, even partial
circles are useful. Using a simplifying example it is possible

International Journal of Distributed Sensor Networks

F1GURE 4: Cluster tree with a circular path constructed by connect-
ing level 2 CHs that are in the same neighborhood.

Next_Hop(current, destination)
(1) IF (current = destination)
(2) Return current
(3) min_depth —Min(Depth (current), Depth (destination))
(4) FOR i =0 TO min_depth

(5) IF (current [i] # destination [i]
(6) Break

(7) IF (i < Depth (current))

(8) Return parent_CH

(9) ELSEIF (i = Depth (current))

(10) Return destination [i+ 1]

AvrcoriTHM 3: Pseudo code to determine the next hop.

to show that cluster tree with circular-paths has the largest
lifetime.

Example. Lower bound of network lifetime using the three
routing schemes has the ordering: cluster tree with circular-
paths > Cluster tree with cross-links > cluster tree.

Argument. Consider the lifetime of the network to be the
time before the first node dies. Performance of node-to-node
communication is evaluated as node-to-sink performance
is same for all routing schemes. Assume nodes are homo-
geneous, and source and destination nodes are uniformly
distributed across the network. It is complicated to derive
the exact lifetime of the network considering depth/breadth
of cluster tree and position of all source/destination nodes
[13]. Therefore, a lower bound is derived by considering only
the root node and level 1 CHs. Let CH; indicate a level I
CH and A be the packet arrival rate at a CH;. In cluster-
tree-based routing, a packet arriving at a CH,; has to go
to one of its descendants, to the root node, or to one of
the remaining five level 1 clusters through the root node
(Figure 3). Compared to the size of the network N, the root

International Journal of Distributed Sensor Networks

node has only a small number of cluster members. Therefore,
it is reasonable to assume that each CH, is responsible for
relaying packets to N/6 nodes. Hence, 1/6 of the packets will
go to the descendants while remaining 5/6 will go across
the root node. As there are six CH;s, total load on the root
node is 5A. When cross-links are present, each CH; has two
neighboring CH;s (Figure 3). Then 1/6 of the packets will
go to the descendants, 2/6 through neighboring CH;s, and
remaining 3/6 through the root node. Hence, the total load
on the root node is 3. It can be shown that root node is
still the bottleneck. Distance between any two CH; s along the
cluster tree is 2-hops (Figure 4). Therefore, when a circular-
path is available each CH; keeps track of neighboring CH;s
that are within 2-hops. There are four such neighbors that
could be used to reach 4N/6 nodes. However, CH;s are now
the bottlenecks because excessive use of the circular-path
overloads them. A CH; has to forward A packets originating
from its descendants. In addition, its neighbors (two such
neighbors) use it to reach 2/6 of the nodes while each of
the remaining two-hop neighbors uses it to reach 1/6 of
the nodes. Then the total load is A + 4A/6 + 21/6 = 2A.
Let P be the number of packets that can be relayed by a
node. Therefore, lifetime of the network under each routing
scheme is P/5A, P/3A, and P/2A which can be written as a set
of ratios 1:1.667 : 2.5. Therefore, inequality holds.

Formation of cross-links and circular-paths at higher
levels of the cluster tree will enable identification of better
paths without coming all the way down to level 1. Therefore,
the actual number of packets delivered by each routing
scheme will exceed the lower bound.

4. Performance Analysis

4.1. Simulator. A discrete-event simulator is developed using
C. 5000 nodes are randomly placed on a circular region with
a radius of 500m. The root node is placed in the middle
of the sensor field. Single-hop clusters are formed using the
breadth-first tree formation approach. Intercluster commu-
nication is single hop. Child CHs are selected randomly from
a set of CCHs and for each simulation, the random function
is initialized with a different seed. We compare our results
with hexagonal packing that initiates from the root node. A
circular sensor field is considered to make the comparison
with hexagonal packing easier. Average circularity of clusters
is defined as

