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We explore the use of a pseudorandom graph family, Borel Cayley graph family, as the network topology with thousands of nodes
operating in a packet switching environment. BCGs are known to be an efficient topology in interconnection networks because of
their small diameters, short average path lengths, and low-degree connections. However, the application of BCGs is hindered by a
lack of size flexibility and fault-tolerant routing. We propose a fault-tolerant routing algorithm for BCGs. Our algorithm exploits
the vertex-transitivity property of Borel Cayley graphs and relies on extra information to reflect topology change. Our results show
that the proposed method supports good reachability and a small End-to-End delay under various link failures scenarios.

1. Introduction

Various graph-based interconnection networks have been
applied to wavelength division multiplexed optical networks
[1, 2], distributed parallel computation [3], distributed
control [4], satellite constellations [5], chip design [6-9], and
wireless sensor networks [10, 11]. In peer-to-peer overlay
network schemes, various structure graphs are investigated
compared to unstructured P2P overlay network [12]. For the
example of structured P2P, k ring lattice is used in Chord [13]
and de Bruijn graph is used in Koorde and Distance Halving
[14, 15]. Also there are theoretic analyses to apply de Bruin
and Cayley graphs to P2P [16, 17].

Deterministic characteristics for connections between
nodes in structured graphs allow theoretical analysis and
guarantee global properties such as a diameter and average
path length [18]. Also graph-based networks can have sym-
metry, hierarchy, connectivity, and hamiltonicity, which are
desired properties comparing random graph-based networks
(17, 19].

Borel Cayley graphs (BCGs) have been shown to be
efficient candidates for interconnection networks [20].
BCGs are known to have small diameters, average path
lengths, and low-degree constant connections. The degree-
diameter problem has been investigated in the contexts

of interconnection networks [21, 22], wavelength division
multiplexed optical networks [23], and VLSI layout design
[24]. Also, BCGs are symmetric graphs, a property that
enables distributed routing [25]. With consensus protocol
[26], distributed node to node message exchange rule to
drive nodes to an agreement for a quantity of interest, BCG
showed better performance than mesh, torus, and small
world networks [27]. Even though BCGs have such favorable
properties, there are practical limitations in applying BCGs
to networks. One of them is the lack of fault-tolerant routing
algorithms: existing BCG routing algorithms do not account
for node or communication link failures. Researchers have
studied fault-tolerant routing on mesh, toroidal mesh, and
de Bruijn graphs [28-30].

In this paper, we present a fault-tolerant routing algo-
rithm for BCG, which accounts for communication link
failures. For fault-tolerant routing, the routing tables of
nodes are updated distributively in response to link failures.
We quantify the performance of the routing algorithm
by considering packet reachability and average hop count
for different levels of communication link failures. Our
simulation results show our proposed method to improve
delivery performance by 20% to 350%. We also show packet
congestion by proposed algorithms according to packet
generation rate. We assume that contention is solved by



the MAC layer. Thus, we abstract this case as a graph
with point-to-point links and transform the problem into
a graph.

This paper is organized as follows. Section 2 reviews basic
concepts and definitions for BCGs and related terminology.
Section 3 presents our network model and compares BCGs
with other known graph topologies. Section 4 presents the
data structures used by our proposed routing algorithm
for BCGs. Section 5 describes behaviors of the proposed
routing algorithm. Section 6 presents simulation results to
estimate reachability and the average hop count of our
proposed routing algorithm. Conclusions are presented in
Section 7.

2. Preliminaries

In the following, we provide a definition of Cayley graphs,
Borel subgroup, and Borel Cayley graphs.

Definition 1 (Cayley graph [20]). A graph C = C(V,G) isa
Cayley graph with vertex set V such that if two nodes v1, v, €
V are adjacent then v; = v, * g for some g € G, where (V, %)
is a finite group and G C V'\ {I}. G is called the generator set
of the graph and I is the identity element of the finite group
(V, ).

The definition of a Cayley Graph requires vertices to be
elements of a group but does not specify a particular group.

Definition 2 (Borel subgroup). If V is a Borel subgroup of
general linear 2 X 2 matrices set, then

V= {(g {) : x=a'(mod p),y € Z,,t € Zk },
(1)

where a is a fixed parameter a € Z, \ {0, 1}, p is prime, and
k is the order of a. That is, k is the smallest positive integer
such that a* = 1 (mod p).

Definition 3 (Borel Cayley graph (BCG) [20]). Let V be a
Borel subgroup and let G be a generator set such that G <
V \ {I}, then B = B(V,G) is a Borel Cayley graph with
vertices 2 X 2 matrix elements of V. There exists a directed
edge from v to u ifonly only if u = v % g, whereu#v € V,
g € G and x is the modulo-p multiplication chosen as a
group operation.

