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We consider a large-scale wireless network that uses sensors along its edge to estimate the characteristics of interference from
neighboring networks or devices. Each sensor makes a noisy measurement of the received signal strength (RSS) from an interferer,
compares its measurement to a threshold, and then transmits the resulting bit to a cluster head (CH) over a noisy communication
channel. The CH computes the maximum likelihood estimate (MLE) of the distance to the interferer using these noise-corrupted
bits. We propose and justify a low-complexity threshold design technique in which the sensors use nonidentical thresholds to
generate their bits. This produces a dithering effect that provides better performance than previous techniques that use different
non-identical thresholds or the case in which all the sensor motes use an identical non-optimal threshold. Our proposed technique
is also shown (a) to be of low complexity compared to previous non-identical threshold approaches and (b) to provide performance
that is very close to that obtained when all sensors use the identical, but unknown, optimal threshold. We derive the Cramér-Rao
bound (CRB) and also show that the MLE using our dithered thresholds is asymptotically both efficient and consistent. Simulations
are used to verify these theoretical results.

1. Introduction

Large-scale deployments of wireless LANs in unlicensed RF
bands are often subject to interference from many sources.
We have encountered this problem in the e-Stadium wireless
testbed [1], which enables football fans in the stadium at
Purdue to access multimedia content related to the game [2]
via 802.11b and 3G networks. The locations and coverage
areas of the 802.11b access points (APs) in the stadium are
shown in Figure 1. The two interfering APs also shown in the
figure may disrupt eStadium services for fans sitting along
the outer edge of the stands or in the tailgating area north
of the stadium. The locations and settings of these interfering
access points or devices change over time. The eStadium test-
bed must sense these changes and adapt its channel assign-
ments and power levels to ensure that its users experience
satisfactory Quality of Service (QoS).

The eStadium testbed includes clusters of wireless sensors
that are distributed along the concourse area of the stadium
[3]. They currently gather and process information from this

area and make it available to fans and security personnel
during games. We propose that these sensors perform the
additional task of characterizing the sources of interference
with the 802.11b-based portion of the eStadium testbed.

The information gathered about interferers by these sen-
sors is not directly available to the eStadium APs because
of their directional antennas or shadowing by the stadium’s
structure. A Smart WiFi system [4] would thus not be able to
sense and adjust to the presence of these external interferers.
This proposed use of the sensors, combined with algorithms
to alter the 802.11b channel assignments and power settings,
is thus a cognitive networking approach to enabling the
coexistence of many systems in unlicensed bands.

The contributions of this paper include the following.

(a) Analysis and improvement of MLE approaches in
which sensors conserve energy by minimizing the
amount of data they transmit. Each sensor thresholds
its noisy measurement of the interferer’s signal
strength, adds the resulting bit to a packet carrying
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Figure 1: The eStadium testbed at Purdue’s Ross Ade stadium includes (1) twelve 802.11 APs with directional antennas that provide coverage,
shaded in orange, of the outdoor seating area (2) ten APs with omni antennas that cover the indoor seating areas, (3) a Vivato network that
serves the parking area north of the stadium, and (4) clusters of sensors in the concourse area of the stadium. Interfering APs are generally
WiFi networks operating in the vicinity of the stadium.

other data, and transmits the packet to the CH via
a noisy channel. We consider and justify the case
in which each sensor uses a different threshold and
compare it with cases in which every sensor uses the
same threshold.

(b) Proofs of the asymptotic efficiency and consistency
of this new MLE approach and derivation of the
Cramér-Rao bound (CRB). Given that the thresholds
in our case are non-identical, the standard proofs of
asymptotic consistency and efficiency do not hold.

(c) Verification that the MLE based on the use of non-
identical thresholds by the sensors performs: (i) as
well as one based on the use of identical optimal
thresholds, even when the number of sensors is small,
(ii) significantly better than the one based on the
use of identical non-optimal thresholds, and (iii)
is of lower complexity and has a performance that
is better than or as good as existing non-identical
threshold techniques. Because the identical optimal
threshold case requires prior knowledge of the true
value of the unknown parameter, and existing non-
identical techniques involve the solution of a complex
optimization problem, our non-identical threshold

approach is much more practical and of lower com-
plexity in terms of the design of the thresholds.

In Section 2, we review the most relevant prior work in
this area. Sections 3 and 4 describe the system model and the
formulation of the sensor fusion problem. The performance
of the algorithm is evaluated and compared with existing
techniques in Section 5, and conclusions are provided in
Section 7.

2. Related Work

In the context of transmitter location estimation for wireless
networks, the authors in [5–7] propose expectation max-
imization (EM) algorithms to locate multiple transmitters
using received power levels at arbitrarily placed receivers.
The authors in [8] consider a cognitive wireless network
in which secondary users measure signal strengths from
primary users to estimate the distance to the primary users.
They propose estimation algorithms under different channel
fading conditions. In [9], the authors study an 802.11
cognitive mesh network (COMNET) in which mesh clients
(MC) calculate their distances from the primary stations
with triangulation-based localization techniques that use
RSS measurements. These localization techniques assume
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that the MCs are synchronized and that they are located on
the edge of the secondary 802.11 network; otherwise, they
may not be able to detect the interference from the primary
stations. In the above papers, the authors do not consider
the use of thresholded measurements or the transmission of
measurements over noisy channels.

In the context of distributed estimation in wireless sensor
networks, the authors in [10, 11] consider 1-bit quantization
using identical and non-identical thresholds and obtain the
maximum-likelihood estimate of an unknown parameter.
They account for measurement noise that is Gaussian or has
an unknown distribution but do not consider other sources
of error, such as noise in the communication channel. A sim-
ilar situation is examined in [12], where multiple-bit quan-
tized information is used to locate a target in a sensor field
under error-free channel conditions. A nonparametric ap-
proach to density estimation using a sensor network was in-
troduced in [13]. The authors considered the case where 1-
bit quantized data is transmitted to the CH using random
thresholds from a pmf. As with the previous papers, however,
processing by sensors and the wireless channel between the
sensors and the CH are considered to be error free, which is
typically not the case in realistic situations. In [14], the au-
thors study channel aware target localization using 1-bit
quantized data. They analyze the effects on the root mean
squared error (RMSE) of the MLE due to communication
channel impairments. They consider the BSC, Rayleigh fad-
ing with coherent reception and non-coherent reception.
However, in their work, they do not address the design of
the 1-bit quantization algorithm for transmission over noisy
communication channels.

In [15, 16], the authors consider a 1-bit quantization
framework for noisy Gaussian communication links. How-
ever, it is assumed that either all sensors use the same
threshold or use one of two thresholds. More recently, in
[17], the authors have proposed an MLE-based distributed
estimation algorithm using 1-bit quantized data that is trans-
mitted over a BSC. The context in which the estimation algo-
rithm is analyzed is for secure data transmission in wireless
sensor networks, but it is assumed that all the sensors use
identical thresholds.

Several other papers, including [18–21], also study the
distributed estimation problem, but their approach is based
on the best linear unbiased estimate (BLUE) at the CH in-
stead of the MLE. This approach is typically not appropriate
or optimal when the received data at the CH is a nonlinear
function of the unknown parameter.

Our approach is unique because it (a) exploits and justi-
fies the use of different thresholds by the sensors when quant-
izing their noisy measurements and (b) accounts for noisy
measurements by the sensors and error-prone processing
and communications between the sensors and the CH. Our
analysis of the MLE in this new approach will show that
uniformly-spaced thresholds produces a dithering effect that
leads to near-optimal performance when the only informa-
tion available about the parameter being estimated is its sup-
port. This is very important because previous approaches
based on the use of an identical threshold by all sensors work
well only when the chosen threshold is either very near the

unknown true value, or the number of sensors is very large.
Furthermore, our non-identical threshold design algorithm
is significantly less complex and performs as good as or better
than existing non-identical threshold techniques, such as the
one in [10].