%100,
(7)

where m is the number of clusters in the network. Clusters
at the border of the sensor field are often not able to find
a sufficient number of nodes to achieve high circularity.
However, these clusters have already attracted all the possible
nodes. Our circularity metric assigns 100% to those clusters
allowing us to discard the border effect. A hexagonal
cluster in a uniformly distributed network has an average
circularity of 82.7% [13]. Cluster tree formed with the HHC
scheme is used while analyzing the performance of routing.

m . .
. . No of nodes in cluster i
Circularity = z
i=1

No of nodes in the range of CH;

11

Collisions among broadcasting nodes are considered. Signal
propagation is based on the log-distance path-loss model
[22] with a multipath fading factor of 2.2 [29]. Energy
model is similar to that used in [1, 2] with each node
having 2] of energy. The results are based on 100 samples,
which were sufficient to attain mean circularity, number of
clusters, and number of messages within +=10% accuracy and
95% confidence level. Detailed simulation parameters can be
found in [13] and the source code is available at [30].

4.2. Cluster and Cluster-Tree Characteristics. Figure 5 illus-
trates the physical shape of clusters formed by SHC and
HHC schemes. Only the first SHC cluster has approximately
a circular shape while the shapes of other clusters vary widely
(Figure 5(a)). Child CHs are selected from nodes that are
closer to the edge of the parent cluster, for example, CH
of ¢z is within ¢’s coverage area. Note that ¢; denotes the
cluster labeled i. It is also possible that some of the child CHs
reside inside the parent cluster, for example, CHs of ¢; and
¢4 are inside ¢;. SHC may even form single node clusters, for
example, cg and cr (see arrow in Figure 5(a)) initially had
cluster members and they were later elected as CHs of ¢y and
¢<. SHC can push child CHs only up to the edge of the parent
cluster, even with location information or RSSI, therefore
clusters will overlap significantly. Alternatively, HHC clusters
in Figure 5(b) are much larger, more circular, and have lower
overlapping regions.

Circularity of single-hop clusters is summarized in
Figure 6. HHC and RSSI heuristic-based HHC (R-HHC)
clusters have much higher circularity than SHC. Ideal
hexagonal clusters have the highest circularity. Ability to
push CCHs further away from the parent CH reduces the
overlap among most of the HHC clusters. However, as we
push the CCHs further away, they can create coverage holes
in the network (Figure 1(b)). Sometimes smaller clusters
are formed to cover up such open regions, for example,
¢z in Figure 5(b), while reducing the overall circularity.
This is the reason that 5th percentiles for HHC and R-
HHC overlap with 95th percentile of SHC. R-HHC clusters
cover the sensor field more uniformly without creating such
open regions, because the CCHs are selected from nodes
that are just above 2hopsmax from the parent CH. Uniform
coverage requires some overlap among clusters; therefore, the
circularity of R-HHC is relatively lower than that of HHC.
Though uncertainties in signal strength affect R-HHC, it can
still form clusters with better properties than HHC does [13].

Due to the following factors, circularity reduces as the
intracluster transmission power Pr (i.e., transmission power
of a node while forming clusters and communicating within
a cluster) increases. When Pr is higher, many nodes are
capable of being selected as CCHs. The Wait_Lstn_Neighbors
function prevents two nodes that are within each other’s
communication range (r) from becoming CCHs. However,
clusters will overlap if the selected CCHs are within 2r
from each other. High Pr also increases collisions (even
with random waiting), and thus some nodes may not hear
a cluster-formation broadcast. Consequently, those isolated
nodes may not join a cluster or later form smaller clusters.

12

International Journal of Distributed Sensor Networks

O cH

Grid points without a node

(a)

O cH

Grid points without a node

(®)

FIGURE 5: Physical shape of single-hop clusters: (a) SHC clusters; (b) HHC clusters. Grid size = 30 X 30, grid spacing = 5 units, nodes = 450,

and transmission range = 30 units.

100 FT - - - - —
goL®" o --————- o--———- - ————- o ————- °]
¢
¢ - o
‘? 60 - < o 4
s 4
'—:‘ -
2
5 40| T 1
20 F m\‘]
o L1 ! 1 ‘I’ J» 1
-20 —18 —16 —14 —-12 -10
Intracluster transmission power (dBm)
—e— SHC v- R-HHC
o HHC - - Hexagonal

Ficure 6: Circularity of clusters. Error bars indicate the 5th and
95th percentile.