Definition 4 (GCR [20]). A graph R is a generalized chordal
ring (GCR) if nodes of R can be labeled with integers modulo
number of nodes N, and there exists a divisor g of N such
that node i is connected to node j if and only if node i + ¢
(mod N) is connected to node j + g (mod N).

The connection rules of elements are defined by connec-
tion constants. Based on Definition 4, connection constants
for i and i + g are identical. When the graph is four regular,
there are four connection constants. For example, Figure 1
shows a degree 4 GCR with 21 nodes and g = 3 classes. For
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FIGURE 1: A Borel Cayley graph in the GCR representation with p =
7,a=2k=3,t=0,,b =1,y =1l,and y, = 1.

V =0,1,2,...,20 and any i € V, the connection rules can
be define as
if i(mod3) =
“0” :1i1is connected to i+ 3,i — 3,i+4,i— 10 (mod21)
“1”:iis connected toi+6,i—6,i+7,i—4 (mod2l)
“2”:iis connected to i +9,i—9,i—7,i+ 10 (mod21).
2)

Proposition 5. For any finite Cayley graph with vertex set
Voand any T € V such that T™ = 1, there exists a GCR
representation of C with divisor ¢ = N/m, where I is the
identity element.

The proof of these propositions is given in [20] and not
repeated here. T is referred to as the transform element. g;
are class representing elements.

For simplicity of the GCR representation, we chose T and
a; as follows [20]:

11 a 0\’
r=(o1) a-(31): ®

Any vertex v € V is represented with T and a; as follows [20]:

o (YEY-GY)

BCGs are defined over a group of matrices. The systematic
representation of BCGs from the group domain to the integer
domain is useful for routing because nodes are defined in the
integer domain and the integer domain provides a systematic
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& = 0
While (i # j)

Step 1: Identify new destination,

Step 3: Identify new source, i = mq + ¢ and
m =y, ¢ = t,, if link g; was chosen
m = y,, ¢ = b, if link g, was chosen

Step4:i=i andj = j

For a degree-4 Borel Cayley graph in the GCR representation with T' = (é }) and g; = (a 0),

we have q = k classes, where a* = 1 (mod p). Assume the generators to be g1, £, g ' and g;'', where

_ (4" »n
) e (5%)

Given the source i = m;q + ¢; and the destination j = m,q + c,.

t
al oy

j={at v (my —m)) g + (2 — 1)y
where () » signifies the operation within the bracket () is modulo p.
Step 2: From row j  of a precalculated routing table, determine which link to take.

m=p—{(al™y),c=q-t,iflink gi'' was chosen
m=p—{(al™2y), c=q-—t,iflink g;'' was chosen

01

ALGORITHM 1: Vertex-transitive routing algorithm for Borel Cayley graphs.

description of connections. The node ID representation in
GCR (IDg(v)) is denoted as follows [20]:

IDy(v) = q % j +i, (5)

where ¢ is the parameter k in Definition 2.

Symmetry or vertex transitivity is a preferable attribute
for an efficient interconnection network topology. Infor-
mally, a symmetric or vertex-transitive graph looks the same
from any node. This property allows to use an identical
routing table at every node. Mathematically, this implies that
for any two nodes a and b in the graph there exists an
automorphism of the graph that maps a to b. This property is
very useful for practical implementation of interconnection
networks. Most of the well-known interconnection graphs,
such as the toroidal mesh, hypercube, and cube-connected
cycle, exhibit this property.

Proposition 6. All Cayley graphs are vertex transitive [20].

Every Cayley graphs can be represented with integer node
labels through a transformation into a generalized chordal ring
topology. However, generally speaking, GCR graphs are not
fully symmetric. In [20], the authors provide a framework
for the formulation of the complete symmetry (or vertex
transitivity) of Cayley graphs in the integer domain of GCR
representations.

Proposition 7. Assume a Borel Cayley graph in the GCR

representation with transform element T = (1) and

representing elements of each class i as a; = (‘g (1)) Leti =
miq+ci,j = maq+cy,andi’ = m'q+c’. If i is connected to j
with a sequence of generators, then i’ is connected to j' with the
same sequence of generators, where j’ = (m’ + a‘ =i (m, —
mi))pq+{c’ —c1+c+2),[25].

Algorithm 1 shows Vertex-transitive routing (VT rout-
ing) algorithm that exploits the inherent symmetry of Cayley
graphs and uses the identical routing table at any node [25].