3. System Model and Problem Motivation

3.1. System Characteristics and Considerations. The following
characteristics of the wireless sensor network and sensor
fusion algorithm are assumed in this paper. They are
motivated by the eStadium project but are relevant to many
other systems operating in unlicensed bands.

(a) Architecture. The system consists of a network of wireless
APs and a single-hop cluster of N spatially distributed
wireless sensors deployed along the edge of the wireless
network. Each sensor measures the RSS from an interfering
AP, compares it to its threshold, and relays the resulting bit
to the CH. The CH fuses the bits it receives to produce an
estimate of the signal strength and distance to the interfering
AP.

(b) Measurement Errors. Due to large-scale fading and
shadowing effects, the RSS X(k) observed at sensor k is
assumed to be log normally distributed, as in [22, 23]. The
mean μ(R) of this distribution is a function of the distance R
from the transmitter to the receiver while the variance σ2 is
independent of R. We assume that μ(R) follows a path-loss-
exponent model; hence,

μ(R) = K − 10α log(R), (1)

where α is the propagation law exponent, and K is the
close-in reference power, that is, the power very close to the
transmitter. In rest of the paper, the symbol μ will be used
interchangeably with μ(R). On a dB scale, the received RSS at
the sensors can be expressed as

Xk = μ(R) + nk , k = 1 · · ·N , (2)

where μ(R) is the mean and nk ∼ N (0, σ2
n) is i.i.d. Gaussian

noise that is independent of μ. The term σn is commonly
referred to as the dB spread of the log-normal shadowing
and is typically between 4 dB and 12 dB. We refer to this
noise as the measurement noise because it corrupts the SNR
measurement of each sensor, and we assume that its char-
acteristics are known by the CH. Furthermore, we assume
that the sensors are close enough to each other relative to
the distance from the interferer that the received RSS at
each sensor has the same mean; however, relative to each
other, they are spaced far enough to ensure that the noise
processes affecting different sensors are independent. The
case of dependent noise is left for future work.

(c) Energy Limits. Energy efficiency is critical in the design
of battery-powered sensor networks, so sensor k thresholds
the RSS value it observes to produce only one bit, denoted by
bk , that is to be sent to the CH. The bk ’s are transmitted over
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a parallel access, noisy communication channel to the CH.
These bits may be transmitted individually over the wireless
channel or may be combined with other data into packets
transmitted over an 802.15.4 (ZigBee) channel [24].

(d) Communication Channel. The wireless channel between
each sensor, and the CH is modeled as a binary symmetric
Channel (BSC) with a crossover probability of ε [25]. We
assume that the value of ε is perfectly estimated at the
CH; this can be achieved by the use of pilot training data
transmitted by the sensors to the CH during the initialization
process. We further assume that the communication channel
is static for a period of T seconds; hence, ε does not
change during the estimation process. For completeness, in
Section 5, we also analyze the performance degradation of
our algorithms due to a mismatch between the estimated
value of ε and the true value of ε. The choice of a symmet-
ric channel is not required for our analysis but does simpli-
fy comparisons. Collisions of bits/packets in the commu-
nication channel are assumed to result in their loss and
subsequent retransmission. The BSC model thus applies to
transmitted bits/packets that are not involved in collisions.
Alternatively, one could assume that the sensors’ transmis-
sions are scheduled via a collision-free protocol, such as the
one in [26], or that they use the TDMA-based frame that is
available under the 802.15.4 (ZigBee) protocol [24].

(e) Reliability and Trustworthiness. Noisy communications
may not be the only source of errors affecting the sensors’
decisions before they reach the CH. The sensors may make
processing or storage errors. They may be compromised
and intentionally report incorrect results with some prob-
ability in order to compromise performance without being
detected. These additional error sources can be aggregated
with the communication errors, resulting in a larger crosso-
ver probability. These chapter’s results can thus be used to
characterize the sensitivity of fusion algorithms to these error
sources.

(f) Industrial, Scientific, and Medical (ISM) Band. The true
mean value of the RSS distribution (see (b), above), denoted
by μ0, is an unknown parameter that lies in the interval
[μl,μu]. The lower bound, μl, corresponds to the maximum
range at which the sensors are able to receive and decode a
packet from the interferer. The upper bound, μu, is related
to the maximum transmission power defined by the incum-
bent network’s communication standard. In the eStadium
network, these bounds are determined by a typical 802.11b
AP operating in the 2.4 GHz band. For a specific example, we
use the specs of a Cisco Aironet 1200 series AP [27] with an
omni-directional antenna. Its maximum transmission power
of 100 mW at a distance of R = 1 m from the transmitter
corresponds to the upper bound; that is, μu = −10 dB or
20 dBm. For the lower bound, the maximum distance at
which a typical commercial 802.11 device can receive and
decode a packet from an Aironet AP is R = 200 m, which
corresponds to μl = −67 dB or −37 dBm. Figure 2(b) shows
the relationship between μ and R for the signal received from
a typical AP.
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Figure 2: Plot shows the relationship between μ and R with K =
−10 dB, and α = 2.5.

(g) Periodic Updates. We assume that the estimates μ and R
are updated every T seconds to capture any changes in the
set of interferers. T is assumed to be greater than the time
required for all sensors to collect a measurement and trans-
mit their bits to the CH. In this paper, we focus on the
performance of estimates for a single time period of length
T. The better the estimate produced in this period, the faster
an iterative algorithm based on it will converge. An iterative
algorithm that builds on the results is presented in [28].

In summary, sensor k transmits a single bit of informa-
tion b(k)

bk =
⎧
⎪⎨

⎪⎩

+1 if Xk > τk

−1 otherwise,
(3)

where τk is the threshold used at sensor k to quantize the RSS
Xk to one bit. The set of b(k)′s are transmitted to the CH,
which uses them to estimate μ and then estimate R via (1).
Figure 3 shows the system model and the signal processing
block diagram of the cluster of sensors.

3.2. Optimal Identical Threshold Design. The optimal thresh-
old can be defined to be the threshold that minimizes the
Cramér-Rao bound (CRB) for any unbiased estimator of
μ. This optimization criteria is similar to that proposed in
[10, 11] for the error-free communication scenario. In this
case, all the sensor motes use the same optimal threshold
derived by solving the optimization problem. The thresholds
can be expressed as τk = τopt for k = 1 · · ·N , where τopt

denotes the optimal threshold. The CRB for any unbiased
estimator μ, denoted by μ and derived in Section 5, is given
by

Var
(
μ
) ≥ I

(
τ,μ0

)−1, (4)
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X1 = μ + n1

XN = μ + nN

b1 = +1 if X1 > τ1

bN = +1 if XN > τN

b1

bN

Sensor
node 1

Sensor
node N

...
...