Coverage holes created by HHC scheme become larger
as Pr increases, consequently new clusters are formed to
cover them up. These newly formed, small clusters overlap
with the existing clusters consequently reducing the overall
circularity.

Number of clusters/CHs produced by each scheme is
shown in Figure 7. Number of clusters required to cover
a given sensor field depends on both the circularity and
geographical area covered by a cluster. Because of higher

circularity, HHC produces a lower number of large clusters.
As Pr increases, the circularity of a cluster somewhat reduces
while coverage area increases. However, increase in area is
dominant (proportional to r2). Therefore, number of clusters
decreases with increasing Pr. R-HHC produces a relatively
higher number of clusters as it requires more clusters to cover
the sensor field uniformly.

We further evaluated the impact of node density on
cluster characteristics. When the network is sparse, clusters
are more circular. When it is dense, even a small coverage
hole with one or two nodes needs to be covered by a new
cluster. Consequently, circularity reduces with the increasing
node density. Table 2 shows per node cluster and cluster-
tree formation overhead. Uniform coverage property of R-
HHC does not require the creation of new clusters to cover
up coverage holes, and thus has the lowest overhead. Extra
messages required by the post cluster-tree self-optimization
phase (HHC-Opt) increase the overhead by approximately
1.5 messages per node, corresponding to around 25%
increase. Per node overhead for different network sizes
(N) are similar, which confirms that the average message
complexity of GTC algorithm is O(N). We further build two
other discrete-event simulators to compare HHC with FLOC
[7] and the scheme given in [9]. While FLOC also shows a
similar behavior for increasing Pr and node density, HHC
clusters are more circular and larger than FLOC clusters
[13]. Multihop HHC clusters are more circular and larger
than multihop clusters formed by scheme in [9], which
probabilistically selects CHs. Cluster properties of HHC
and ACE [6] are comparable. However, cluster formation

International Journal of Distributed Sensor Networks

2250 — T T T T T
2000
1750
1500
1250
1000 -

750 |

Number of clusters/CHs

500

250

0 L 1 1 1 1
=20 -18 -16 —14 -12 -10

Intracluster transmission power (dBm)

—e— SHC
© HHC

v- R-HHC
- @- Hexagonal

FiGUre 7: Number of clusters and cluster heads. Error bars indicate
the 5th and 95th percentile.

TasLE 2: Number of control message per node. Pr = —20 dBm.

Scheme N = 2500 N = 5000 N = 7500
HHC 4.12 4.86 4.87
R-HHC 3.98 4.47 4.31
HHC-Opt 5.58 6.13 6.07

overhead of HHC (Table 2) is much lower compared to that
in ACE, which uses an iterative CH selection process.

Figure 8 shows the distribution of CHs in the cluster
tree. HHC and R-HHC schemes form much shorter trees
than the SHC scheme. Due to high overlap among SHC
clusters, some branches of the cluster tree are discontinued,
resulting in a longer tree. Alternatively, HHC and R-HHC
clusters are more uniformly distributed; therefore, tree has a
higher branching factor and a lower depth. R-HHC selects a
spatially distributed set of CCHs. Hence, most of the selected
child CHs can form their clusters resulting in increased
branching factor and reduced depth. Such a lower depth
and higher breadth cluster tree is desirable in many WSN
applications. The self-optimization phase reorganizes the
cluster tree membership allowing a CH to connect to a new
parent CH with a lower depth, while producing a shorter
tree. Clusters become larger as Pr increases. Consequently,
fewer clusters are required to cover the sensor field and the
depth of the tree reduces.

Physical shape of the cluster tree formed by one of the
data samples is shown in Figure 9(a). Figure 9(b) shows
the same tree after the cluster-tree self-optimization phase.
The optimized tree is more structured and shorter than
the original one. In addition to the maximum depth (see
Table 3), the number of intersecting links and CHs having
higher depth than their distant neighbors can be used to
determine the orderliness and regularity of a cluster tree.
In Figure 9(a), links AB and AC intersect link DE. Such
intersections are not desirable as they could lead to collisions

13

TaBLE 3: Comparison of theoretical and empirical depth of the
cluster tree.