Packet
,j generator
3 Input || Switching || Output s
. queue fabric queue
—

[
Packet arrival
check

FiGUrE 2: Node model.

3. Topology Comparison

3.1. Network Model. A network that consists of a set of nodes
is connected by full duplex point-to-point links. The node
model is depicted in Figure 2. Each node consists of an
input queue for transit messages (Rx), a packet generator,
a switching fabric, and an output queue. Modules inside a
node are connected by zero delay links. It takes a single time
unit for a packet to move from an output queue to an input
queue. Time is slotted and synchronized so that all nodes
receive and transmit packets simultaneously.

An input queue is FIFO served. In each time slot, the
input queue accepts up to the number of packets, the degree
of a node in the same time slot. Depending on the model,
the input buffer size ranges from one to infinity. The output
buffer size is one. The packet arrival module removes packets
from the input queue if the current node is the destination
node. The switching fabric determines the next node of the
packet taken from the input queue by a routing algorithm.
Every node in the network can be a source, a destination,
or a relay. We assume that nodes generate information at
a constant average rate of R packets per time slot (Packet
generator).

Three traffic patterns are considered in this paper: All-to-
All traffic pattern (Pattern 0), All-to-one traffic pattern (Pat-
tern 1), and All-to-M traffic pattern (Pattern 2). In Pattern 0,
all nodes are the source and destination nodes, which



International Journal of Distributed Sensor Networks

20!
20!
RO!
)

OO,

(HOAOHO,

D

(a) 4 x 4 toroidal mesh network

(b) 2-dimensional de Bru-
ijn graph of 3 symbols

F1Gure 3: Toroidal mesh network and de Bruijn graph.

(1) procedure Routing Algorithm For UDB (cur, dst)
(2) i~ match_fwd(cur,dst)

(3) j — match_-bwd(cur,dst)

(4) if i< j then

(5) using FP sent to the particular left neighbor
(6) elseif i = j then

(7) randomly using FP or BP

(11) end procedure

(8) else
9) using BP sent to the particular right neighbor
(10) end if

> cur: the current node, dst: the destination node

ArcoriTHM 2: Undirected de Bruijn graph routing algorithm.

generate packets to uniformly randomly selected destination
node. The probability of any source node communicating to
any destination node in the network is constant and equal to
1/n where n is the number of destination nodes. In Pattern 1,
nodes send packets to node 0, the only destination node. That
is, the one node (sink) gathers the information generated by
all other nodes in the network [31]. In Pattern 2, nodes send
packets to a group of nodes, 5% of the total nodes in this case.
This network model depicts a situation arising in integrated
devices. Nodes located on the borders can be connected to
high-capacity transmission lines.

3.2. Topologies. Toroidal mesh networks and de Bruijn
graphs are popular topologies for interconnection networks
[1, 5, 16]. In the following, we provide a definition for
toroidal mesh networks and de Bruijn graphs. Then we show
simulation results comparing Borel Cayley graphs with the
aforementioned traffic patterns.

3.2.1. Toroidal Mesh Network. Figure 3(a) shows a toroidal
mesh network (torus) which consists of R rows by C
columns. When a node is represented by rC + ¢, neighboring
nodes are defined as follows: ((r — 1) mod R)C + ¢, rC+ (c —
1) mod C, ((r+1) mod R)C+c,and rC+ (c+1) mod C. We

use a Greedy row-first routing algorithm on the torus mesh
network. If a packet is not in the destination column, then
the packet is routed along the row towards the destination
column. Otherwise the packet is routed along the column
toward the destination node [32].

3.2.2. De Bruijn. The undirected de Bruijn graph (UDB) has
N = d* nodes of degree 2d [1]. We use binary de Bruijn
graphs DG(2,k) of N = 2F nodes. A node of the net-
work with binary address ax_1ax—, - - - a1a9 has neighbors:
Af-20-3 * = = A00k—15 Ak-20k-3 " * - Aodk-1, AoAk-1* " * 201,
and aoax-; - - - aza;. Figure 3(b) shows an undirected de
Bruijn graph for k = 3 and d = 2 where self-loops are
removed.