... ML estimator
μ̂

Cluster head
(fusion center)

b1 = −1 if X1 ≤ τ1

bN = −1 if XN ≤ τN

BSC
ε

BSC
ε

r1

rN

Figure 3: System block diagram for a cluster of wireless sensors. The sensor’ RSS measurements are quantized using the dithered quanti-
zation technique. The resulting 1-bit values are transmitted over a BSC to the CH, which calculates the MLE of R.

where I(τ,μ0) is called the Fisher information (FI). As
derived later in the paper, the FI is expressed as

I
(
τ,μ0

) =
N∑

k=1

I
(
τk,μ0

)
, (5)

where

I
(
τk,μ0

)

=
(
(1− 2ε) fn

(
τk − μ0

))2

ε + (1− 2ε)Fn
(
τk − μ0

)(

1− ε − (1− 2ε)Fn
(
τk − μ0

))

(6)

is the FI for sensor k, τ = [τ1 · · · τN ], μ0 is the true value
of μ, and Fn(·) and fn(·) are the complementary cumulative
distribution function (ccdf) and pdf of the measurement
noise n, respectively. Due to lack of space, we only outline
the general technique to obtain the critical points of the CRB
function. Calculating the gradient of the r.h.s of (4) with
respect to τk for k = 1 · · ·N , it can easily be shown that
when τk = μ0 for each k, the N equations are simultaneously
equal to zero, and the Hessian of the CRB function is positive
definite. Hence, the optimal threshold is τopt = μ0. Note
that this choice of threshold is not feasible because μ0 is not
known in advance.

An interesting observation is that the optimal identical
threshold choice does not depend on σn or ε. It is only
a function of the true unknown value μ0. Furthermore,
the performance of the identical threshold scheme is very
sensitive to the choice of threshold, as shown in Section 6.
Even a slight deviation of the threshold value from the true
value of μ can result in significant performance degradation.
Hence, our goal is to design a quantization scheme which is
independent of the true value of μ and has a performance
comparable to the optimal identical threshold case.

3.3. Threshold Design for Dithered Quantization. Because use
of the optimal identical threshold for the 1-bit quantization

step requires prior knowledge of the unknown parameter, we
propose a framework in which each sensor uses a different
threshold. This ensures that at least a few thresholds will
be close to the true value of the unknown parameter.
Furthermore, using non-identical thresholds at the sensors
for the 1-bit quantization produces a dithering effect that
reduces the bias in the estimator (as shown in Section 5). We
thus refer to this technique as dithered quantization. Since it
is well known that the uniform distribution has maximum
entropy among all continuous distributions with compact
support [25], we assume that μ is uniformly distributed
over the interval [μl ,μu] and hence space the quantization
thresholds equally over this interval. This leads to the
thresholds being assigned for sensor mote k according to the
following equation:

τk = μl +
k
(
μu − μl

)

N + 1
. (7)

3.4. Binning-Based Nonidentical Threshold Design. Another
approach to the use of non-identical threshold was proposed
in [10]. They consider designing the threshold vector τ =
{τk, k ∈ Z} and the associated frequency vector ρ =
{ρk, k ∈ Z} to minimize the weighted asymptotic variance.
The frequency for threshold τk is defined as ρk = Nk/N ,
where Nk is the total number of sensors transmitting binary
information using threshold τk, and N is the total number
of sensors in the network. Although the problem studied in
[10] was for the error-free communication channel scenario,
it can be modified for the BSC case. Hence, for our setup,
this optimization problem for a uniform weighting function
between [μl ,μu] denoted by W(μ) = 1/(μu − μl) can be
formulated as the following second-order cone program
(SOCP) with auxiliary variable t as

ρ� = argmin
(t,ρ)

t,

s.t.
∥
∥s− Pρ

∥
∥ ≤ t,

ρ ≥ 0, ρT1 = 1,

(8)
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where s := [S(μ0) · · · S(μM)]T , ρ := [ρ1 · · ·ρL]T , L is the
number of thresholds, M is the number of discrete points

at which the function S(μ) is evaluated, the function S(μ) is
given by

S
(
μ
) =KW 1/2(μ

)
, K =

∫ +∞
−∞

(
(1− 2ε) fn(u)

)2
/
((

ε + (1− 2ε)Fn(u)
)(

1− ε − (1− 2ε)Fn(u)
))

du
∫ +∞
−∞ W 1/2

(
μ
)
dμ

, (9)

and P is a M × L matrix with its (i, j)th entry given by

[P]i j =
(

(1− 2ε) fn
(

τj − μi
))2

(

ε + (1− 2ε)Fn

(

τj − μi
))(

1− ε − (1− 2ε)Fn

(

τj − μi
)) . (10)

Using numerical techniques to approximate the numerator
of K , S(μ) can be expressed as

S
(
μ
) =

∫ +∞
−∞

(
(1− 2ε) fn(u)

)2
/
((

ε + (1− 2ε)Fn(u)
)(

1− ε − (1− 2ε)Fn(u)
))

du
∣
∣μu − μl

∣
∣ . (11)

For the rest of the paper, we refer to this technique as
the binning-based non-identical threshold approach. In
Section 5, we compare the performance of all three threshold
design schemes.

3.5. Effect of Network Topology on Threshold Design. Wireless
sensor networks change with time because sensors can fail as
their batteries die, or new sensors may be added to an existing
network. Our threshold design is robust to these changes,
since when the number of sensors is large, the thresholds are
densely distributed over the interval, the loss of a few sensors
will not result in a significant loss of information. When
the number of sensors is small, the thresholds are coarsely
spread over the interval. A few failures might thus result in a
significant decrease in the number of bits received by the CH.
The CH can then reassign thresholds by communicating with
the sensors over the wireless channel. When a new sensor
joins the network, it can request a threshold from the CH,
choose one based on its unique MAC address, or the CH can
reassign all sensors’ thresholds according to the algorithm
in Section 3.3. On the other hand, the binning-based non-
identical threshold technique requires the solution to the
optimization problem (8) each time the thresholds need to
be assigned. Hence, compared to our proposed approach, the
binning-based approach is of much higher computational
complexity and therefore cannot easily adapt to changes in
the network topology.

4. Sensor Fusion Algorithm

We use maximum-likelihood estimation (MLE) techniques
to estimate μ and then use the invariance property of MLE’s

[29] obtain an estimate for R. For sensor mote k, we denote
Rk to be the random variable (r.v) for the received bit and
rk to be the value of the r.v. Since the received bits Rk are
independent, nonidentically distributed (i.n.i.d) Bernoulli
random variables (rv’s),

Pr
(
Rk = 1 | μ) = ε + (1− 2ε)Fn

(
τk − μ

)
,

Pr
(
Rk = −1 | μ) = (1− ε)− (1− 2ε)Fn

(
τk − μ

)
,

(12)

where Fn(·) is the complementary cumulative distribution
function (ccdf) of the measurement noise n ∼ N (0, σ2

n).
Denoting the likelihood function of each received bit by
f (rk | μ), the likelihood function for the received vector of
observations r = [r1, . . . , rN ] becomes

f
(

r | μ) =
N∏

k=1

f
(
rk | μ

)

=
N∏

k=1

Pr
(
Rk = 1 | μ)1{rk=1}Pr

(
Rk = −1 | μ)1{rk=−1} .

(13)

Let Hk(μ) = ε+(1−2ε)Fn(τk−μ), then the log-likelihood
function is given by

ln f
(

r | μ)

=
N∑

k=1

[
1{rk=1} ln

(
Hk
(
μ
))

+ 1{rk=−1} ln
(
1−Hk

(
μ
))]

.

(14)
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Thus, the MLE μ̂ is obtained by solving the following
constrained maximization problem,

argmax
μ

N∑

k=1

[
1{rk=1} ln

(
Hk
(
μ
))

+ 1{rk=1} ln
(
1−Hk

(
μ
))]

,

s.t. μl ≤ μ ≤ μu,
(15)

and because the function relating μ to R in (1) is one to
one, the MLE R̂ can be obtained directly from μ̂. Note that
we have assumed that the CH has perfect knowledge of
the dB spread of the log-normal shadowing, that is, σ2

n and
the cross-over probability ε. The former can usually be ob-
tained offline by conducting field measurements in the area
of deployment and then performing regression analysis using
the experimental data [30]. As for ε, this is typically known
a priori depending on the modulation and coding scheme
used. For example, for transmission of information over fad-
ing channels, the probability of bit error (pe) is well known
when standard digital modulation (BSPK, QPSF, 64-QAM,
etc.) schemes are used with error control coding strategies
such as Turbo or LDPC codes. Hence, pe can be used as the
value for ε.