Pr Scheme Depth-theoretical ~ Depth-empirical
HHC 15
—20dBm R-HHC 15 14
HHC-Opt 14
HHC 8
—10dBm R-HHC 5
HHC-Opt 4

during intercluster communication. Original tree has 34
intersections and it is reduced to 15 in the optimized tree.
Furthermore, node E is physically more closer to the root
node than node A yet its depth is 3-hops higher than that
of A. Such cases should be avoided as they unnecessarily
increase the path length, and therefore increase the energy
consumption and latency. Original tree has 24 such CHs
and all of them are removed in the optimized tree. Thus,
optimized tree is more structured. Note that after the
optimization phase all the disconnected nodes in Figure 9(a)
are connected to a cluster.

Such a structured topology reduces path length and
latency, and can be used to build an addressing scheme that
reflects the geographical location of CHs, for example, using
an approach similar to that in [31]. Simulation results and
the depth predicted by (3) are compared in Table 3. For
lower Pr, empirical depth is within the bound predicted
by the model. Cluster properties are less optimal for higher
Pr, and therefore form a relatively longer tree. However,
as we can see from Figures 8 and 9, and Table 3, the self-
optimization phase significantly improves such cluster trees.
This demonstrates that cluster properties are comparable
with hexagonal packing for lower Pr and sparse networks,
and that the model based on hexagonal packing is valid for
such cases.

4.3. Performance of Routing. After the cluster formation
phase, each CH sends a broadcast with its hierarchical
address allowing its neighbors to form cross-links. Circular-
path based routing requires the formation of set of rings
within the network by connecting CHs at the same depth.
In practice, it may not be possible to build a closed ring
because CHs with same depth may not lie on a set of
concentric rings and could further depend on node positions
and physical shape of clusters. Therefore, we relax the same
depth constraint by allowing a CH to share addresses with
neighboring CHs, if neighbors’ depth is one level higher than
its own depth. Messages are sent between randomly selected
source and destination node pairs. For comparison, we take
the number of messages delivered until the first node dies.
Figure 10 shows the number of messages delivered
by each routing scheme. Use of cross-links reduces the
workload on the root node, and therefore increases the
message capacity by 2.1-2.4 times than routing with only
the cluster tree. Circular-paths distribute the workload
across many CHs, therefore they deliver 2.7-3.2 times more
messages. Relaxed circular-path construction (Circular + 1)

14

Number of CHs

N
| | | |

0 5 10 15 20 25 30 35
Depth
— SHC - HHC-Opt
HHC --- Hexagonal
--- R-HHC

(a)

International Journal of Distributed Sensor Networks

120
100
f 80
O
N
o -
3 or S
E S
Z 40 = / \
/ ,’/ N
// ===\
20+ / //’/ A\ N
pys \
e N
0 el | Lo | |
0 2 4 6 8 10 12
Depth
— SHC - HHC-Opt
HHC - - - Hexagonal
--- R-HHC

(®)

Ficure 8: Distribution of CHs at different levels of the cluster tree: (a) Pr = —20 dBm; (b) Pt = —10dBm.

FIGURg 9: Physical shape of the cluster tree formed with HHC scheme: (a) before optimization; (b) after optimization. N = 5000, Py =

—12 dBm, squares—CHs, and circles—nodes without a cluster.

increases the capacity by 5.2-6.4 times. The cluster-tree self-
optimization phase forms a more structured topology allow-
ing even better construction of circular-paths. Therefore,
circular-path routing on top of the optimized tree (Tree
(Opt) + Circular) is able to deliver 3.6-5.5 times more
messages while relaxed circular-path construction delivers
6.0-8.1 times more messages. Tree-based and cross-link-
based routing schemes are unable to benefit from the self-
optimization phase because the root node is the bottleneck
(see the example in Section 3.3). Nevertheless, all routing
schemes benefit from shorter routes along the optimized tree,
and therefore become more suitable for latency bound sensor

applications. All the routing schemes deliver lower number
of messages with increasing Pr as high-power transmissions
significantly drain energy at a CH.