Algorithm 2 corresponds to the routing algorithm for
UDB. The routing algorithm consists of transmitting a
packet to either its left or right neighbors [33]. Algorithm 2
defines the Forward Path (FP) as the path taken by a packet
when a left neighbor is chosen as the next node and the
Backward Path (BP) when a right neighbor is chosen. From
de Bruijn graph’s properties, it is easy to calculate the number
of hops that it needs to reach the destination using FP or BP.
This is done by matching the postfix portion of the source
address with the prefix portion of the destination address.
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The more digits are matched; the shorter is the path between
source and destination. For example, in Figure 3(b), assume
node 011 needs to transmit a packet to node 110. Since 11
is the postfix of the source and the prefix of the destination,
node 011 will reach node 110 in one hop. In [33], it defined
match_fwd(cur,dst) to be an operation which returns the
number of hops required to reach the destination along a FP.
Similarly, match_bwd(cur, dst) returns the number of hops
along a BP.

3.2.3. Performance Comparison. The parameters for the
mesh networks we used for performance comparison are
described in Table 1. BCG and Torus are degree 4 graphs.
Most nodes of UDB have degree 4 except the few nodes, with
self-loops. Table 2 shows our benchmark mesh networks
topological properties such as the diameter and the average
path length. The diameter is the greatest distance between
any two nodes. The average path length is the average num-
ber of edges between all possible node pairs. Constrained by
degree 4, BCG has the smallest diameter and the shortest
average path length.

We also considered the performance of our network
models. We used two metrics for comparison: (a) End-to-
End delay and (b) reachability. We define End-to-End delay
as the time required by packets to travel from a source to
a destination and the reachability as the number of packets
reaching destination over the number of generated packets.
When running our simulations, we used the three types of
traffic patterns presented in 3.1. We set the input buffer
length to infinite, 5, and 10. Our simulation running time
is 100000 ticks.

Figure 4 shows End-to-End delay (ETE delay) as a
function of packet generation rate for our three traffic pat-
terns. BCG exhibits the smallest End-to-End delay across all
traffic patterns. Each network shows that End-to-End delay
increases rapidly above a certain traffic generation rate called
traffic congestion point. An efficient network topology should
consider both End-to-End delay and network saturation.
BCG shows a small End-to-End delay and a more robust
traffic congestion point than UDB and Torus.

When a buffer at each node is finite, packets can be over-
flowed for large packet generation rates and thus reachability
is not achieved as 100%. Figures 5 and 6 show reachabilities
with buffer length 10 and 5, respectively. Reachability with
finite buffer decreases above certain packet generation rate.
Decreasing reachability packet generation rate of BCG is
larger than others even though they have almost the same
number of nodes and edges. UDB and Torus show similar
reachabilities with traffic pattern 1 because End-to-End
delays of traffic pattern 1 increase rapidly together at the
similar packet generation rate.

4. Data Structure of Exhaustive Routing

A conventional routing algorithm for Borel Cayley graphs,
Vertex-transitive routing, exploits the graphs vertex-
transitive property. That property allows to use an identical
routing table in every node. The routing table is created

5
TaBLE 1: Mesh networks parameters.
N Parameters
BCG 1081 P=47,k=23,a=2t, =1, =7, =1,y =1
Torus 1088 R=32,C=34
UDB 1024 d=2,k=10
TaBLE 2: Static Property.
AVG. path length Diameter
BCG 5.54 7
Torus 16.52 33
UDB 6.77 10

for node 0 only; and for other nodes to use that table,
a simple node ID translation is applied to the destination
node ID. The Vertex-transitive routing algorithm guarantees
the shortest path between any source-destination pair.
However, Vertex-transitive routing only applies to a static
network and cannot account for node/link failures. The goal
of our proposed routing algorithm (Exhaustive routing) is
to route messages in the presence of link failures.

Exhaustive routing has two phases. In Phase 1, packets
are routed through the shortest path according to the Static
Routing Table. If there is a link failure making the shortest
path unavailable, a Dynamic Routing Table for Type 1
packets is updated and other shortest paths (following the
Static Routing Table) will be used. However, when all shortest
paths from the BCG are disconnected, there can still be a path
between the source and destination. In that case, Phase 2 of
Exhaustive routing is used.

Phase 2 exploits the path length information in the
Static Routing Table to search for possible routes besides the
shortest paths from BCG. A Dynamic Routing Table for Type
2 packets is created to indicate “next best” paths as well as any
unusable link due to failures. Basically, in Phase 2, packets are
routed according to the path length information and update
unusable links in the Dynamic Routing Table.

We define two types of routing tables according to
whether or not the table changes in response to link failures:
(a) a Static Routing Table and (b) a Dynamic Routing Table.
The following provides a more detailed description of the
two types of routing tables.

4.1. Static Routing Table. The Static Routing Table is pre-
calculated and identical across all nodes. The Static Routing
Table is defined for a reference source node, node 0. Each
time a message needs to be routed from a node different than
node 0. So the destination ID is mapped from absolute ID
(Global ID of the destination in a network) to relative ID (ID
of the destination in the view of the current node regarded as
a reference node) as follows, referring to Algorithm 1I:

jr=A(at (my —mi)) g + (2 — 1)y (6)

where the current node’s absolute ID is m;q + ¢, the
destination node’s absolute ID is m,q + ¢, and j’ is the
relative destination ID. We denote the absolute ID of node
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FiGURE 4: End-to-End delay with infinite buffer.

u by alD(u) and the relative ID of node u at node v by
rID(u, v). Row indexes of Static Routing Table are relative
IDs.

The number of rows in the Static Routing Table is the
number of nodes minus one and the number of columns is
the number of generators (nodal degree). In Figure 7(a), a
number 1 in the routing table for Vertex-transitive routing
indicates the shortest path through that generator link. For
instance, for the relative destination ID 4, the shortest path
at node u is through generator g,.

The Static Routing Table for Exhaustive routing (SRTBL)
includes the shortest path lengths to destination through

an indicated generator. The shortest path lengths are cal-
culated from Dijkstra’s algorithm [34]. The first row of
the Vertex-transitive routing table in Figure 7(a) shows an
entry of 1 in the generator g;'' cell. On the other hand,
in the first row of SRTBL in Figure 7(b), the shortest
path is though generator g;! and is two hops away from
destination. If we choose the generator g not g; ', it would
take four hops to reach destination. We denote the routing
data to node v from node u by SRTBL(rID(v,u)) and the
hop count through generator g from node u to node v
by SRTBL(rID(v,u),g). For example, SRTBL(rID(3,0)) =
(1,3,3,3) and SRTBL(rID(3,0),5,) = 3.



International Journal of Distributed Sensor Networks

Reachability (%)

70 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25
Packet generation rate
—— BCG
—=— UDB
—o— Torus

(a) Pattern 0

100

100
95
S 90
oy
E 85
<
<
3
~ 80
75
70 1 1 1 1 1 1 1 1 1
05 1 15 2 25 3 35 4 45 5 55
-3
Packet generation rate <10
—— BCG
—=— UDB
—o— Torus

(b) Pattern 1

951

90

851

Reachability (%)

80

751

70

0 0.02 0.04

0.06

0.08 0.1 0.12

Packet generation rate

—— BCG
—=- UDB
—o— Torus

(c) Pattern 2

FIGURE 5: Reachability with buffer length 10.

4.2. Dynamic Routing Table. The Dynamic Routing Table
(DRTBL) is generated or updated based on route availability.
From the contents of a received packet, a node can determine
whether or not certain shortest path links are no longer
available. We will explain how to determine when links are
no longer available in Section 5. DRTBL is generated for
each destination node, hence the size of DRTBL will vary.
For example, node u detects that the g, link for node v is
no longer available. If there is no DRTBL for node v, node
u generates a new DRTBL for node v. Otherwise, it sets
the g link to zero in existing DRTBL for node v. DRTBLs

are unique at each node. So the relative ID is no longer
needed. The index of DRTBL is the absolute ID. We denote
routing data for node v at node u by DRTBL(alD(v), alD(u))
and data indicated by generator g for node v at node u by
DRTBL(alID(v), alD(u), g).

The Exhaustive routing algorithm has two phases during
which Type 1 and Type 2 packets are forwarded in the first
phase and the second phase, respectively. We denote DRTBL
for Type 1 packets by DIRTBL and DRTBL for Type 2
packets by D2RTBL. Table 3 summarizes routing tables for
Exhaustive routing.
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5. Phases of Exhaustive Routing

5.1. Phase 1. Phase 1 of Exhaustive routing exploits all
the shortest paths extracted from BCG with SRTLB and
DIRTBL.

5.1.1. Forwarding Rule of Phase 1. In Phase 1 of Exhaustive
routing, the goal of forwarding a packet is to identify links
corresponding to the shortest paths for the destination in
SRTBL. Then packets are forwarded to a randomly selected
link among the identified shortest path links. When a node
can no longer forward a packet using the SRTBL, the shortest
path links are disconnected, and the node forwards the

packet to the previous node using the packet’s Path history.
Path history is an ordered list of nodes traversed by the packet
being routed. The Path history is included in the Packet
frame as follows:

Packet frame

= {Source, Destination, Packet Type, Path history}.
(7)

5.1.2. Generating Dynamic Routing Table of Phase 1. Once
a node receives a packet, it uses the Path history of
the packet to determine whether or not the packet is a
returned packet. If the node ID is found at the position
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(a) Routing table for Vertextransitive

routing

(b) Static Routing Table for Exhaus-
tive routing

FiGuRre 7: Original vertex-transitive routing table and Static Routing Table of BCG in Figure 1. Note that some parts of routing tables are

omitted for brevity.

TaBLE 3: Summary of routing tables for Exhaustive routing.

Precalculated
SRTBL Data are not changed
Data are path lengths via generator
For Phase 1 and Phase 2
DI1RTBL Generated dynamically
D2RTBL Data are bits indicating the available links
Data are updated when node/link failures occur
For Phase 1
Initialized with data indicating shortest path links
For Phase 2

Initialized with data indicating all links are to be
explored

DI1RTBL

D2RTBL

before the last in the Path history, the received packet is a
returned packet. When a node receives a returned packet,
its DIRTBL is generated or updated. The SRTBL consists
of path lengths via each generator. The links in SRTBL
with smallest cell for a given rID are used. For example,
in Figure 7(b), when node a determines the packet whose
destination is node b (rID(b,a) = 5) is a returned packet
via generator g;; it generates the DIRTBL for node b. we
get DIRTBL(aID(b)) = (1,1, 1,0) since the smallest number
is 3 in the SRTBL(rID(b,a) = 5) = (3,3,3,4). It sets the
entry indicated by generator g; to zero. Finally, node a has
DIRTBL(aID(b)) = (0,1, 1,0).

The generator link used by a returned packet is set to zero
in the DIRTBL. Upon receiving a returned packet, if another
shortest path exits (DIRTBL entry for the destination is 1),
the node forwards the packet to a node indicated by the
generator link. Otherwise the node removes the last node
ID from the Path history and forwards the packet to the
previous node. If the packet goes back all the way to the
source node and the source node does not have any shortest
path to the destination from D1RTBL, the node changes the
packet type from Type 1 to Type 2. Phase 1 of Exhaustive

routing supports routing delivery as long as there is at least
one shortest path extracted from BCG. Algorithm 3 shows
Phase 1 of our Exhaustive routing algorithm.

5.2. Phase 2. Table generation rules and packet forwarding
rules for Type 1 and Type 2 packets are different. A Type
1 packet returns to source when there is no shortest path
within DIRTBL. Then the source node changes the packet
type from Type 1 to Type 2. The Type 2 packet is forwarded
via a communication link having the smallest value in
the SRTBL when a node does not have a D2RTBL of the
destination.

A packet gets stuck at a node having no available shortest
path in Phase 1. In Phase 2, the node receiving Type 2 packet
updates or generates a D2RTBL of the destination node. The
D2RTBL is initialized to 1 at all edges when generated. Type 2
packets directly refer to all path lengths information from the
SRTBL. The node chooses the link having the smallest path
length in SRTBL and an entry of one in the corresponding
D2RTBL. When no outgoing link can be identified, a
node forwards the packet back to the previous node in
the Path history. From this, Exhaustive routing exploits
more routes to destination. This mechanism improves
the reachability exploiting more available paths to desti-
nation. Figure 8 shows our Exhaustive routing algorithm
flow.

The phase 2 of Exhaustive routing can have loops
as shown in Figure 9. Assume node s sends a packet to
node d via a. The packet reaches to node e via ¢ but
the communication link is disconnected. Then except the
incoming link, the packet is forwarded to node f. The packet
follows in a circlelikea - b = ¢ - e - f = h - a —
b. To prevent loops, Phase 2 uses a different method to check
whether a packet is a returned packet. In the case of Phase 1,
a node checks whether the previous node of the last node in
the Path history is itself. However, in the case of Phase 2 of
Exhaustive routing, the node checks all the Path history node
IDs. Then node a is a returned packet referring to the Path
history (s,a, b, ¢, e, f,h). Node a sets to zero at the generator
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(1) procedure Packet forwarding (pkt)
(2) if pkt.dst = curlD then

(3) Packet delivery is successful
(4) Return
(5) end if

(6) if pkt.dst is a returned packet Table then
(7) Update Dynamic Routing Table

(8) end if

(9) if pkt.dst Dynamic Routing Table then

(23) end procedure

> pkt.dst: destination of packet
>curID: node ID of current node

> Case: node in path history

(10) if There is an available link in row of destination in Dynamic Routing Table then

(11) Forward the packet to randomly selected available generator link in Dynamic Routing Table

(12) Return

(13) else if pkt.src = curID then

(14) Change a type of pkt from Type 1 to Type 2 >There is no available shortest path from BCG
(15) Go to Phase 2 of Exhaustive routing

(16) else

(17) Update Path history and forward the packet to the previous node

(18) end if

(19)  else if Row of destination in Static Routing Table then

(20) Forward the packet to randomly selected available generator link, which has the smallest path length within the
same row, in Static Routing Table

(21) Return

(22)  endif

ArLgoriTHM 3: Phase 1 of Exhaustive routing.

link to node b in D2RTBL(d, a). The generator to h also sets
to zero through the same method. Finally, node a delivers the
packet via node m with Path history (s, a).

6. Simulation

We have designed simulators and performed experiments
to evaluate our proposed fault-tolerant routing algorithm.
We simulated BCG networks with N = 1081 (N is the
number of nodes). We list the parameter values for BCGs
used in Table 1. Parameters p and a determine N and BCG
parameter k. Parameters #; and y; were used to construct the
first generator. Parameters t, and y, were used to construct
the second generator. Using two different generators and
their inverse generators, we construct undirected degree
4 BCGs. We arbitrary chose parameters ts and ys for
generators.

6.1. Static Property Performance. First, we simulated network
disconnection by edge eliminations on BCG. We randomly
select edges to be eliminated. For each simulated case, we
generated 100 networks. The BCG is originally a connected
graph. When we eliminate some edges, the network can
consist of multiple network components (components are
not connected each other). We measured packet delivery
performance to the largest component only if the largest
component has over 95% of the total nodes. Figure 10 shows
the percentage of connected graphs among the 100 network
samples for each edge elimination rate. From those results,
we simulated BCG ranging from 5% to 35% elimination of
edges.

We showed two metrics for comparison of proposed
routing algorithms: (a) routability and (b) the average hop
count. We define the routability as the number of reachable
source and destination pairs among all pairs of nodes in
the largest component of a network and the average hop
count as the average number of nodes traversed by a packet
between its source and destination. In this subsection, the
simulator does not generate a packet before the previous
sent packet is dropped by a routing algorithm or reached
to the destination (only one packet exists in the network),
which helps to measure the routing algorithm performance
regardless of packet congestion and buffer length.

We compared Exhaustive routing with Exhaustive rout-
ing with only Phase 1 routing (Phase 1 routing) and vertex-
transitive routing (VT routing). Results of the Exhaustive
routing are acquired after dynamic routing tables are stabi-
lized. For comparison purpose, in our implementation of the
original VT routing, a random optimal link is chosen in cases
where multiple optimal links exist. When there is no available
link, the packet is discarded.

6.1.1. Routability. Figure 11 shows routability of BCG with
1081 nodes after eliminating edges. Phase 1 routing shows
larger routability than Vertex-transitive routing because
Phase 1 routing exploits all shortest paths between source
and destination. Exhaustive routing shows the largest
routability.

6.1.2. Average Hop Count. Figure 12 shows the average hop
counts of BCG with 1081 nodes with 35% edge elimina-
tion. Comparing the average hop counts of our proposed
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FiGure 8: Exhaustive

algorithms is unfair when routability is not the same. For
example, one routing algorithm supports packet delivery to
only nodes within a short distance from their sources and
another routing algorithm supports packet delivery to all
the nodes. In this case, average hop count of the second
algorithm is larger than the former. So we compared only
average hop count of Exhaustive routing with the results of
Optimal routing in which the shortest path from the current
network between the source and destination node is used.
When a packet is not delivered to the destination, we exclude
it from the average hop count.

DRTBLI: Dynamic routing table for type 1 packet
DRTBL2: Dynamic routing table for type 2 packet
DRTBL2 (alD(d)): DRTBL2 (alD(d), aID(u)) for brevity

of node u
g table

routing algorithm flow.

6.1.3. Distribution of Hop Counts. We investigated frequency
of hop counts when nodes are eliminated. Figure 13 shows
hop counts distribution. The histogram of hop counts
exhibits a right-skewed distribution with a high frequency of
short hop counts.

6.2. Dynamic Property Performance. We show dynamic prop-
erties of our routing algorithms, which means measuring
performance when multiple packets are flowing simulta-
neously in the network, as opposed to the case of static
properties. In this case, packet generation rate and buffer
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Static routing table of node a

FiGure 9: Network to illustrate a loop of Exhaustive routing.
The dot line between nodes indicates that the communication is
disconnected.
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FiGure 13: Hop count distribution of BCG with 1081 nodes after
35% edge elimination. Note that hop counts exceeding 40 are not
shown for brevity.

length are important parameters. We used the network
model described in Section 3 and removed a randomly
chosen edge each time unit according to the edge failure rate.
Simulation running time is 1000000 ticks that is ten times
longer than previous one because more time is needed to
observe the effects of link failures. The evaluation was done
in terms of the reachability according to packet generation
rate, edge failure rate, and buffer length.

