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The intrusion prediction for wireless sensor networks (WSNs) is an unresolved problem. Hence, the current intrusion detection
schemes cannot provide enough security for WSNs, which poses a number of security challenges in WSNs. In many mission-
critical applications, such as battle field, even though the intrusion detection systems (IDSs) without prediction capability could
detect the malicious activities afterwards, the damages to the WSNs have been generated and could hardly be restored. In addition,
sensor nodes usually are resource constrained, which limits the direct adoption of expensive intrusion prediction algorithm. To
address the above challenges, we propose an intelligent intrusion prediction scheme that is able to enforce accurate intrusion
prediction. The proposed scheme exploits a novel three-layer brain-like hierarchical learning framework, tailors, and adapts it for
WSNs with both performance and security requirements. The implementation system of the proposed scheme is designed based
on agent technology. Moreover, an attack experiment is done for getting training and test data set. Experiment results show that the
proposed scheme has several advantages in terms of efficiency of implementation and high prediction rate. To our best knowledge,
this paper is the first to realize intrusion prediction for WSNs.

1. Introduction

Wireless sensor networks (WSNs) have become a technology
for the new millennium with endless applications ranging
from civilian to military [1–3]. A wireless sensor network
is consisted of a large number of wireless-capable sensor
devices working collaboratively to achieve a common objec-
tive. As a matter of fact, WSNs are often deployed in poten-
tially adverse or even hostile environments where adversaries
can launch various kinds of attacks [3–5]. The nodes of
WSNs are vulnerable to these attackers, because unmanned
sensors are often deployed through open medium and
dynamic network topology. Intrusion detection is a security
technology that attempts to identify those who are trying
to break into and misuse a system without authorization
and those who have legitimate access to the system but are
abusing their privileges. Recently, the problem of intrusion
detection in WSNs has received considerable attention [4–
15].

In the existing intrusion detection schemes of WSNs
[5–15], two approaches have been used: signature-based
detection and anomaly detection. Signature-based detection
[7–12] lies in the monitoring of system activity and the
identification of behaviors which are similar to pattern
signatures of known attacks or intrusions stored in a signa-
ture database. This category of intrusion detection systems
(IDSs) detects accurately known attacks, and the signatures
are often generalized in order to detect the many variations
of a given known attack. But this generalization leads to
the increase of false positives (i.e., false alarms). The main
limitation of such IDSs concerns their incapability to detect
unknown intrusions that are not already present in the
signature database.

On the other hand, anomaly detection systems [6, 13–15]
detect attacks by observing deviations from a preestablished
normal system or user behavior. This approach makes detect-
ing new or unknown attacks, if these attacks imply an abnor-
mal use of the system. The main difficulty in implementing



2 International Journal of Distributed Sensor Networks

reliable anomaly detection systems is the creation of the
normal behavior model. Since it is difficult to define correctly
these models and only incomplete or incorrect models can be
obtained, which leads to false negatives or false positives.

However, there is an important limitation of the existing
intrusion detection schemes in WSNs, which is shown as
follows. The existing intrusion detection schemes of WSNs
have no concept of intrusion prediction. In many mission-
critical applications, such as battle field, some attack pro-
cesses are executed in a very short time [5] when the
threat environment for WSNs includes a well-resourced
adversary. Even though IDSs can detect these malicious
activities afterwards, damages could have been done to the
compromised WSNs which could hardly be restored in some
cases. Therefore, it is very important to develop algorithms
and tools to track and predict attacks in advance to remove
potential threats. The intrusion prediction mechanisms for
existing applications, such as computer networks, grid com-
puting systems, and automated substation, are developed to
predict various attacks, but cannot be applied directly to
WSNs [16–21].

Recently, in the intrusion detection community, interest
has been growing applying machine learning techniques to
get high performances in execution time and overall classi-
fication accuracy [22–24]. Machine learning is a technology
which is concerned with the design of algorithms that allow
systems to evolve behaviors based on empirical data. A
learner can take advantage of examples (data) to capture
characteristics of interest of their unknown underlying
probability distribution. Data can be seen as examples that
illustrate relations between observed variables. A major focus
of machine learning research is to automatically learn how to
recognize complex patterns and to make intelligent decisions
based on data. Hence, the learner must generalize from given
examples, so as to be able to produce a useful output in new
cases. Machine learning based intrusion detection for WSNs
[25] has gained limited attention so far, not to mention
intrusion prediction or implementation on the current gen-
eration of sensor nodes.