Average residual energy of CHs at the end of the network
lifetime is shown in Figure 11. The root node depleted
its energy in both cluster-tree-based and cross-link-based
routing. For circular-paths, however, the bottleneck is among
CHs between depths 1-4; thus, the bottleneck has shifted to
the middle of the tree. Relaxed circular-path construction
scheme is able to distribute the workload even more and
utilizes energy available in CHs between depths 1-8, thereby
delivering a significantly higher number of messages. This

International Journal of Distributed Sensor Networks

140000
120000 [~ g
S 100000 g — . _._. 7
g
£ 80000}]
“—
5]
$ 60000 - g
0
!
'z, 40000 |~ B
20000 - g E
1
-20 —18 -16 —14 —-12 —10
Transmission power (dBm)
—o— Tree -a- Tree + circular + 1

© - Tree + cross
v Tree + circular

-8- Tree(Opt) + circular
8- Tree(Opt) + circular + 1

FiGurg 10: Number of messages delivered by each routing scheme.
Error bars indicate the 5th and 95th percentile.

Average residual energy of a CH (J)

0 | | | | | | |
0 2 4 6 8 10 12 14 16
Depth in the cluster tree
—o— Tree -w~- Tree + circular

~~~~~ - Tree + cross —a— Tree + circular + 1

FIGURE 11: Average residual energy of CHs at different depths of the
cluster tree at the end of the network lifetime. Py = —20 dBm.

behavior of the routing schemes further confirms the analysis
of example in Section 3.3. Figure 12 shows the energy
consumption of the network assuming nodes have sufficient
power to stay active for a long time. Cluster formation and
address discovery overhead are constant. Therefore, all the
routing schemes linearly increase the number of delivered
messages as the energy per node increases, a behavior
confirmed by simulation results as well. Though relaxed
circular-path construction has the highest initial overhead
(due to address sharing with many nodes), it performs
best by being able to send a large number of messages
over a long period. It reduces the energy per message by
identifying shorter routes and thus significantly extends the
network lifetime by distributing the workload across many
CHs. Circular-path based routing’s ability to distribute the

15
200
150 - Pt
8 100 - et 1
5 s
= et
= e
50 - ol 1
//
= _ I I I I I I
0 10000 20000 30000 40000 50000 60000 70000

Number of messages

—— Tree - -~ Tree + circular

Tree + cross ~-— Tree + circular + 1

FiGure 12: Energy consumption of the network with time. Py =
—20 dBm.

workload while alleviating hotspots is desirable in WSNs that
are capable of harnessing energy, where it allows sufficient
time for nodes to regain energy thus extending the network
lifetime.

5. Conclusions

A top-down cluster and cluster-tree formation algorithm that
is independent of network topology, and does not require
a priori neighborhood information, location awareness, or
time synchronization is presented. GTC is configurable
where parameters such as the number of nodes in a cluster
and breadth/depth of the cluster tree can be controlled. For
example, the HHC scheme of the GTC algorithm forms
more uniform clusters and a cluster tree with a lower depth.
RSSI-based heuristic forms even more uniform and circular
clusters and a shorter tree, but relies on RSSI for distance
estimation. Cluster and tree properties are comparable
to hexagonal packing for low intracluster transmission
power levels and sparse networks. The post cluster-tree
self-optimization phase forms an ordered cluster tree and
reduces its depth. Therefore, it is desirable in latency-
bound applications. Hierarchical addresses based cluster tree
routing facilitates communication within the network as
well as with the base station. Cross-link-based and circular-
path-based routing schemes increase the network lifetime by
two and three times, respectively. Relaxed heuristic based
circular-path construction improves the lifetime by five-