5. Performance Analysis of Dithered
Quantization Approach

This section contains (i) proofs of the asymptotic consis-
tency and efficiency of the MLE for μ and R using the
proposed dithered quantization approach (ii) derivation of
the Cramér-Rao bound (CRB) for the variance of any unbi-
ased estimator for μ and R, and (iii) Monte Carlo simula-
tions that validate the asymptotic results and compare the
performance of the dithered quantization technique with the
identical threshold-based quantization approach. Since the
constrained ML optimization in (15) is analytically intract-
able, there is no closed-form expression for the estimates or
the distribution of the estimates. Hence, to study the bias
of the MLE’s, we prove that the estimators are asymptoti-
cally strongly consistent and hence asymptotically unbiased.
Furthermore, although the R(k)’s are i.n.i.d Bernoulli r.v’s,
we prove that MLE’s are asymptotically normally distributed
and efficient. Monte Carlo simulations confirm these results

and, as shown later, demonstrate that these desirable asymp-
totic behavior is effectively achieved with as few as 70 ∼ 100
sensors.

5.1. Asymptotic Properties. For the following results, we de-
fine μ̂N , R̂N to be the MLE of μ and R, respectively, ob-
tained with N sensors using the dithered quantization tech-
nique.

Proposition 1. The MLE μ̂N is unique and asymptotically
strongly consistent Pr(limN→∞μ̂N = μ0) = 1, where μ0

represents the true value of μ.

Proof. See Appendix A.

Proposition 2. μ̂N is asymptotically efficient (μ̂N − μ0) →
D

N (0, 1/(I(μ0))), where μ0 represents the true value of μ, I(·)
is the Fisher information (FI), and →

D
means convergence in

distribution.

Proof. See Appendix B.

The following two corollaries are immediate consequen-
ces of the invariance property of functions of MLE’s and the
one-to-one mapping between μ and R.

Corollary 1. The MLE R̂N is unique and asymptotically
strongly consistent Pr(limN→∞R̂N = R0) = 1, where R0 repre-
sents the true value of R.

Corollary 2. R̂N is asymptotically efficient (R̂N − R0) →
D

N (0, 1/(I(R0))), where R0 represents the true value of R.

5.2. Cramér-Rao Bound. In this subsection, we derive the
CRB for any unbiased estimator of μ denoted by μ. The MLE
μ̂ derived previously may be biased for small N , but since
we have proved that it is asymptotically unbiased, the CRB is
useful as a lower bound of the variance of μ̂ for medium-to-
large numbers of sensor motes.

Theorem 1. The CRB for any unbiased estimator μ obtained
using the dithered quantization technique with the BSC model
is

Var
(
μ
) ≥

⎡

⎣
N∑

k=1

⎧
⎨

⎩

(
(1− 2ε) fn

(
τk − μ

))2

(

ε + (1− 2ε)Fn
(
τk − μ

))(

1− ε − (1− 2ε)Fn
(
τk − μ

))

⎫
⎬

⎭

⎤

⎦

−1

. (16)

Proof. See Appendix C.

Using the CRB for μ and observing that (1) is a one-
to-one transformation, the CRB for any unbiased estimator
of R, denoted by R, can be derived using the invariance
property of MLE’s and functions of MLE’s. The following
lemma relates the variance of μ to the variance of R.

Lemma 1. If R = g(μ), then the variance of any unbiased
estimate of R is given by

Var
(

R
)

≥
(
∂g/∂μ

)2

I
(
μ0
) . (17)
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Proof. A proof of this lemma can be found in [29, Chapter
3, Appendix 3A].

Corollary 3. The CRB for any unbiased estimator for R using
the dithered quantization technique with the BSC model is

Var
(

R
)

≥
(

(ln 10)10(K−μ)/10α/10α
)2

I
(
μ
) , (18)

where

I
(
μ
)

=
N∑

k=1

⎧
⎨

⎩

(
(1−2ε) fn

(
τk−μ

))2
k(

ε+(1−2ε)Fn
(
τk−μ

))(

1−ε−(1−2ε)Fn
(
τk−μ

))

⎫
⎬

⎭

(19)

is the FI.

Proof. Using Lemma 1 and the relationship between R and μ
given by R = 10(K−μ)/10α, the result follows.

Figures 4(a) and 4(b) show the behavior of the square
root of the CRB of R̂ when we vary the number of sensors,
N , and the crossover probability, ε, respectively. The CRB is
a monotonically increasing function of ε for 0 ≤ ε < 0.5
and, due to its symmetry about ε = 0.5, is a monotonically
decreasing function for 0.5 < ε ≤ 1. As ε → 0.5 the
CRB tends to ∞ because, from (1), the Fisher information
converges to 0. From Figure 4(a), we observe that the CRB is
a monotonically decreasing function of N , which is expected
because more sensors means more observations, thus, lower
CRB values. Although MLE’s tend to have a significant bias
for small sample sizes, we have proved that the MLE for our
scheme is asymptotically strongly consistent and efficient.
Therefore, the analytic derivations above for the CRB for
μ and R hold in the asymptotic region. The simulation
results in the following subsection show that the asymptotic
behavior is achieved even with a small number of sensors.

5.3. Numerical Simulation Results. To evaluate the perfor-
mance of the dithered quantization scheme and compare
it with the identical and the binning-based non-identical
threshold approaches, we now conduct numerical Monte
Carlo simulations. In these simulations (i) the number of
sensors is varied from 10 to 200 and (ii) both a low ε of
0.05 and a high ε of 0.1 are considered. The value of R0 is
set to 50 m, which corresponds to μ0 ≈ −52.5 dB and K
is set to −10 dB, the maximum transmission power allowed
for 802.11b. We use the typical value of 2.5 for the path-loss
exponent α. The standard deviation of the RSS distribution
observed at the sensor motes is set to 4 dB; that is, σn = 4 dB.

The results obtained were averaged over 2000 realizations
of the measurement noise process. It can easily be shown
(see Appendix D) that the log-likelihood function is not
a concave function of μ for both non-identical threshold-
based approaches. Hence, we implemented an 1-dimensional
iterated grid search algorithm [31] to locate an approximate

maximal value of the log-likelihood function denoted by L.
We employed an equidistance grid of size n points given as:

S =
{

xk | xk = μl +
k
(
μu − μl

)

n− 1
, k = 0 · · ·n− 1

}

. (20)

Using the grid S, the values L(x1), L(x2) · · ·L(xn) are used
in the grid search algorithm. An approximate local maximum
is located by choosing the grid point xk that has the largest
value for L(xk). Using this initialization point, we then used
Matlab’s sequential quadratic programming (SQP) method
to perform the local optimization to determine the MLE.

To characterize the computational complexity of the
optimization algorithm, we note that the local optimization
using SQP has quadratic convergence rate. The computa-
tional complexity of the iterative grid search algorithm can
be expressed as C(n, r) = rnm, where m is the dimension of
the parameter space, n is the grid size, and r is the number
of iterations. In our simulation experiments, we found that
with r = 10 and a grid size of n = 100 the algorithm
converged to an approximate local maximal point quickly.
Hence, the computational complexity of the grid search for
our case is O(n). In our Matlab implementation of the grid
search algorithm, we were able to reduce the complexity to
O(n log n), by the use of sorting algorithms to find the grid
point xk that would correspond to the largest value of the log-
likelihood function L(xk). In a practical setting, the search
grid will be precomputed, and the algorithm will be executed
on the CH. Since the CH typically has more processing power
than other motes, in a practical setting the convergence of the
algorithm would be very fast.

The non-identical thresholds for the dithered quantiza-
tion technique are generated using the technique described
in Section 3, and, for the binning-based technique the SOCP
7 is solved in Matlab using cvx software [32]. As mentioned
in [10], the threshold spacing for the binning technique is
set to 2σn, and hence we have τk+1 − τk = 8 dB, therefore
the number of threshold bins B = (μu − μl)/8 = 8.
For the case where an identical threshold is used by all
sensor motes, we consider two scenarios. In the first case,
the optimal threshold is used; that is, τ = μ0, which
corresponds to τ ≈ −52.5 dB. In the second case, an identical
nonoptimal threshold is used, this corresponds to choosing τ
above/below the true mean value of the RSS distribution; that
is, τ = (μ0 + Δ) dB. For simulation purposes, we set Δ = 8;
this corresponds to τ ≈ −44.5 dB. Similar simulation results
are obtained for the case when τ > τopt.

In Figures 5(a) and 5(b), we plot the root mean squared
error (RMSE) of R̂ for the low and high ε cases. We observe
that the RMSE using the dithered quantization approach is
lower for a small number of sensor motes compared to the
non-optimal identical threshold approach and the binning-
based non-identical approaches. As the number of sensor
motes is increased the RMSE of the binning-based non-
identical technique converges to the dithered quantization
technique. This is expected since for the binning based
approach as the number of sensor motes is increased
the threshold frequency (ρk) increases which leads to the
improvements in the performance.
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Figure 4: (CRB)1/2 of R with R0 = 50 m, K = −10 dB, α = 2.5, and σn = 4 dB.(a) shows that the analytic expression for the square root of the
CRB function is monotonically decreasing function with respect to the number of sensor motes. (b) shows that the analytic expression for
the square root of the CRB function is monotonically increasing for the range 0 ≤ ε < 0.5 and as ε approaches 0.5 the function approaches
∞ as the Fisher information converges to 0.
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Figure 5: RMSE of R̂ with R0 = 50 m, K = −10 dB, and α = 2.5, σn = 4 dB. In (a) ε = 0.05 and in (b) ε = 0.1. In both cases the dithered
quantization technique has a lower RMSE compared to the non-optimal and binning-based thresholding techniques particularly for a low
number of sensor motes.
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Figure 6: Bias of R̂ with R0 = 50 m, K = −10 dB, and α = 2.5, σn = 4 dB. In (a) ε = 0.05 and in (b) ε = 0.1. In both cases the dith-
ered quantization technique has a lower bias compared to the non-optimal and binning-based thresholding techniques especially for a low
number of sensor motes.

Figures 6(a) and 6(b) show the bias of R̂ versus the num-
ber of sensor motes. We notice that the bias of the MLE us-
ing the dithered quantization technique is lower than the
non-optimal estimators. Furthermore, we also observe that
the bias decreases at an exponential rate with respect to the
number of sensor motes and approaches close to 0 with
about 100 sensor motes. Figures 5 and 6 also show that the
asymptotic properties of the MLE are achievable with about
50 sensor motes for low values of ε and about 70 sensor
motes for high values of ε.

In Figures 7(a) and 7(b), we compare the performance
loss incurred using the different thresholding techniques.
We define the CRBLoss = CRBnon-opt − CRBopt, where
CRBnon−opt is the CRB of any unbiased estimator using either
the dithered quantization, binning-based or identical non-
optimal thresholding techniques, and CRBopt is the CRB of
any unbiased estimator using the optimal identical threshold.
This metric serves as a good benchmark as, for large number
of sensor motes, the MLE’s are unbiased, and hence the MSE
is equal to the CRB. Figures 7(a) and 7(b) show the CRBLoss

versus the number of sensors. We observe that for low and
high ε values the loss is significantly less for the dithered
quantization technique compared with the other schemes,
particularly for a small number of sensor motes which is im-
portant from a practical point of view.

Figure 8 shows the robustness of our scheme due to a
mismatch in the true value of ε and the value of ε used
by the CH for the ML estimation. We notice that even if
there is a mismatch, the performance degradation is not sig-
nificant. The performance of having a perfectly estimated
value of ε can be replicated using more sensor motes under

the condition of a mismatch in ε. Furthermore, the gap be-
tween the performance between the perfectly estimated ε and
the mismatched ε decreases as the number of sensor motes
increases.

In a realistic situation in which the mean of the RSS dis-
tribution at the sensor nodes is unknown priori, there is no
way to choose the optimal τ for the identical threshold case. It
will thus be difficult to achieve good/reliable estimates using
non-optimal identical thresholds. In this type of practical
scenario, if both approaches (non-optimal identical and non-
identical thresholds) use the same number of sensors, and
each sensor samples the RSS once, then using the non-iden-
tical threshold approach would produce a much more accu-
rate estimate.

Although both non-identical thresholding approaches
require fewer sensors than the non-optimal identical thresh-
old technique to achieve near-optimal performance, we
observe that compared to the binning approach our thresh-
olding scheme is of low complexity, as it does not involve
solving any complex optimization problem to design the
thresholds. Furthermore, the dithered quantization tech-
nique performs better in terms of having a lower RMSE,
variance, and bias compared with the binning and non-opti-
mal identical thresholding techniques, particularly when the
number of sensors is small, which is the typical case in a prac-
tical scenario.

In summary, the dithered quantization technique has sig-
nificant advantages over other techniques in terms of either
the number of sensors required to achieve a given accuracy
or the accuracy of estimates achievable with a fixed number
of sensors.
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Figure 7: (CRB)1/2 with R0 = 50 m, K = −10 dB, α = 2.5, and σn = 4 dB. In (a) ε = 0.05 and in (b) ε = 0.1, in both cases the loss incurred
using the dithered quantization technique is significantly less compared to the other techniques, particularly for low number of sensor motes.
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Figure 8: shows the RMSE of R̂ using dithered quantization technique with R0 = 50 m, K = −10 dB, α = 2.5, and σn = 4 dB for various
values of ε. The plot shows the robustness of our estimation scheme due to a mismatch in the true value of ε and the estimated value of ε
used by the CH.