From the above discussion, it is clear that achieving
prediction with high accuracy using machine learning is still
an open challenge in WSNs. Towards addressing this chal-
lenge, we proposed in this paper a machine learning based
intelligent intrusion prediction scheme. By exploring a three-
layer brain-like hierarchical learning model, we proposed a
novel intelligent intrusion prediction scheme, namely, BLID,
which is specially tailored for WSNs. We based our design on
the observation of the inherent nature of WSNs that different
nodes own different recourses. Hence, we design this intel-
ligent intrusion prediction as a hierarchical model. In the
proposed scheme, supervised learning with relatively low
complexity is performed in the resource-restrained sensors.
Inversely, unsupervised learning and reinforcement learning
are implemented in the sinks and base stations which have
powerful resources. The learning modules in different layers
can interact with each other. Our solutions have several
advantages. First, BLID is efficient in terms of storage, com-
putation, and communication overhead on the sensor side.
Most important, BLID can perform intrusion prediction.

To the best of our knowledge, the design of intrusion pre-
diction in WSNs has not been addressed in previous work.

In summary, our paper makes the following contribu-
tions. (1) It introduces the intrusion prediction problem for
the first time in WSNs. (2) The proposed scheme applies
and tailors brain-like hierarchical learning to WSNs for
achieving intrusion prediction with high accuracy. (3) The
implementation of BLID is simulated on the current genera-
tion of sensor nodes.

The rest of this paper is organized as follows. Section 2
describes the system model and assumptions as well as
some technical preliminaries on which our scheme is based.
Section 3 presents the proposed scheme in detail. Section 4
describes the wireless attack experiment through which we
get the training and testing data set for evaluating our
scheme. In Section 5, we evaluate our scheme in terms of
efficiency and accuracy. Finally, we conclude this paper in
Section 6.

2. Models and Assumptions

2.1. Network Model. In this work, we consider a WSN with
three-layer structure which includes base station layer, sink
layer, and sensor layer. This structure is a popular way for
deploying WSNs [5, 26–28]. Usually, the sensor nodes are
scattered in a sensor field, and each sensor can collect data
and deliver the data to the sink or base station (BS). Sensor
nodes are static most of the time, whereas mobile nodes can
be deployed according to application requirements. One or
several base stations (BSs) can be deployed together with the
network. BSs and sinks can be either static or mobile. BS acts
as an interface between the WSN and the external world.

Data storage and access in WSNs mainly follows two
approaches which are centralized and distributed approaches
[29]. In centralized scheme, sensed data are collected from
individual sensors and transmitted back to the sink, for stor-
age and access. In the distributed case, the sensors store the
data locally or at some designated nodes within the network.
The stored data can be further accessed in distributed
manner by the users of the WSN. BS, sink, and sensor are
the access points (AP) when users access the data in the
WSN. An access scenario is illustrated in Figure 1. Local users
can access WSNs through wireless links directly. However,
remote users need to access the WSN through satellite,
Internet, or mobile network.

2.2. Intrusion Model. This paper considers that adversaries
could be either external intruders or unauthorized network
users. Due to lack of physical protection, sensor nodes are
usually vulnerable to strong attacks. In particular, we con-
sider the adversary with both passive and active capabilities,
which can (1) eavesdrop all the communication traffics in
the WSN, and (2) compromise and control a small number
of sensor nodes. In addition, (3) unauthorized users may
collude to compromise the encrypted data.

2.2.1. Wire Intrusions. The base station can act as an interface
between the WSNs and other communication network,
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Figure 1: An access scenario of a WSN.

which is most likely to be Internet. In other words, remote
users usually access the data in the base station through
Internet. Hence, the intrusion attacks of Internet can present
to the base station. There have been many studies focused on
intrusion detection and prediction for Internet [16, 18, 20–
22, 24, 25]. The Internet intrusions present to base station
can be resolved on these schemes.