times while it gains a six to eightfold improvement when
self-optimization is enforced. It performs best over a long
period, thus it is desirable for networks that exist over a very
long period and networks with nodes that harness energy.
In [27], we proposed a cluster-tree-based implementation of
virtual sensor networks [14], and demonstrated the efficacy
of our scheme by simulating a subsurface chemical plume
monitoring system [13].



16

Acknowledgments

This paper is supported in part by grant from Environmental
Sciences Division, Army Research Office (AMSRD-ARL-
RO-EV). The authors wish to thank the reviewers for the
comments that have resulted in significant improvements to
the paper.

References

[1] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan,
“An application-specific protocol architecture for wireless
microsensor networks,” IEEE Transactions on Wireless Com-
munications, vol. 1, no. 4, pp. 660-670, 2002.

[2] O. Younis and S. Fahmy, “HEED: a hybrid, energy-efficient,
distributed clustering approach for ad hoc sensor networks,”
IEEE Transactions on Mobile Computing, vol. 3, no. 4, pp. 366—
379, 2004.

[3] K. Matrouk and B. Landfeldt, “RETT-gen: a globally efficient
routing protocol for wireless sensor networks by equalising
sensor energy and avoiding energy holes,” Ad Hoc Networks,
vol. 7, no. 3, pp. 514-536, 2009.

[4] Y. Wang, T. L. X. Yang, and D. Zhang, “An energy efficient and
balance hierarchical unequal clustering algorithm for large
scale sensor networks,” Information Technology Journal, vol. 8,
no. 1, pp. 28-38, 2009.

[5] H.M.N. D. Bandara and A. P. Jayasumana, “An enhanced top-
down cluster and cluster tree formation algorithm for wireless
sensor networks,” in Proceedings of the 2nd International
Conference on Industrial and Information Systems (ICIIS °07),
pp. 565-570, Peradeniya, Sri Lanka, August 2007.

[6] H. Chan and A. Perrig, “An emergent algorithm for highly
uniform cluster formation,” in Proceedings of the 1st European
Workshop on Wireless Sensor Networks, pp. 154—171, January
2004.

[7] M. Demirbas, A. Arora, V. Mittal, and V. Kulathumani, “A
fault-local self-stabilizing clustering service for wireless ad
hoc networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 17, no. 9, pp. 912-922, 2006.

[8] C. H. Lung and C. Zhou, “Using hierarchical agglomerative

clustering in wireless sensor networks: an energy-efficient and

flexible approach,” Ad Hoc Networks, vol. 8, no. 3, pp. 328-344,

2010.

S. Bandyopadhyay and E. J. Coyle, “An energy efficient

hierarchical clustering algorithm for wireless sensor net-

works,” in Proceedings of the 22nd Conference on Computer

Communications (IEEE INFOCOM ’03), vol. 3, pp. 1713-1723,

San Francisco, Calif, USA, March 2003.

[10] A. Manjeshwar and D. P. Agrawal, “TEEN: a routing protocol
for enhanced efficiency in wireless sensor networks,” in
Proceedings of the 15th International Parallel and Distributed
Processing Symposium, pp. 2009—-2015, San Francisco, Calif,
USA, April 2001.

[11] K. Akkaya, E Senel, and B. McLaughlan, “Clustering of
wireless sensor and actor networks based on sensor distri-
bution and connectivity,” Journal of Parallel and Distributed
Computing, vol. 69, no. 6, pp. 573-587, 2009.

[12] T. Shu and M. Krunz, “Coverage-time optimization for clus-
tered wireless sensor networks: a power-balancing approach,”
IEEE/ACM Transactions on Networking, vol. 18, no. 1, pp. 202—
215, 2010.

[9

International Journal of Distributed Sensor Networks

[13] H. M. N. D. Bandara, Top-down clustering based self-
organization of collaborative wireless sensor networks, M.S.
thesis, Department of Electrical and Computer Engineering,
Colorado State University, Fort Collins, Colo, USA, 2008,
http://hdl.handle.net/10217/5815.

[14] A. P. Jayasumana, H. Qi, and T. H. Illangasekare, “Virtual
sensor networks—a resource efficient approach for concurrent