6. Drawbacks of the Identical
Threshold Approach

In this section, we study the disadvantages of using the
identical threshold approach and the effect on R̂ using this

technique. As observed in previous work [10, 11], with the
error-free communication channel, the disadvantage of the
identical threshold approach is that the CRB for μ̂ grows
exponentially with [(τ−μ0)2/σn]2. A similar observation can
be seen for the CRB of R when the identical threshold is
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used under a BSC model. Using the tight Chernoff bound
for the ccdf of the Gaussian distribution (i.e., Fn(τ − μ) ≤
e−(τ−μ)2/2/2), the CRB for R can be bounded as follows:

CRB(ε, τ,R0)

= G

[

ε+(1−2ε)Fn
(
τ−μ0

)][

(1−ε)−(1−2ε)Fn
(
τ−μ0

)]

N
[
(1−2ε) fn

(
τ−μ0

)]2

≤ G
πσ2

ne
(τ−μ0)2/2σ2

n

2N(1−2ε)2

×
[(

2ε+(1−2ε)e−(τ−μ0)2/2σ2
n

)

×
(

2(1−ε)−(1−2ε)e−(τ−μ0)2/2σ2
n

)]

,

(21)

where G = ((ln 10)10(K−μ0)/10α/10α)2. Figure 9(a) shows the
exponential increase with respect to (τ − μ0)/σn for ε = 0.01
and ε = 0.1 for the CRB of R̂. We notice that the Chernoff
bound is tight and that a small deviation of τ from the
true unknown value μ0 will result in a significant loss in
performance. Although a similar result has previously been
widely reported for the error-free channel case [10, 11], to the
best of our knowledge, no one has studied the performance
of the MLE’s in terms of the MSE and variance effects using
the identical threshold approach. Hence, to further analyze
the effects of using this technique, Figure 9(b) shows the
MSE and variance plot as (τ − μ0)/σn is varied. As with
the CRB plot, the performance degradation in terms of the
MSE is also exponential as τ deviates from μ0. However, we
notice the existence of multiple critical points. This effect
is because the MSE can be decomposed into the (bias)2

and variance. The figure shows that for small deviations
from μ0 the (bias)2 is nearly zero, and the variance increases
exponentially; however, when τ 
 μ0, the variance starts
to decrease, but the bias increases linearly with (τ − μ0).
These combined effects reiterate the fact that using identical
thresholds could potentially result in estimators with very
high bias and MSE.

7. Conclusion

In this paper, we proposed and analyzed a sensor fusion
algorithm for interference characterization in wireless net-
works. To minimize energy usage, each wireless sensor in the
network transmits only 1-bit of quantized, noisy RSS infor-
mation to the FC over a BSC.

Unlike previous approaches that used identical thresh-
olds for all sensors or use non-identical thresholds based
on solving a complex optimization problem, we propose
a simple and low complexity threshold design technique
of uniformly distributing the thresholds over the range of
possible values of the mean of the RSS distribution. This ap-
proach performs (i) as well as the optimal identical threshold
approach and (ii) significantly better than the identical non-
optimal threshold design approaches and has a performance
that is more accurate or as good as previously proposed non-

identical threshold techniques. The optimal identical thresh-
old case is highly unrealistic because the optimal threshold
cannot be known in advance; our non-identical threshold
technique is much more practical, reliable, and of low com-
plexity design compared to previously proposed techniques
based on either using non-identical or identical non-optimal
thresholds.

Appendices

A. Asymptotic Consistency of MLE

Proof. We start with the following assumptions that are re-
stated from [33, page 443-444] for completeness and are easy
to verify the following.

(A0) The distributions F(R | μ) of the observations are
distinct.

(A1) The distributions F(R | μ) have common support.

(A2) The observations are r = (r1, . . . , rN ), where the rk are
independent with probability density f (rk | μ) with
respect to the underlying probability measure.

(A3) The parameter space Ω contains an open set ω of
which the true parameter value μ0 is an interior point.

Next, we prove the following lemma.

Lemma 2. For the independent nonidentically distributed
(i.n.i.d) random variables Rk’s we have

Pr
{

lim
N→∞

ln f
(

R | μ
)

< ln f
(

R | μ0

)}

= 1, ∀μ /= μ0,

(A.1)

where μ0 is the true value of μ.

Proof. To prove the lemma, it is equivalent to prove the
following:

Pr

⎧
⎨

⎩
lim
N→∞

⎡

⎣
1
N

N∑

k=1

ln
f
(
Rk | μ

)

f
(
Rk | μ0

) < 0

⎤

⎦

⎫
⎬

⎭
= 1, ∀μ /= μ0.

(A.2)

Next, we show that the strong law of large numbers (SLLNs)
can be applied to the term (1/N)

∑N
k=1 ln f (Rk | μ)/ f (Rk |

μ0). To show this, we check the Kolmogorov sufficient
conditions for the SLLN to hold for independent r.v.’s. Let
Yk = ln f (Rk | μ)/( f (Rkμ0)), pk = Pr(Rk = 1 | μ),
qk = Pr(Rk = −1 | μ) = (1 − pk), pk0 = Pr(Rk = 1 | μ0)
and qk0 = Pr(Rk = −1 | μ0). We further assume w.l.o.g. that
ε ≤ 0.5, and using (12) we have the following inequalities:

ε ≤ pk ≤ 1− ε,

1− ε ≤ qk ≤ ε.
(A.3)
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Figure 9: In (a) the CRB and the Chernoff bound for R̂ is shown for varyious values of τ at R0 = 50 m (μ0 ≈ −52.5 dB), N = 100 and
σn = 4 dB. Observe that the performance degradation is exponential as (τ − μ0)/σn increases for different crossover probabilities. (b) shows
the MSE, variance and (bias)2 for R̂ with varying τ with R0 = 50 m (μ0 ≈ −52.5 dB) N = 100 and σn = 4 dB. The MSE also has an exponential
growth with respect to (τ − μ0)/σn; however, we notice the peculiar behavior of multiple critical points due to the bias and variance effect of
the MLE of R.

Similar inequalities hold for pk0 and qk0 , respectively. The
variance of Yk can be bounded as follows:

Var(Yk) ≤ Eμ0

[

Yk
2
]

= pk0

(

ln
pk
pk0

)2

+ qk0

(

ln
qk
qk0

)2

≤ (1− ε)
(

ln
(1− ε)
ε

)2

+ ε
(

ln
ε

(1− ε)

)2

= 1.

(A.4)

Therefore, limN→∞
∑N

k=1 Var(Yk)/k2 ≤ limN→∞
∑N

k=1(1/k2)
<∞, hence, the SLLN holds for Yk’s, and we have

Pr

⎧
⎨

⎩
lim
N→∞

1
N

⎡

⎣
N∑

k=1

ln
f
(
Rk | μ

)

f
(
Rk | μ0

)

−
N∑

k=1

Eμ0

(

ln
f
(
Rk | μ

)

f
(
Rk | μ0

)

)

= 0

⎤

⎦

⎫
⎬

⎭
= 1,

(A.5)

where Eμ0 (·) represents the expectation using the pdf when
μ = μ0. Now by Jensen’s inequality we have

Eμ0

[

ln
f
(
Rk | μ

)

f
(
Rk | μ0

)

]

< lnEμ0

⎡

⎣
f
(
Rk | μ

)

f
(

Rk| μ0

)

⎤

⎦

= ln

[
Pr
(
R1 = 1 | μ)

Pr
(
R1 = 1 | μ0

)Pr
(
R1 = 1 | μ0

)

+
Pr
(
R1 = −1 | μ)

Pr
(
R1 = −1 | μ0

)Pr
(
R1 = −1 | μ0

)
]

= ln
[
Pr
(
R1 = 1 | μ) + Pr

(
R1 = −1 | μ)]

= 0.

(A.6)

Using the result (A.6) in (A.5), statement (A.2) is proved, and
hence the lemma follows.

Next we consider a δ-neighborhood about μ0 such that
(μ0 − δ,μ0 + δ) ∈ ω and define SN = {r : ln f (r | μ0 − δ) <
ln f (r | μ0) and ln f (r | μ0) > ln f (r | μ0 + δ)}. Hence, by
Lemma 2 we have,

Pr
{

lim
N→∞

SN | μ0

}

= 1 (A.7)



14 International Journal of Distributed Sensor Networks

and, therefore, for all r ∈ SN , there exists μ̂N ∈ (μ0 − δ,μ0 +
δ) s.t. the likelihood function is maximized in the interval.
Since for any δ > 0 small enough, there exists a sequence
μ̂N = μ̂N (δ) of roots to the equation ∂ ln f (r | μ)/∂μ = 0
s.t. Pr{limN→∞ | μ̂N − μ0 |< δ | μ0} = 1. Next we choose a
sequence which does not depend on δ, by observing that the
likelihood function is a continuous function, and the limit
of a sequence of roots is also another root of the equation
∂ ln f (r | μ)/∂μ = 0. Therefore, there exists a root μ∗N that is
closest to μ0; hence, Pr(limN→∞ | μ∗N − μ0 |< δ | μ0) = 1 and
since δ was arbitrary chosen the proposition follows.