2.2.2. Wireless Intrusions. Comparing with wire networks,
wireless networks face more intrusions because the wireless
communication medium is open physically to adversaries.
Various adversaries can attack wireless networks through
wireless links [30]. More seriously, a lot of free tools are
available on the Internet that allows novice hackers to exploit
wireless protocol weaknesses to deny access to a network.
All these facts raise the challenge of intelligent intrusion
prediction for WSNs.

The wireless communication infrastructure of WSNs
is the choice of application. Because many existing WSNs
are deployed by IEEE 802.11 and mote device technologies
[31], we consider in this paper IEEE 802.11 as the wireless
communication infrastructure of WSNs. In WSNs, all the
sensors, the sink, and the base station can act as the wireless
access points; hence, all the three kinds of nodes could be
intruded by the wireless attacks. There is a free collection of
tools to attack 802.11-based networks available for download
on Internet [32]. These tools operate on WEP and WPA-
protected networks.

In this paper, we take four kinds of attacks, for example,
doing experiments, which are ARP replay attack, forgery
attack, ongoing dictionary attack, and chopchop attack.
These attacks are the common attacks in 802.11 networks
[33, 34].

2.3. Preliminaries. This section briefly describes the tech-
nique preliminaries on which our scheme is designed.

2.3.1. Brain-Like Hierarchical Learning. Recently, brain-like
learning and computation have attracted a lot of attentions
in the area of machine learning. Our brain is a highly
complicated structure and there have been many studies
focused on brain-like learning [35–38]. In this paper, we
consider the brain-like learning model in [37], which is
developed into a system structure in [38]. This brain-like
model is based on the fact that the cerebellum is a specialized
organism for supervised learning (SL), the basal ganglia are
for reinforcement learning (RL), and the cerebral cortex is for
unsupervised learning (UL). In the framework, a particular
function, such as the control of arm movement, can be
realized by a global network combing different learning
modules in the cerebellum, the basal ganglia, and the cerebral
cortex. The three learning modules of brain-like learning are
described as follows.

Supervised Learning (SL) in the Cerebellum. This learning
module is which constructs an input-output mapping. It
is characterized by the parameter update based on the
correlation between the output error and the presynaptic
input.

Unsupervised Learning (UL) in the Cerebral Cortex. This
learning module is characterized by the relaxation dynamics
for determining the output as well as the Hebbian synaptic
rule under a certain regularization.

Reinforcement Learning (RL) in the Basal Ganglia. This
learning module is concerned with how an agent ought to
take actions in an environment so as to maximize some
notion of cumulative reward.

2.3.2. Agent Technology. The agent technology is an impor-
tant technique in recent researches of the artificial intel-
ligence [39]. In the area of WSNs, a lot of new works
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Figure 2: Systemic design of BLID.

introduce agent technology into WSNs [40–42]. Using agent
technology in WSNs leads to a number of advantages, such
as scalability, event-driven actions, task-orientation, and
adaptivity.

3. Brain-Like Hierarchical Learning
Intelligent Intrusion Prediction Scheme

This section presents the proposed intelligent intrusion
prediction scheme for WSNs. We first introduce the systemic
design. Then, we present the detailed description of our basic
scheme, which is followed by an advanced design.

3.1. Systemic Design. In this section, we set up the system
model of BLID, as shown in Figure 2. The basic idea of the
intelligent intrusion prediction scheme is distributed detec-
tion and centralized prediction. Every node of the WSN can
perform intrusion detection. However, only base station can
perform intrusion prediction for the whole WSN.