applications,” in Proceedings of the 4th International Conference
on Information Technology-New Generations (ITNG °07), pp.
111-115, Las Vegas, Nev, USA, April 2007.

[15] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, Freeman, San
Francisco, Calif, USA, 1978.

[16] O. Younis, M. Krunz, and S. Ramasubramanian, “Node
clustering in wireless sensor networks: recent developments
and deployment challenges,” IEEE Network, vol. 20, no. 3, pp.
20-25, 2006.

[17] M. Maeda and E. D. Callaway, “Cluster tree protocol
(ver. 0.6),” April 2001, http://www.ieee802.0rg/15/pub/2001/
May01/01189r0P802-15_TG4-Cluster-Tree-Network.pdf.

[18] IEEE Computer Society, “IEEE.802.15.4: Wireless medium
access control and physical layer specifications for low-rate
wireless personal area networks,” September 2006.

[19] K. S. Chan, H. Pishro-Nik, and F. Fekri, “Analysis of
hierarchical algorithms for wireless sensor network routing
protocols,” in Proceedings of the IEEE Wireless Communications
and Networking Conference (WCNC ’05), vol. 3, pp. 1830—
1835, New Orleans, La, USA, March 2005.

[20] X. Wang and T. Berger, “Self-organizing redundancy-cellular
architecture for wireless sensor networks,” in Proceedings of
the IEEE Wireless Communications and Networking Conference
(WCNC °05), pp. 19451951, New Orleans, La, USA, March
2005.

[21] H. M. N. D. Bandara, A. P. Jayasumana, and I. Ray, “Key pre-
distribution based secure backbone design for wireless sensor
networks,” in Proceedings of the 3rd International Workshop
on Practical Issues in Building Sensor Network Applications
(SenseApp ’08), pp. 786—793, Montreal, Canada, October 2008.

[22] G. Mao, B. Fidan, and B. D. O. Anderson, “Wireless sensor
network localization techniques,” Computer Networks, vol. 51,
no. 10, pp. 2529-2553, 2007.

[23] Texas Instruments, “2.4 GHz IEEE 802.15.4/ZigBee-Ready RF
transceiver,” Rev. B, March 2007.

[24] M. M. Holland, R. G. Aures, and W. B. Heinzelman, “Exper-
imental investigation of radio performance in wireless sensor
networks,” in Proceedings of the 2nd IEEE Workshop on Wireless
Mesh Networks (WiMESH *06), pp. 140-150, September 2006.

[25] D.Lymberopoulos, Q. Lindsey, and A. Savvides, “An empirical
analysis of radio signal strength variability in IEEE 802.15.4
networks using monopole antennas,” Tech. Rep. 050501,
ENALAB, 2005.

[26] W. Qiu, E. Skafidas, and P. Hao, “Enhanced tree routing for
wireless sensor networks,” Ad Hoc Networks, vol. 7, pp. 638—
650, 2009.

[27] H. M. N. D. Bandara, A. P. Jayasumana, and T. H. Illan-
gasekare, “Cluster tree based self organization of virtual sensor
networks,” in Proceedings of the IEEE GLOBECOM workshop
on Wireless Mesh and Sensor Networks (GLOBECOM ’08), New
Orleans, La, USA, November 2008.

[28] H. Tian, H. Shen, and T. Matsuzawa, “Random walk routing
for wireless sensor networks,” in Proceedings of the 6th Inter-
national Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT °05), pp. 196-200,
December 2005.



International Journal of Distributed Sensor Networks

[29] S.Rao, “Estimating the ZigBee transmission-range ISM band,”
EDN, vol. 52, no. 11, pp. 67-72, 2007.

[30] Source code of GTC simulator, www.cnrl.colostate.edu/
Projects/VSNs/vsns.html.

[31] V. Pappas, D. Verma, B. J. Ko, and A. Swami, “A circulatory
system approach for wireless sensor networks,” Ad Hoc
Networks, vol. 7, no. 4, pp. 706-724, 20009.

17



- i

/> . =
= &

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

The Scientific
WQrId Journal

International Journal of

Rotating
Machinery

Journal of

Sensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Y :-
.

VLSI Design

‘.
.

Internatio Urna
Antennas and
Propagation

Modelling &
Simulation
in Engineering

International Journal of
Navigation and
Observation

e

Active and Passive
Electronic Components

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering



