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Wireless sensor networks (WSNs) are tightly linked with the practical environment in which the sensors are deployed. Sensor
positioning is a pivotal part of main location-dependent applications that utilize sensornets. The global topology of the network
is important to both sensor network applications and the implementation of networking functionalities. This paper studies the
topology discovery with an emphasis on boundary recognition in a sensor network. A large mass of sensor nodes are supposed
to scatter in a geometric region, with nearby nodes communicating with each other directly. This paper is thus designed to detect
the holes in the topological architecture of sensornets only by connectivity information. Existent edges determination methods
hold the high costs as assumptions. Without the help of a large amount of uniformly deployed seed nodes, those schemes fail
in anisotropic WSNs with possible holes. To address this issue, we propose a solution, named PPA based on Poincare-Perelman
Theorem, to judge whether there are holes in WSNs-monitored areas. Our solution can properly detect holes on the topological
surfaces and connect them into meaningful boundary cycles. The judging method has also been rigorously proved to be appropriate
for continuous geometric domains as well as discrete domains. Extensive simulations have been shown that the algorithm even
enables networks with low density to produce good results.

1. Introduction and Motivation

Sensornets are appearing as promising techniques for perva-
sive data exchange and information sharing. Sensornets are
tightly linked with the geometric environment in which they
are deployed. Detecting topological holes is a very important
task in wireless sensor networks [1]. In many crucial safe-
related scenarios, such as earthwork construction and mine
exploitation cases, we need to determine whether topological
holes in space topological structure exist, thus, we can send
the urgent warning for users so as to prevent the disasters
that happen suddenly and have enough time to deal with
the accidents in time. Many existing countermeasures usually
do strong assumptions. As we know, all of mathematical
theorems have their own used field. That is to say, before
we use these mathematical methods to solve the practical
problems, we need to proof at least explain that these
mathmatic ways can be used in the specialized domain.

Simultaneously, those current methods either enquire cus-
tomerized hardware devices or have strong assumptions on
the network environment, leading to low efficiency and
applicability. In this work, we fundamentally analyze the
detecting mind of space holes issue by topology methodology
and by observing the inevitable topology deviations intro-
duced by holes. We generalize the definition of space holes
in practical scenarios and propose a topological approach.
Mathmatical proof and simulation results show that our
approach can detect and locate various holes and relies solely
on topological information of the network. To the best of our
knowledge, we try our best to make the first attempt towards
a purely topological approach to detect holes distributedly
without any rigorous requirements and assumptions. At the
same time, we also solve the applied domain problem of
mathmaitical theorem by removing the theoretical barriers
to finish it. Our approach achieves superior performance and
applicability with the least limitations.
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On one hand, sensor network applications for exam-
ple environment monitoring and data collection demand
wealthy coverage over the region of interest. On the other
hand, the global topology of a WSN has a great influence on
the design of basic networking functionalities, for example,
point-to-point routing and data collecting mechanisms. In
this paper we study the problem of discovering the global
geometry of the sensornets field, especially, inspecting sensor
nodes on the boundaries (both inner and outer boundaries).
The standpoint we take is to regard the sensornet as a discrete
sampling of the underlying geometric environment. This
is inspired by the fact that sensornets are to offer dense
monitoring of the potential space. Therefore, the shape of
the sensor field, that is, the boundaries, indicates significant
characters of the underlying environment. These boundaries
usually have physical correspondences, such as a building
floor plan, a map of a transit network, topography changes,
and barriers (skyscrapers, subsidence areas, etc). Holes can
also map to events that are being monitored by the sensornet.
If we consider the sensors with readings above a threshold
to be “invalid”, then the hole borders are essentially iso-
contours of the landscape of the property of interest.

Cases include the identification of regions with over-
heated sensors or abnormal chemical contamination. Holes
are also important indicators of the universal health of a sen-
sornet, for example insufficient coverage and connectivity.
The detection of holes divulges groups of destroyed sensors
because of physical destruction or power consumption,
where additional sensor deployment is demanded. Besides
the real scenario mentioned above, understanding the global
geometry and topology of the sensor field is of great
importance in the design of basic networking operations.
For example, in the sensor deployment problem, if we are
desirous to spread some mobile sensors in an unknown
region formed by static sensor nodes, knowing the border of
the region permits us to guarantee that newly added sensors
are deployed only in the expected region.

A number of networking protocols also exploit geometric
intuitions for simplicity and scalability, for instance geo-
graphical greedy forwarding [2, 3]. Such algorithms based
on local greedy advances may fail at local minima if the
sensor networks have nontrivial topology. Backup methods,
for instance face, routing on a explanate subgraph, can
assist packets avoid local minima, but build high traffic on
hole boundaries, and eventually destroy the network lifetime
[2, 3]. This artificial product is not amazing because any
algorithm with a strong geometrical application, for example
geographical forwarding, ought to stick to the genuine shape
of the sensor field. Currently, there are lots of routing
schemes that address explicitly the importance of topological
properties and propose routing with virtual coordinates that
are adaptive to the inner geometric features [4, 5]. The
construction of these virtual coordinate systems needs the
identification of topological features. We focus on developing
a judgment method that detects hole boundaries based on
the Poincare Conjecture theory.

The rest of this paper is organized as follows. We first give
a brief overview of this scheme in Section 2. And then, we
present the PPA design principle in a continuous domain and

offer the solid and complete theoretical proof to describe how
the traditional and continuous topological theory (Poincare-
Perelman Theorem) can be suitably (appropriately) applied
to discrete and practical scenarios. As a result, we utilize the
Poincare-Perelman Theorem to judge (determine) whether
there are existing holes in real topological spaces. Namely,
the constructing topological structure of continuous deploy-
ment of sensors over the Euclidean plane can also be used to
justify whether holes in practical applications exist. We can
efficiently detect holes danger and therefore send alert notice
in real and safe field applications. In Section 3, we perform
the problem formulation and holes detection in discrete
environments. Section 4 extends the discussion into the
practical discrete context. Section 5 evaluates the proposed
scheme through comprehensive simulations and compares
it with state of the art-area-based approaches localization
schemes. We conclude the work in Section 5.

2. Prior Works

A lot of methods have been presented to judge sensor
locations in WSNs. A universal overview of the state-of-the-
art localization schemes is available in [6].

Existing researches on edges recognition can be separated
into three classifications: geometric, statistical, and topo-
logical methods. Geometric methods that were proposed
by Fang et al. [1] for boundary detection use geographical
location information. This method assumes that the sensor
nodes can sense their geographical locations and that the
communication graph follows the UDG (Unit Disk Graph)
assumption, when two nodes are connected by an edge if and
only if their interval is at most 1. The description of holes
in [1] is closely interrelated with geographical forwarding so
that a packet can only get stuck at a node of hole edges. Fang
et al. also presented a simple algorithm that greedily sweeps
along hole boundaries and eventually discovers boundary
cycles. Statistical methods for boundary detection usually
make assumptions about the probability distribution of
the sensor deployment. Fekete et al. [7] proposed a bor-
der detection algorithm for sensors (uniformly) randomly
deployed inside a geometric region. The primary idea is that
boundaries nodes have much lower average degrees than
nodes in the “interior” of the network. Statistical arguments
cause an appropriate degree threshold to differentiate border
nodes. An statistical way is to calculate the “restricted stress
centrality” of a vertex v, which measures the quantity of
shortest paths going through v with a bounded length [7].
Nodes in the interior tend to have a higher centrality than
nodes on the boundary. With a sufficient nodes density,
the centrality of the nodes holds dual features so that it
can be used to detect boundaries. The dominating weak
points of these two algorithms are the idealized request on
sensor deployment and density: the mean density needs
to be 100 at least. In real scenario, the sensors are not as
dense and they are unnecessarily arranged uniformly and
randomly. There are also topological methods to prime
deficient sensor coverage and holes. Ghrist and Muhammad
[8] presented an algorithm that detects holes via homology
with no knowledge of sensor locations; on the contrary,
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the algorithm is centralized, with assumptions that both the
sensing range and communication range are disks with radii
carefully tuned. Kröller et al. [9] presented an algorithm
by probing for combinatorial structures called flowers and
augmented cycles. They make less restrictive assumptions on
the problem setup, modeling the communication graph by
a quasi UDG, with nodes p and q demonstrably linked by
an edge if d(p, q) ≤ √

2/2 and not connected if d(p, q) >
1. The success of this algorithm critically depends on the
identification of at least one flower structure, which might
not often be the case specially in a sparse network. For a
real scenario, Funke [10] developed a simple heuristic with
only connectivity information. The essential idea is to build
iso contours with hop count from a root node and identify
where the contours are broken. Under the unit-disk graph
assumption and adequate sensor density, the algorithm
outputs nodes marked as border with certain guarantees.
Definitely, for each node of the geometry boundary, the
algorithm enables to mark a corresponding sensor node
within distance 4.8, and each node marked as boundary is
within distance 2.8 from the actual geometry boundary [11].
The simplicity of the algorithm is appealing; however, the
algorithm only identifies nodes that are near the boundaries
but does not show how they are connected in a meaningful
way. The density requirement of the algorithm is also rather
high; so as to obtain good results, the average degree
generally needs to be at least 16.

From mathematics aspect, the Poincare Conjecture [12]
is a theorem about the specification of the three-dimensional
sphere among three-dimensional manifolds. Original con-
jectured is proposed by Henri Poincare, the claim considers
a space that locally resembles ordinary three-dimensional
space but is connected, finite in size, and lacks any bound-
ary (a closed three-dimensional manifold). The Poincare
Conjecture states that if each loop in such a space can
be continuously tightened to a point, then it must be a
three-dimensional sphere. An similar result has been proved
in higher dimensions. (Some related content is partially
referred to the Wikipedia information).

2.1. Definitions of Manifold. A manifold is a space made by
conglutinating together pieces of Euclidean space, which is
called charts. For example you could take two-dimensional
disks and bend them around two hemispheres and then stick
them together to form a two-dimensional sphere. (See also
in Figure 1(d)).

A torus (the surface of a donut) can be established
utilizing a rectangular diagram as shown in this image.
The colored parallelograms explain how a pattern on the
associated surface would arise in case the edges were once
again disconnected. (See also in Figures 1(b) and 1(c)). A pair
of solid balls can made a three-dimensional sphere. It should
be required to discern every point of the first ball boundary
with the corresponding point of the second one. Other kinds
of manifolds can be established by the mimetic ways.

2.2. Explanations of Homeomorphic. Generally, two shapes
are homeomorphic if one of these shapes can be transformed

(a) A loop can be contracted to a point without leaving the
sphere surface

(b) Gradual Construction of a torus based on a rectangle

(c) Any chromatic loops can-
not be contracted to a point
without leaving the torus sur-
face

(d) Hemispheres mapped to a
Whole Sphere

Figure 1: Diagram of manifold.

into the other without pause or discontinuity. A homeomor-
phism is a function of continuous domain that maps points
of one object into another.

Two spaces are regarded as homeomorphic if a homeo-
morphism between them exists. Such as, a two-dimensional
sphere is homeomorphic to the surface of a cube; homo-
plastically, a three-dimensional sphere is homeomorphic
to the three-dimensional boundary of a four-dimensional
hypercube. In the above-mentioned primary concepts, they
can aid to comprehend the specification of the Poincare-
Perelman Theorem: the Poincare-Perelman Theorem says
that a three-dimensional manifold which is compact, has no
boundary and is simply connected must be homeomorphic
to a three dimensional-sphere. The original phrasing was
as follows: consider a compact three dimensional mani-
fold V without boundary. Is it possible that the fundamental
group of V could be trivial, even though V is not home-
omorphic to the three-dimensional sphere? This centurial
challenging problem is proofed by Grigori Perelman [12] in
2006.