Considering the limited resources of sensors and the
powerful resources of sink as well as base station, we define
two levels of intrusion detection: (1) supervised learning
based detection and (2) unsupervised learning based detec-
tion. The supervised learning based detection is a low level
detection which is performed in sensors. This part is cor-
responding with the cerebellum of the brain. On the other
hand, the unsupervised learning based detection is a high
level detection which is performed both in sinks and base
station. This part is corresponding with the cerebral of the
brain. If some unknown attacks occur to a sensor, the sensors

will send the unknown features to the sink. This operation
is marked as “promotion.” Then the sink will determine
whether the access is an attack or not by its high level rules.
If the sink cannot identify based on current rules, it will
adaptively update the rules based on unsupervised learning.
Then the sink sends the response to the sensor. In short, that
sink and the base station perform intrusion detection by
theirselves. The sensor performs low level detection by itself,
but it needs the help of sink for performing high level
detection.

In the WSNs, only the base station can perform intrusion
prediction which is based on reinforcement learning. This
part is corresponding with the basal ganglia of the brain. In
case of an intrusion, the sensors and sinks send the related
features of the attack to the base station through a “report”
operation. Similarly, the detection modular in the base
station reports every local intrusion to prediction module.
Note that sensor reports every intrusions to base station via
sink because sensors cannot communicate directly with the
base station.

Through the basic idea above, a particular detection or
prediction function can be realized by a global network
combing different learning modules in sensor, sink, and base
station.

3.2. Supervised Learning Based Intrusion Detection in Sensor.
Decision tree is a kind of classifier for supervised learning. In
order to perform supervised learning with low complexity,
we use decision tree (DT) as a classifier for data analyzing.
Usually, there are three criteria for constructing a decision
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tree: the information gain, the gain ratio, and the Gini index
[43].

There are three steps to design decision tree based intru-
sion detection. The first step is defining and initializing vari-
ables that will be used in the ensuing process. The second step
is defining a set of primary detection rules. A detection rule
contains a set of keywords that must be checked to trigger
an alarm. Finally, the third step is defining a set of primary
action rules that describe the behaviour after analyzing the
attribute data. The core part is how to construct a decision
tree.

The decision tree construction scheme for sensor must
have low complexity because the resources of sensors are
limited.

The decision tree in our scheme contains three types of
nodes: ordinary, leaf, and promotion nodes. Each node is
represented by N (A,D,M) where A is an attribute set, D
is a set of detection rules, and C is a set of countermeasure.
The attribute set A denotes the set of attributes already used
to decompose the tree and D is the set of detection rules
that are matched at that node. The initial root node contains
the whole set of detection rules, an empty set of attributes,
and an empty set of matched rules. Then, we iteratively
decompose each node according to the set of possible
attributes using the appropriate inference rules. Leaves are
nodes that cannot be transformed anymore. They can be
used to report attacks thanks to the detection rules contained
in their last field. A promotion node is a node at which can
be further processed by the sink as a root node of subtree.

Before we present our construction scheme, we define
some notations and auxiliary functions employed in the
decision tree construction scheme.

Definition 1. Let T = {t1, t2, . . . , tk} be a set of criterion
variable and d be a rule which is {(v1 = t1)∧(v2 = t2)∧· · ·∧
(vk = tk)}. k is the dimension of T . We define the function
Drawn(d) = {v1, v2, . . . , vk}. The function can be extended
to a set of rules L by

Drawn(D) =
⋃

d∈D
Drawn(d). (1)

Definition 2. We define the function Obtain(N(F,D,M)) =
{Subtree | N1(F,D1,M1) ∪ N2(F,D2,M2) · · · ∪ Nm(F,Dm,
Mm)}. N1,N2, . . . ,Nm are the member nodes of the subtree.
This function sends N(F,D,M) to a sink. Then N(F,D,M)
can be further processed by the sink and a subtree will
be returned to the sensor. The root node of the subtree is
N(F,D,M), so that the subtree can be integrated with the
current tree.

We use function Drawn to extract the parameters of the
local rules, which are low level rules. Also, we use the func-
tion Obtain to get a subtree from the sink. In other words,
if the sensor cannot deal with some situations, the sink can
help to decompose the current node N into a subtree base
on high level rules. We assume that the root node of the tree
has been selected. For each nonempty branch of the current
node, we use the following scheme to construct a decision
tree.

Start from an initial node N

Analyze the feature set F
rule sets D of the current node

Yes
Return N as a leaf node

No

Get a subtree from
sink : call obtain(N)

Scan all the remainder
nodes of the current 

The tree cannot grow?

No

Results

Yes

Integrate subtree and
parent tree through the

Return N as a

and the

promotion node

parent tree

promotion node

Drawn(D) ⊆ A?

Figure 3: Decision tree learning in sensor.

The scheme of tree construction is shown in Figure 3.
The process begins from an initial node N . The current
node will become a leaf node if all the attributes have been
considered. Otherwise, function Obtain will be used. When
Obtain(N) function is performed, the connection point of
the subtree and the parent tree is the current node N . Note
that the parent tree is the decision tree in the sensor, and the
subtree is generated in the sink. The rule set in the sensor is
a subset of the rule set in the sink. All leaf nodes cannot be
processed further. The construction process is stopped when
all reduced nodes are leaf nodes.

3.3. Unsupervised Learning Based Intrusion Detection in Sink
and Base Station. Traditionally, a decision tree is viewed as a
supervised learning method, because the splitting is guided
by an impurity measure, which depends on the class labels
of the data. On the other hand, clustering is an important
exploratory data analysis task. It aims to organize objects
(data records) into similarity groups or clusters. Clustering is
often called unsupervised learning as no classes denoting an
a priori partition of the objects are known. This is in contrast
with supervised learning (e.g., classification), for which the
data records are already labeled with known classes.

As mentioned before, we have designed the supervised
learning in sensor based on decision tree. In order to cor-
respond with the learning scheme in sensors, we base our
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unsupervised learning on decision tree. As a matter of fact,
there have been several studies focused on decision tree based
clustering. The scheme in [44] needs to introduce additional
data points into the existing points. The operation is complex
for WSNs. In [45], an unsupervised decision tree is proposed
for information retrieval, which cannot be applied in WSNs
directly. In this section, we present the decision tree based
clustering for WSNs.

Clustering is required to divide initial sets of objects on
many groups (clusters) so that objects inside each group
would be the much alike in some sense, while the objects
of different groups will be as more as possible “different.”
It is required to find out such clusters of objects in space of
characteristics, which will in the best way satisfy to a criterion
of a grouping quality. It is supposed that the characteristics,
describing objects, may be both quantitative and qualitative.
Various methods of the cluster analysis differ in the ways of
understanding of similarity, criterion of quality, and ways of
finding groups.

At first, we define a criterion of quality of the grouping.
Let characteristic of a request from a user or an attacker be
a data sample. All the samples consist of the sample space.
The decision tree with L leaves splits space of characteristics
into L nonoverlapping subareas S1, S2, . . . , SL. This splitting
space corresponds to the splitting of the set of observation
Samples into L subsets Sample1, Sample2, . . . , SampleL. Thus,
the number of leaves in a tree coincides with the number
of groups of objects. We will consider a group of objects
Samplei.

The description of this subset will be the following
conjunction of statements:

U
(

Samplei,Vi
)
=
(
X1 ∈ Vi

1

)
∧
(
X2 ∈ Vi

2

)

∧ · · · ∧
(
Xn ∈ Vi

n

)
,

(2)

where Vi
j is interval which is calculated as follows:

Vi
j =

[
min

Samplei

{
xj
}

, max
Samplei

{
xj
}]

,

or Vi
j =

{
xj | xj ∈ Samplei

}
,

(3)

where the previous equation is for quantitative characteristic,
and the second one is for qualitative characteristic.

A characteristic subspace Ri, corresponding to the
group’s description, we call a taxon (plural taxa). It is
important to note, although in a decision tree the part of
characteristics can be absent, in the description of each group
all available characteristics must participate.

Relative capacity (volume) of taxon can be calculated by

λi =
n∏

j=1

∣∣∣Vi
j

∣∣∣
∣∣∣Dj

∣∣∣
, (4)

where |Vi
j| designates the length of an interval (in case of the

quantitative characteristic) or capacity (number of values) of
appropriate subset Vi

j (in case of the qualitative characteris-
tic); |Dj| is the length of an interval between the minimal and

maximal values of characteristic Xj for all objects from initial
sample (for the quantitative characteristic) or the general
number of values of this characteristic (for the qualitative
characteristic).

When the number of clusters is known, the criterion of
quality of a grouping is the amount of the relative volume of
taxa:

g =
L∑

i=1

λi. (5)

The grouping with minimal value of the criterion is
called optimum grouping.

If the number of clusters is not given beforehand, it is
possible to understand the next value as the criterion of
quality

P = g + aL, (6)

where a > 0 is a given parameter.
When minimizing this criterion, we receive on the one

hand taxa of the minimal size and on the other hand aspire
to reduce the number of taxa. Notice that in a case when all
characteristics are quantitative, minimization of criterion
means minimization of the total volume of multivariate
parallelepipeds, which contain the groups.

For the construction of a decision tree, the method of
consecutive branching described in Section 3.2 can be used.
On each step of this method, a group of the objects cor-
responding to the leaf of the tree is divided into two new
subgroups.

Division occurs with a glance on criterion of quality of
a grouping, that is, the total volume of received taxa should
be minimal. The node will be divided if the volume of the
appropriate taxon is more than a given value. The division
proceeds until there is at least one node for splitting or the
current number of groups is less than the given number.

Note that learning mechanism in sink not only constructs
decision tree for itself but also decomposes the promotion
node from sensor to construct a subtree for sensor.

3.4. Reinforcement Learning Based Intrusion Prediction in
Base Station. The process of monitoring user behavior and
making predictions on network is a nonlinear problem
[46]. Especially, comparing with traditional communication
networks, WSNs have more dynamic and nonlinear facts.
Hence, the linear method cannot work well for intrusion
prediction in WSNs. Nonlinear prediction by reinforcement
learning [47] and related algorithm can be used to solve
intrusion prediction.

Different from supervised learning and unsupervised
learning, reinforcement learning is a kind of goal-directed
learning which is of great use for a learner (agent) adapt-
ing unknown environments [48]. When the environment
belongs to Markov decision process (MDP), or partially
observable Markov decision process (POMDP), a learner acts
some trial-and-error searches according to certain policies
and receives reward or punishment. The scheme in [47]
uses Stochastic Gradient Ascent (SGA) algorithm [49] as
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the reinforcement learning algorithm. However, the main
shortcoming of the scheme is that off-policy sampling, as well
as nonlinear function approximation, can cause the algo-
rithms to become unstable (i.e., the parameters of the
approximator may diverge). Moreover, the unstability will
decrease the accuracy of prediction.

By using the convergent temporal-difference learning
[50], we develop the nonlinear prediction into a stable
scheme. Furthermore, we use the modified scheme as the
intrusion prediction scheme base station.

As mentioned before, if an intrusion presents to the
sensor, sink, or base station, the attribute parameter of the
attack must be reported to the predictor in the base station.
Here, the attribute parameter of the attack is denoted as a
vector Attack = [a1, a2, . . . , an], which includes the con-
cerned node ID, node address, attack type, attack time,
and so forth. The selection of the attributes depends on
the application scenarios. The architecture of the intrusion
prediction system is illustrated in Figure 4.

The neural network in the prediction system is composed
by 4 layers: input layer, hidden layer, stochastic layer, and
output layer.

Input Layer. The inputs of prediction system on time t can
be constructed as an n dimensions vector space X(t), which
includes n observed points with same intervals on time series
Attack(t).

X(t) = (x1(t), x2(t), . . . , xn(t))

= (Attack(t), Attack(t − τ), . . . , Attack(t − (n− 1)τ)),
(7)

where τ is time delay (interval of sampling) and n is the
embedding dimension.

Hidden Layer. Multiple nodes accept input with weights wij ,
and their output is given by

Hj(t) = 1
1 + e−βH

∑
ai(t)wij

, (8)

where βH is a constant.

Stochastic Layer. To each hidden node Hj(t) in hidden layer,
parameters of distribution function are connected in weight
wμj and weightwσ j when we consider the output is according
to Gaussian distribution. Nodes in stochastic layer give their
output μ, σ as

μ
(
Hj(t),wjμ

)
= 1

1 + e−βμ
∑
Hj (t)wjμ

σ
(
Hj(t),wjσ

)
= 1

1 + e−βσ
∑
Hj (t)wjσ

,

(9)

where βμ, βσ is constant, respectively.