B. Asymptotic Efficiency of MLE

Proof. The key step is to show that the central limit theorem
(CLT) holds for the i.n.i.d log-likelihood functions of the
Rk’s. As before, we state the following regularity conditions
from [33, page 440-441] for completeness.

(a) The parameter space Ω is an open interval (not
necessarily finite).

(b) The distributions of F(Rk | μ) have common
support, so that the set A = {rk : f (rk | μ) > 0} is
independent of μ.

(c) For every rk ∈ A, the density f (rk | μ) is twice
differentiable with respect to μ, and the second deriv-
ative is continuous in μ

(d) E[∂ ln f (Rk | μ)/∂μ] = 0 and E[−∂2 ln f (Rk |
μ)/∂μ2] = E[(∂ ln f (Rk | μ)/∂μ)2] = I(μ).

(e) The Fisher information 0 < I(μ) < ∞.

(f) For any given μ0 ∈ Ω, there exists a positive number
c and a function M(rk) (both of which may depend
on μ0) s.t.

∣
∣
∣
∣
∣

∂2 ln f
(
rk | μ

)

∂μ2

∣
∣
∣
∣
∣
≤M(rk), ∀rk ∈ A, μ0 − c < μ < μ0 + c,

(B.1)

and Eμ0 [M(Rk)] <∞.
Since most of the conditions listed above are easy to

verify, we provide proofs only for (d) and (f). To prove
the first part of (d) we need to show that Eμ0 [∂ ln f (Rk |
μ)/∂μ] = 0. Using the definitions for pk and qk from
Appendix A, we have p′k = (1 − 2ε) fn(τk − μ), q′k = −(1 −
2ε) fn(τk−μ), p′′k = (1−2ε) fn(τk−μ)/σ2

n , and q′′k = p′′k , where

the notation f ′ = ∂ f /∂μ and f ′′ = ∂2 f /∂μ
2. Therefore, using

(12), we have

Eμ0

[
∂ ln f

(
R | μ)
∂μ

]

= pk0

(
p′k
pk

)

+ qk0

(
q′k
qk

)

= pk0

(
p′k
pk

)

+
(
1− pk0

)
(

p′k(
1− pk

)

)

= 0.
(B.2)

Similarly we have

Eμ0

⎡

⎣

(
∂ ln f

(
R | μ)
∂μ

)2
⎤

⎦ = pk0 p
′
k

2

pk2
+
qk0q

′
k

2

qk2
,

E

[−∂2 ln f
(
Rk | μ

)

∂μ2

]

= −
⎛

⎝
pk0

(

p′′k pk − p′k
2
)

pk2

+
qk0

(

q′′k qk − q′k
2
)

qk2

⎞

⎠

= − pk0 p
′′
k

pk
+
qk0 p

′′
k

qk

+
pk0 p

′
k

2

pk2
+
qk0q

′
k

2

qk2

= pk0 p
′
k

2

pk2
+
qk0q

′
k

2

qk2
.

(B.3)

To check condition (f) using the result from Appendix D we
have for all rk ∈ A, μ0 − c < μ < μ0 + c
∣
∣
∣
∣
∣

∂2 ln f
(
rk | μ

)

∂μ2

∣
∣
∣
∣
∣
≤ 1{rk=1}

((
μu − μl

)
(1− 2ε)√

2πσ3
n

)

+ 1{rk=−1}

((
μu − μl

)
(1− 2ε)√

2πσ3
n

)

.

(B.4)

If we let M(rk) = 1{rk=1}((μu − μl)(1 − 2ε)/
√

2πσ3
n) +

1{rk=−1}((μu − μl)(1− 2ε)/
√

2πσ3
n), and hence

Eμ0 [M(Rk)] = pk0

((
μu − μl

)
(1− 2ε)√

2πσ3
n

)

+ qk0

((
μu − μl

)
(1− 2ε)√

2πσ3
n

)

< ∞.

(B.5)

Next we prove the CLT for independent nonidentically
distributed (i.n.i.d) r.v.’s, which will be used to show the
asymptotic efficiency result.

Lemma 3. For the independent, nonidentically distributed
(i.n.i.d) log-likelihood function ln f (R | μ0), we have

1√
N

∂

∂μ0
ln f

(

R | μ0

)

→
D

N

(

0,
I
(
μ0
)

N

)

, (B.6)

where μ0 is the true value of μ, I(μ0) =∑N
k=1(1− 2ε)2 f 2

n (τk −
μ0)/pk0qk0 is the Fisher information matrix, pk0 = Pr(Rk =
1 | μ0), qk0 = Pr(Rk = −1μ0), and →

D
means convergence in

distribution.

Proof. For ease of notation let Yk = ∂/∂μ0 ln f (Rk | μ0),
σ2
Yk
= Eμ0 [Y 2

k ], due to the regularity conditions, we have
Eμ0 [Yk] = 0. Therefore, the l.h.s of (B.6) can be written as

1√
N

∂

∂μ0
ln f

(

R | μ0

)

=
√
N

N

N∑

k=1

Yk. (B.7)
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Since the Yk’s are not i.i.d., to apply the CLT we must verify
the Lindeberg sufficiency condition. Hence we need to show
that for all ε > 0,

L(N) = 1
S2
N

N∑

k=1

Eμ0

{

|Yk|2
}

1{|Yk|>εSN } →
N→∞

0, (B.8)

where S2
N = ∑N

k=1 σ
2
Yk

. It can be shown that σ2
Yk
= (1 −

2ε)2 f 2
n (τk − μ0)/pk0qk0 , where pk0 = Pr(Rk = 1 | μ0) and

qk0 = Pr(Rk = −1 | μ0). Using this we have

S2
N =

N∑

k=1

(1− 2ε) f 2
n

(
τk − μ0

)

pk0qk0

(a)
≥ 4(1− 2ε)

N∑

k=1

f 2
n

(
τk − μ0

)
,

(B.9)

where (a) in (B.9) follows from the fact that 1/pk0qk0 ≥ 4 for
pk0 , qk0 ∈ (0, 1). Therefore,

L(N) = 1
S2
N

N∑

k=1

∫

{|Yk|>εSN }
|Yk|2dF(Yk)

= 1
S2
N

N∑

k=1

∫

R
|Yk|21{|Yk|>εSN }dF(Yk).

(B.10)

We observe that from (B.9) that S2
N →

N→∞
∞ hence

lim
N→∞

L(N) = lim
N→∞

1
S2
N

N∑

k=1

∫

R
|Yk|21{|Yk|>εSN }dF(Yk) = 0,

(B.11)

where (B.11) follows from the fact that limN→∞
∫

R |
Yk|21{|Yk|>εSN }dF(Yk) = 0 by the Lebesgue dominated

convergence theorem. Hence, the Lindeberg conditions are
satisfied and the result follows.

For rest of the proof, let L′(μ) = ∑N
k=1(∂/∂μ) ln f (Rk |

μ), L′′(μ) = ∑N
k=1(∂2/∂μ2) ln f (Rk | μ). Then, by the mean

value theorem, ∃ λ ∈ (0, 1) with μ∗N = μ0 + λ(μ̂N − μ0) for
some μ∗N ∈ (μ0, μ̂N ) such that L′′(μ̂N ):

L′(μ̂N
) = L′(μ0

)
+
(
μ̂N − μ0

)
L′′(μ∗N

)
. (B.12)

Since μ̂N is the MLE, the l.h.s. of (B.12) is equal to 0. We thus
obtain

√
N
(
μ̂N − μ0

) =
(
1/
√
N
)
L′(μ0

)

−(1/N)L′′(μ∗N
) . (B.13)

Now since μ̂N is a strongly consistent estimator of μ0, we
have μ∗N →

P
μ0, where →

P
means convergence in probability.

This implies −(1/N)L′′(μ∗N ) →
P

−(1/N)L′′(μ0), by the

fact that if μ∗N →
P

μ0, then g(μ∗N) →
P

g(μ0) for a con-

tinuous function g(·). Using arguments similar to those in
Appendix A, it can be shown that the Kolmogorov sufficient
conditions for the SLLN are satisfied for (1/N)L′′(μ0), hence
−(1/N)L′′(μ0) →

P
I(μ0)/N . By the CLT proved earlier, we

have (1/
√
N)L′(μ0) →

D
N (0, I(μ0)/N). Hence by Slutsky’s

theorem, we thus have
√
N(μ̂N − μ0) →

D
N (0,N/I(μ0)) and

the proposition follows.

C. Cramér-Rao Bound

Proof. Using the definition of Fisher information matrix, we
have

−Eμ
⎡

⎣
∂2 ln f

(

R | μ
)

∂μ2

⎤

⎦ = −
N∑

k=1

Eμ0

[
∂2 ln f

(
Rk | μ

)

∂μ2

]

= −
N∑

k=1

[
∂2 ln f

(
Rk = 1 | μ)
∂μ2

Pr
(
Rk = 1 | μ)

+
∂2 ln f

(
Rk = −1 | μ)
∂μ2

Pr
(
Rk = −1 | μ)

]

.

(C.1)

Differentiating ln f (Rk = 1 | μ) and ln f (Rk = −1 | μ) with
respect to μ twice, we have:

∂2 In f
(
Rk = 1 | μ)
∂μ2

= −(1− 2ε)2 f 2
n

(
τk − μ

)
+ Pr

(
Rk = 1 | μ)(1− 2ε) f ′n

(
τk − μ

)

P
(
Rk = 1 | μ)2 ,

∂2 In f
(
Rk = −1 | μ)
∂μ2

= −(1− 2ε)2 f ′n
(
τk − μ

)
Pr
(
Rk = −1 | μ)− (1− 2ε)2 fn

2(τk − μ
)

Pr
(
Rk = −1 | μ)2 .

(C.2)
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Using (C.2) and (C.1) can be expressed as

I
(
μ0
) = −

N∑

k=1

⎧
⎨

⎩

(
(1− 2ε) fn

(
τk − μ

))2

(

ε + (1− 2ε)Fn
(
τk − μ

))(

1− ε − (1− 2ε)Fn
(
τk − μ

))

⎫
⎬

⎭
. (C.3)

Hence Theorem 1 is proved.

D. Concavity of Log-Likelihood Function

Lemma 4. The log-likelihood function ln f (r | μ) is not a
concave function.

Proof. Let G(μ) = ∑N
k=1(1{rk=1} lnαk(μ) + 1{rk=−1} lnβk(μ)),

where α(μ) = ε + (1− 2ε)Fn(τk − μ), β(μ) = (1− ε) − (1−
2ε)Fn(τk − μ), and w.l.o.g we assume that ε < 0.5. From the
properties of concave functions, we know that if α(μ) and
β(μ) are concave and positive, thenG(μ) is concave. Consider
the terms αk(μ) and βk(μ), the first and second derivatives of
these terms can be expressed as

α′k
(
μ
) = (1− 2ε) fn

(
τk − μ

)
,

α′′k
(
μ
) =

(
τk − μ

)
α′k
(
μ
)

σ2
n

,

β′k
(
μ
) = −(1− 2ε) fn

(
τk − μ

) = −α′k
(
μ
)
,

β′′k
(
μ
) = −(τk − μ

)
α′k
(
μ
)

σ2
n

.

(D.1)

Using the above equations, we can express the second
derivative of the log-likelihood function as

G′′
(
μ
) =

N∑

k=1

(

1{rk=1}
[

Ak
(
μ
)(
τk − μ

)− (Bk
(
μ
))2
]

+1{rk=−1}
[

−Ck
(
μ
)(
τk − μ

)− (Dk
(
μ
))2
])

,

(D.2)

where Ak(μ) = α′k(μ)/σ2
nαk(μ), Bk(μ) = α′k(μ)/αk(μ),

Ck(μ) = α′k(μ)/σ2
nβk(μ), and Dk(μ) = α′k(μ)/βk(μ). For

G(μ) to be concave, a sufficient condition is that for all μ ∈
[μl,μu],G′′(μ) ≤ 0, it can be seen from (D.2) that depending
on the values of τk and the received bits rk the sufficiency
condition may not be satisfied. For example, consider the
scenario with N = 2 in this case τ1 ≈ −29.2 dB, and
τ2 ≈ −48.4 dB. With the received vector r = [r1r2] = [1 1],
the second derivative of the log-likelihood function can be
expressed as

G′′
(
μ
) = α′1

(
μ
)(
τ1 − μ

)

σ2
nα1

(
μ
) −

(
α′1
(
μ
)

α1
(
μ
)

)2

+
α′2
(
μ
)(
τ2 − μ

)

σ2
n

(
1− α2

(
μ
)) −

(
α′2
(
μ
)

(
1− α2

(
μ
))

)2

.

(D.3)

An equivalent sufficiency condition to show that G(μ) is
concave is if −G′′(μ) ≥ 0, for all μ ∈ [μl ,μu]. Using the
definitions of αk(μ) and α′k(μ), we can obtain the following
upper bounds

α′k
(
μ
) ≤ (1− 2ε) fn(0) = (1− 2ε)√

2πσn
,

1
(1− ε)

≤ 1
αk
(
μ
) ≤ 1

ε
.

(D.4)

Then −G′′(μ) can be upper bounded as follows:

−G′′(μ) = α′1
(
μ
)(
μ− τ1

)

σ2
nα1

(
μ
) +

(
α′1
(
μ
)

α1
(
μ
)

)2

+
α′2
(
μ
)(
μ− τ2

)

σ2
n

(
1− α2

(
μ
))

+

(
α′2
(
μ
)

(
1− α2

(
μ
))

)

≤ (1− 2ε)
(
μ− τ1

)

ε
√

2πσ3
n

+
(

1− 2ε√
2πσnε

)2

+
(1− 2ε)

(
μ− τ2

)

ε
√

2πσ3
n

+
(

1− 2ε√
2πσnε

)2

= (1− 2ε)
εσ2

n
√
π

(
2μ− (τ1 + τ2)√

2σn
+

(1− 2ε)
ε
√
π

)

≈ (1− 2ε)
εσ2

n
√
π

(
2μ + 77.6√

2σn
+

(1− 2ε)
ε
√
π

)

.

(D.5)

It can be seen from (D.5) that for μl ≤ μ ≤ √
2σn(2ε −

1)/(2ε
√
π)− 38.8 the second derivative of the log-likelihood

function−G′′ < 0 and henceG(μ) will not be concave for this
range of μ. With ε = 0.1, we have that for μl ≤ μ < −51.6 dB
G′′(μ) > 0. Therefore, we can conclude that log-likelihood
function is not concave for all μ ∈ [μl ,μu].
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