Here is the standard form of the conjecture: every simply
connected, closed tridimensional manifold is homeomor-
phic to the triaxial sphere. Therefore, a centralized method
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of collecting all of the information to a central server is not
feasible for large sensor networks.

2.3. Preliminaries. Materials for topology theory. The follow-
ing definitions in topology theory can be found in [13].

Topology. Let X be a set. T ⊆ 2X is called a topology on X
if (1) ∅,X ∈ T ; (2) if A,B ∈ I, then A ∩ B ∈ T ; (3) if
{Ai | i ∈ I} ⊆ T , then

⋃
i Ai ∈ T . The pair (X , T ) is called

a topological space. The members of T are called open sets.
If Y is a subset of X , then T | Y = {U ∩ Y | U ∈ T } is
a topology on Y and called the induced topology of (X , T ).
A bijection f : (X1, T1) → (X2, T2) between two topological
spaces is called a homeomorphism if B ∈ T2 iff f −1(B) ∈ T1

for any B ⊆ X2. In this case, (X1, T1) and (X2, T2) are said to
be homeomorphic to each other.

Dense Set. Let (X , T ) be a topological space and C ⊆ X . A
point x ∈ X is called a cluster of C if U ∩ C /=∅ any U ∈ T
with x ∈ U . Denote C− as the set of all cluster of C, called
the closure of C. The set C is called a closed set if C = C−.
A set is called a clopen set if it is simultaneously open and
closed. A set C is called dense of (X , T ) if C− = X . Dense set
is an important and useful concept in topology. For example,
every continuous map from a dense set of a topological
space to another topological space can be extended onto the
whole topological space. Thus dense sets in a topological
space may share some same topological properties as the
whole topological space, for example the connectedness as
Theorem 1 shows.

Partition. The specification of partition £ for a set X , a
family of subsets {Xi | i ∈ I} is called a partition of X , if⋃

i Xi = X and Xi ∩ Xj = ∅ for all i, j ∈ I with i /= j.

2.4. Our Contributions. We develop a practical and efficient
determination solution for boundary detection in sensor
networks, using only the communication graph and not
making unrealistic assumptions. We do not assume any
location information, angular information, or distance infor-
mation. More importantly, we do not request that the
communication graph obeys the unit disk graph model or
the quasi-unit disk graph model. Actual communication
ranges are not circular disks and are often quite irregularly
shaped [14]. Algorithms that depend on the unit disk graph
model fail in practice (e.g., the extraction of a planar
subgraph by the relative neighborhood graph or Gabriel
graph [15].

Our PPA method also readily provides other topological
and geometric information, such as the number of holes
(genus), the nearest hole to any given sensor, and the sensor
field’s medial axis (the collection of nodes with at least
two closest boundary nodes), which is useful for virtual
coordinate systems for load-balanced routing [4]. Simulation
results show that our algorithm correctly determines useful
borders for sensor networks with rational node density (aver-
age degree 10 and above) and distribution (e.g., uniform).
The algorithm also works well for nonuniform distributions.
The algorithm is efficient. The entire procedure involves only

three network flooding procedures and greedy shrinkage of
paths or cycles. Further, as a theoretical ensure, we prove
that for a continuous geometric space bounded by polygonal
obstacles, the case in which node density approaches infinity,
the algorithm correctly discovers all of the boundaries. More
definitely, we investigate the fact that a legitimate multihop
sensor network deployed on the surface of a geometric
terrain, (even possibly including irregular boundaries, inner
obstacles, or even on a non-2D plain) PPA solution is
able to accurately estimate the node-to-node distances and
calculate node locations with only 3 seeds, thus increasing
system scalability and usage as well as lowering hardware
costs. In addition, PPA does not presume the superior
communication capability of seeds, that is, with much larger
radio range than those of the ordinary nodes [16].

Due to all mentioned above assumptions based on UDG
graph model and its basis on the symptom of packing
number, it is thus inaccurate under non-UDG graphs.
Indeed, there are still no perfect symptoms found to establish
an all-round method in the resource-limited sensornets.
Our design is originated from the perspective of topological
observation and is based on the theory of Poincare Con-
jecture, our solution is orthogonal to existing approaches
and takes a step towards relaxing these assumptions and
expanding the applicability of methods.

3. Problem Formulation and Holes Detection

The definition has been given under the constraints of the
UDG communication graph model, which has been proven
far from practical in many analytical and experimental
works. Second, the distance-based definition in Euclidean
space naturally binds the hole features with external geomet-
ric environments and thus neglects the inherent topological
impacts introduced by holes. We hereby present a more
general and fundamental definition of the hole based only
on network topologies and aim to present the inherent
characteristics of holes. According to the Poincare-Perelman
Theorem, in the three dimensions space, the donut topology
is homeomorphous to the coffee cup topology (see also
Figure 2(b)). As shown in Figure 2(a), since these two
topologies are not equivalent (namely, not homeomor-
phism), we can determine that the holes in the monitored
areas based on the Poincare-Perelman Theorem exist (see
also Figures 2(a) and 2(b)). Since these two topologies
are not equivalent (namely, not homeomorphism), we can
determine that the holes in the monitored areas based on the
Poincare-Perelman Theorem exist.

In real scenario, we will treat the multihole condition. But
in this proposed solution, we currently do not differentiate
the numbers of holes. In future work, we will discuss and
deal with this condition.

Owing to constructing the network topological structure
of monitored areas, in given the surface S, we first select
an arbitrary point in S as the root and run a continuous
Dijkstra shortest path algorithm [17, 18] to construct the
topology structure (manifold) of monitored areas. As shown
in Figure 3(a) and Figure 3. Consequently, we can determine
whether any closed and simply connected manifold is
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(a) Topology inequivalent

(b) Topology inequivalent

Figure 2: Diagram of manifold.

homeomorphic to the three dimensions sphere. If it is not
homeomorphic to the three dimensions sphere. It refers
to there is/are hole(s) in the monitored areas. (See also in
Figure 3(b)).

3.1. Holes Detection in Discrete Environments. We have char-
acterized the impact of holes and described the principles
of holes detection under continuous settings in the previous
section. In a real multihop network, however, nodes are
deployed discretely on the field. In this section, we focus on
solving the mapping question from the discrete domain to
continuous geometric domain. Since the theory of Poincare-
Perelman Theorem belongs to the judgement of continuous
geometric domain, we need to proof the correctness and
applicability of this topological judgement. By means of the
following solid proof, we can transfer the discrete topological
space to the continuous geometric domains. Namely, we
utilize the partial discrete topology structure to substitute the
whole continuous geometric topology. As a result, we can
apply the theory of Poincare-Perelman Theorem to judge the
existence of holes in the monitored areas by WSNs.

Let T be a topology on a set X and Y ⊆ X . Then
T | Y = {U ∩ Y | U ∈ T } is a topology on Y , called the
induced topology on Y and in this case (Y , T | Y) is always
called a subspace of (X , T ) and T an extension of T | Y
from Y to X . We confirm that these two topological spaces
(X , T ) and (Y , T | Y) have the same topological properties.
In a topological space X , a subset U is called dense if U− =
X , where U− is the closure of U in (X , T ). A topological
space (X , T ) is called connected if there exists no clopen
(simultaneously closed and open) subset except empty and
whole set X .

Theorem 1. Suppose that (Y , T1) is a dense subspace (X , T2),
then (Y , T1) is connected if and only if (X , T2) is connected.
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Figure 3: Diagram of hole boundary construction.

Proof. Suppose that (Y , T1) is connected. If (X , T2) is not
connected, then there exists a clopen set U in (X , T2) and
U /∈ {X ,∅}. Put V = U ∩ Y , we have that V is a clopen set
in (Y , T1), which implies that V = Y and Y ⊆ U (obviously,
V /=∅). Since Y is dense in (X , T1), we have X = Y− ⊆
U− = U , which contradicts to U /=X . Conversely, suppose
that (X , T2) is connected. If (Y , T1) is not connected, then it
contains a clopen set V which is neither Y nor∅. For this V ,
there exist a clopen set U in (X , T2) such that V = U ∩ Y . In
order to induce a contradiction, we only need to show that
U /=X . If U = X , then V = U ∩ Y = Y , which is another
contradiction to V /=Y . The proof is complete.

Remark 2. If a topological space (X , T ) is n-connected
topological space (n ≥ 2), then (X , T ) can exactly be
separated into n − 1 connected subspace {(Xi, T | Xi) |
i = 1, 2, . . . ,n − 1} such that {Xi | i = 1, 2, . . . ,n − 1} is a
partition of X . By Theorem 1, if (Y , T1) is a dense subspace
(X , T2), then (Y , T1) is n-connected if and only if (X , T2) is n-
connected. As mentioned in the above Remark, the definition
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of concept partition for a set X , a family of subsets {Xi | i ∈
I} is called a partition of X , if

⋃
i Xi = X and Xi∩Xj = ∅ for

all i, j ∈ I with i /= j.

The following verdict is usually held for any set that
satisfies the requirement of the theory. Whatever the set is
finite or infinite. We assume that a certain area deployed
the WSNs. This area can be considered as a smooth curve
equipped with the traditional Euclidean topology, the set
of all sensors equipped with their own topology can be
considered as a subspace of the former one. Furthermore, we
assume that the set of all sensors is dense in this area.

We assume that the whole sensor nodes set, which
completely cover the monitored area, constructs a dense
set. A dense set is the monitored area which is abundantly
and completely covered by the large quantities of sensor
nodes. Therefore, the network topology can be continuously
expanded to the monitored area. Specially, some part of
sensornets can be destroyed by some accidents so that it will
lead to form a hole in the architecture of topology. As a result,
there exists a hole in the corresponding practical area. The
sensornets corresponding geometric structure is a universal
Euclid topology, particularly, if a hole in this monitoring
area exists. If and only if the topology of sensornets is sub
dense space of area topology space. Furthermore, If and only
if the geometric topology of monitored area is connected
completely, consequently, the constructing topology of sen-
sornets is interconnected. Simultaneously, if and only if there
exists holes in the geometric topology of monitored area, as
a result, there exists holes in the constructing topology of
sensornets.

Thus detecting whether there are holes existing in
sensornets topology is equivalent to detecting whether there
are holes in the monitored area.

Steps. Symbolic Interpretation. Area S, T is the
Euclidean topology of S. The set C denotes the sensornets
while C1 denotes the efficient sensornets. Precondition:
set C is dense in (S, T ).

(1) Let S1 be the closure of C1 on (S, T ). If it exists
holes, then S1 ⊆ S. (2) Obtaining T1 while the topology T
of S is constrained in the S1. Therefore, (S1, T1) is a subspace
of (S, T ). (3) In the above mentioned, S1 is continuous set.
Consequently, we can depend on the Poincare Conjecture
theory to determine whether there are holes that existed
in monitoring area. If there are holes in the topology
structure of (S1, T1), then there are holes in the topology
structure of C. The above-mentioned theory can guarantee
this determination.

3.2. Topological Boundary Recognition. Suppose a large num-
ber of sensor nodes are scattered in a geometric region with
nearby nodes communicating with each other directly. Our
goal is to discover the nodes on the boundary of the sensor
field, using only local connectivity information. We propose
a solution that identifies boundary cycles for the sensor field.
For compact 2-dimensional surfaces without boundary, if
every loop can be continuously tightened to a point, then

the surface is topologically homeomorphic to a 2 spheres,
usually just called a sphere. The Poincare Conjecture asserts
that the same is true for 3-dimensional surfaces. (See also
in Figure 1(a)). Practically, for obtaining the topology of
monitored areas, we firstly use the Dijkstra Shortest Path
algorithm [17] to construct the topology (manifold) of
monitored areas. Consequently, we can determine whether
any closed and simply connected manifold is homeomorphic
to the three dimensions sphere. If it is not homeomorphic to
the three dimensions sphere, it refers to there is/are hole(s)
in the monitored areas (see also Figure 3(b)).

In the following, we first outline the Dijkstra Shortest
Path algorithm and then explain each step in detail.

Algorithm allows the node at which we are starting to
be called the initial node. Let the distance of node Y be the
distance from the initial node to Y . Dijkstra’s algorithm that
allocates some initial distance values and will try to increase
them step-by-step. Assign to every node a distance value.
Set it to zero for our initial sensor node and to infinity
for all other nodes. Mark all nodes as unvisited. Set initial
sensor node as current. For current node, consider all its
unvisited neighbors and calculate their distance (from the
initial node). For instance, if current node (A) has distance
of 6, and an edge connecting it with another node (B) is
2, the distance to B through A will be 6 + 2 = 8. If this
distance is less than the previously recorded distance (infinity
in the beginning, zero for the initial node), overwrite the
distance. When we are done considering all neighbors of the
current node, mark it as visited. A visited node will not be
checked ever again; its distance recorded now is final and
minimal. If all nodes have been visited, finish. Otherwise,
set the unvisited node with the smallest distance (from
the initial node) as the next “current node”. Suppose you
want to find the shortest path between two intersections on
a map, a starting point and a destination. To accomplish
this, you could highlight the streets (tracing the streets
with a marker) in a certain order, until you have a route
highlighted from the starting point to the destination. The
order is conceptually simple: at each iteration, create a set
of intersections consisting of every unmarked intersection
that is directly connected to a marked intersection, and this
will be your set of considered intersections. From that set of
considered intersections, find the closest intersection to the
destination (this is the “greedy” part, as described above) and
highlight it and mark that street to that intersection, draw an
arrow with the direction, then repeat. In each stage mark just
one new intersection. As getting to the destination, follow the
arrows backwards. There will be only one path back against
the arrows, the shortest one. The basic idea is to detect the
existence of holes by judging whether if the existing topology
is equivalent to sphere in the three-dimension space. Based
on the mentioned above, we can construct a topology of
monitored areas. Intuitively, it is very hard to determine the
existence of holes by the two-topology structure. We assume
our method can obtain the whole monitored topology, and
then we can compare this obtained topology with sphere
topology. Finally, we can determine whether holes in the
monitored area exist.



International Journal of Distributed Sensor Networks 7

4. Simulations

We performed extensive simulations in various scenarios,
with the goal to evaluate the performance of the algorithm
with respect to the network topology, node density and
distribution, so on. We particularly note that our method
works well even in cases of very low average degree, such as
less than 10, or even as low as 10 in some models. Its ability
is also similar to average degree 20 condition. Degree 6 has
been shown to be optimal for mobile networks [19]. For each
figure in this part, we assume a root node in the upper left
corner and middle to illustrate the communication range of
the sensor field.

4.1. Random Distribution of Sensors. In this experiment, we
first assume that the network connectivity and link quality
are good enough. In terms of a uniform distribution, we
randomly deploy 1600 nodes in a square region with one
hole. The average degree of the graph is discriminated by
regulating the communication radius. As expected, Figures
4(a) and 4(b) show the results of our method. We can
efficiently judge the hole existing in the monitored area.
Connectivity is necessary for computing the shortest path
tree. Practically, this low-degree graph with insufficient
connectivity is the major troubling issue for prior boundary
detection methods. Since our method only requires the
communication graph, we can use several simple policies
to raise artificially the average degree. For a disconnected
network, we use the largest connected component of the
graph to build our shortest path tree. Then we artificially
enlarge the communication radius by taking two/three hops
neighbors as fake one-hop neighbors. According to this
means, the connectivity of the graph will be made better,
and the results will be improved correspondingly by this
simple strategy. The result using three hops neighbors has
fewer incorrectly marked extremal nodes, and the final
judgement is in good result except that the boundary cycle
is not very tense. This is understandable since we make the
communication range artificially larger, so that more nodes
could be equivalently to distribute on the boundary now.
Therefore, based on our solution, we can efficiently find holes
in the supervised area.

4.2. Grid with Random Perturbation. In this simulation, we
put about 1600 nodes on a grid and then perturbed each
point by a random shift. Especially, for each original grid
node we create two random numbers modulo the length
and the width of each block of the grid and use these
two small numbers to perturb the positions of the nodes.
This distribution may be a good approximation of manual
deployments of sensors; it also gives an alternative means
of modeling “uniform” distributions, while avoiding clusters
and holes that can arise from the usual continuous uniform
distribution or Poisson process. As the theoretic verification
considering, our method generates very good results, while
average degree of graphs is ten or more.

4.3. Low Density, Sparse Graphs. In the experiments, we
spread sensor nodes in a square region with one hole. In

order to guarantee good connectivity, the nodes are dis-
tributed on a randomly perturbed grid. Our experiments
show that if we amend the communication radius and
decrease the density of nodes, our solution is performed very
well, even for low density or sparse condition, as long as the
average degree is at about ten or more. See also Figure 4(c).

5. Conclusion and Discussion

We devote our most efforts to explore the application of
Poincare Conjecture to resolve the holes detection of safety-
monitored areas in WSNs. Based on the theoretic spec-
ification, we can judge whether there are holes in the
detected area. Because the detected network topology is
not homeomorphous to the three dimensions sphere, it
can be confirmed to have holes in the detected topology
architecture. Therefore, we can accomplish the detecting
holes purposes. The proposed new detection solution enables
us to find holes in the continuous case, in discrete sensors
networks several implementation issues arise. First, even for
a given homotopy type, there needs not be a unique shortest
path between two nodes. Thus, the boundary topology
discovered by our solution, as shown in the simulations,
may not tightly surround the real boundaries. Currently, we
have two approaches to improve it. One is to make use of
the fact that the nodes with lower degree are more likely to
be on the boundary; thus, we implemented a preferential
scheme for low-degree nodes when computing shortest
paths. Another approach is to use an iterative method to find
more extremal nodes and then refine the topology; this can
also help to address the issue that several extremal points
may have the same positions because we use hop counts
to approximate true distances. Second, deciding the correct
orderings of the extremal nodes requires some care. In the
continuous case, extremal nodes project to their nearest
node. In the discrete case, since we employ hop counts to
approximate the true distance, it is possible that different
extremal points are mapped to the same position on the
inner boundary, obscuring their ordering. Again, by using
an iterative procedure, we delete all the extremal nodes
with duplicate positions except one and then iteratively find
more extremal points and refine the boundary gradually. In
real scenarios, the sensor nodes often know some partial
location information or relative angular information. Such
positional information can help to improve the performance
of our holes detection solution, for example, when we utilize
the shortest path algorithm to construct the topology of
monitored areas. If the nodes have knowledge of a general
arctic direction, it is easier to distinguish the extremal
nodes in the interior and exterior of rough boundary. Also,
if we have estimated distance or other rough localization
information, other than pure hop count, the procedure to
find shortest paths will become more reliable. Finally, our
method discussed until now assumes a sensor field with
holes. We remark that the case with no holes can be solved
as well.

Finally, our method discussed until now assumes a sensor
field with holes. We remark that the case with no holes can
be solved as well. If a network topology is equivalent to
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Figure 4: Percent Detected against various node density.

(homeomorphous) the three dimensions sphere, then it have
no holes on the monitored areas based on the proofed of
Poincare Conjecture, vice versa.

6. Conclusion

In this paper, a novel CT reconstruction model is proposed
based on the approximate inverse where the kernel of
the FDK method is derived and is used to complete the
reconstruction. In order to eliminate the imposed ring
artifacts, the kernel is truncated with proper radius. Recon-
struction results show that the compact support FDK kernel
reconstruction model can suppress the ring artifacts. The

proposed reconstruction model preserves the simplicity
of the FDK reconstruction method and also provides an
alternative to realize the approximate inverse method for
circular trajectory. And when the kernel of an algorithm
is modified, the corresponding reconstruction formula is
also modified accordingly. And this give us another way to
improve the existing reconstruction methods.
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