Table 4 shows reachability, the average ETE delay, and
average occupied buffer length with infinite buffer and
0.0005 edge failure rate. Exhaustive routing produced the
highest reachability but also the longest End-to-End delay.
End-to-End delay does not consider nonreached packets.

Figure 14 shows reachability as a function of packet gen-
eration rate from 0.05 to 0.25. With 0.05 packet generation
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TABLE 4: Routing comparison with infinite buffer, 0.05 packet
generation rate, and 0.0005 edge failure rate.

Reachability ETE delay Buffer length
VT 56.97% 6.14 0.23
Phase 1 60.7175% 6.23 0.19
Exhaustive 92.75% 9.19 0.43

Reachability (%)

0.05 0.1 0.15 0.2 0.25

Packet generation rate

-O- VT
31— Phase 1
—— Exhaustive

FiGure 14: Comparison of fault-tolerant routing reachability with
buffer length 5 and 0.0005 edge failure rate according to packet
generation rate.

rate, Exhaustive routing produced 56% and 47% better
reachability than VT routing and Phase 1, respectively.
However, as packet generation rate increases, the perfor-
mance becomes similar because of network capacity and
overflowed packets. With 0.25 packet generation rate, Phase
1 routing shows 26% better reachability than Exhaustive
routing because Exhaustive routing has a longer average hop
count to support higher reachability in static analysis. It
increases occupied buffer length and packets are dropped.
Phase 1 routing shows better reachability than VT routing
even at high packet generation rate. Phase 1 routing does
not try to send packets by Dynamic Routing Table when
there is no shortest path extracted from BCG. So packets
guaranteed shortest path length existing in the network. Also,
the occupied buffer length of Phase 1 is smaller than one of
VT.

We investigated reachability in response to edge failure
rate with 0.05 packet generation rate as shown in Figure 15.
We changed edge failure rate, which means that frequent of
edge failure changes and the number of fault edges is changed
at the end of simulation. The total edge number of a degree-
4 BCG with 1081 nodes is 2162 and at the edge failure rate
of 0.0005, 0.00075, 0.001, 0.00125, and 0.0015, the expected
number of eliminated edges at the end of simulation are 500,
750, 1000, 1250, and 1500, respectively. Regardless of edge

13

070 T
90
80
70 : : : :
60 el
50
40

Reachability (%)

30

20
100F-- -

0 1 1 1 1 L
05 06 07 08 09 1 1.1 12 13 14 15
Edge failure rate

-O- VT
£1- Phase 1
—<— Exhaustive

FiGure 15: Comparison of fault-tolerant routing reachability with
buffer length 5 and 0.05 packet generation rate according to edge
failure rate.

failure rate, Exhaustive routing shows 50% to 100% better
reachability. Reachabilities of VT routing, Phase 1 routing,
and Exhaustive routing are decreased by 42%), 47%, and 56%,
respectively, as edge failure rate increases from 0.0005 to
0.0015.

7. Conclusions

In networks, communication failures are possible scenar-
ios. The existing vertex-transitive routing for Borel Cayley
graphs, described in Section 2, cannot efficiently tolerate
node/link failures. We proposed a fault-tolerant routing
algorithm, the “Exhaustive routing,” that uses an identical
routing table at each node and exploits multiple shortest
paths.

Exhaustive routing has two phases. In Phase 1, packets
are routed through the shortest path existing in the Borel
Cayley graph. When all shortest paths from the BCG are
disconnected, Phase 2 of Exhaustive routing is used to
exploit possible paths besides the shortest paths in the
Borel Cayley graph. Through simulation, we found that the
proposed Exhaustive routing showed 20% to 350% better
routability than that of the vertex-transitive routing with
various amount of link failures. Regarding the average hop
count, Exhaustive routing showed just 30% longer than the
Optimal routing. We also showed good network topology
properties of Borel Cayley graph comparing with torus and
de Bruijn graphs with various traffic patterns.

When we consider simultaneous multiple packets flow-
ing, Exhaustive routing showed over 50% better reachability
with certain packet generation rate. However, with high
packet generation rate, Phase 1 routing showed better reach-
ability because it sends packets along the guaranteed shortest
paths of the original Borel Cayley graph. In summary,
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Exhaustive routing has good reachability and small average
hop counts. Our proposed fault-tolerant routing algorithm
makes it possible for Borel Cayley graphs to be deployed in
realistic network scenarios.
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