H1

H2

HK

μ

σ

π

Input
Hidden

Average

Deviation

Distributions
of prediction

Predication values

Attack(t)

Attack(t−τ)
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wμ1

wμ2

wσ1

wσ2

Convergent temporalwσ jwμjwi j

Stochastic
function

r(t + 1)
difference learning

...

Figure 4: Architecture of intrusion prediction.

Output Layer. The node in output layer means a stochastic
policy in reinforcement learning. Here we use a 1-dimension
Gaussian function

π(Attack(t + 1),W ,X(t)) = 1√
2πσ

e−(Attack(t+1)−μ)2/2σ2
,

(10)

where Attack(t+ 1) is the value of one-step ahead prediction,
produced by regular random numbers. W means weights
wij , wμj , and wσ j . This function causes learner’s action, so
it is called stochastic policy in reinforcement learning.

In order to update weights, we consider a prototypical
case of temporal-difference learning, that of learning a
linear approximation to the state-value function for a given
policy and Markov decision process (MDP) from sample
transitions. We take both the MDP and the policy to be
stationary, so their combination determines the stochastic
dynamics of a Markov chain. The state of the chain at each
time t is a random variable, denoted as st = {1, 2, . . . ,N}.
On each transition from st to st+1, there is also a reward rt+1,
whose distribution depends on both states. We seek to learn
the parameter θ ∈ Rn of an approximate value function
Vθ : S → Rn such that

Vθ(s) = θTφs ≈ V(s) = E

⎧
⎨
⎩

∞∑

t=1

γtrt+1 | s0 = s

⎫
⎬
⎭, (11)

where θs ∈ Rn is feature vector characterizing state s, and
γ ∈ [0, 1) is a constant called the discount rate.

Temporal difference error is defined as follows:

δk = rk + γφTk φ
′ − θTk φk. (12)
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Following the method in [50], the weight W can calculated
by

W = E
[
φφT

]−1
E
[
δφ
]
. (13)

Note that that δ depends on θ, hence w depends on θ.
Therefore, w can be updated as follows:

wk+1 = wk + ψk
(
δk − φTk wk

)
φk, (14)

where ψk factors are step-size parameters, possibly decreasing
over time.

3.5. Implementation System Based on Agent Technology

3.5.1. Design of Agent System. We use multiagent to realize
the function of intrusion detection and prediction in WSNs.
There are four kinds of agents designed in WSNs, which are
detection agent (DA), communication agent (CA), database
agent (BA), and prediction agent (PA). All the four agents
are designed in base station. However, only DA, CA, and BA
are designed in sensor and sink. Figure 5 shows the structure
of the agent system of a node in wireless sensor network. In
Figure 5, prediction agent (PA) is coloured grey, which means
that PA does not exist in every node of the WSN but only base
station node.

Detection Agent (DA)

(1) The Detection Learning Module (DLM) performs the
learning algorithm described in Section 3. The mod-
ule acts as a classifier to perform intrusion detection.
It implements the proposed supervised decision tree
learning algorithm for sensor. For sink and base
station, this module runs the proposed decision
tree based cluster algorithm. The rules for making
decision are called from detection rule module. The
results of learning can be sent to detection rule
module for updating rules.

(2) The Detection Rule Module (DRM) contains the rule
sets for intrusion detection. The rules are the choice
of application design. The rules can be updated by the
learning algorithm in the DLM.

Communication Agent (CA). This agent provides an inter-
face for the node communicating with other nodes. Also, it
preprocesses the raw data into the format required by the
data classification techniques. On one hand, this module
acts as an interface for the node interoperating with other
nodes in WSNs. For sensor, this module sends the packet of
promotion and reports as well as receives the response from
sink. In sink, this module reports every attack, which occurs
to the sensor and sink, to the base station. When this module
is performed in a base station, it receives the report packets
from the sinks. On the other hand, communication agent
performs an interface to receive request and send responses
for the user who accesses the node. It transfers the parameters
of the request to DA and PA for further processing.

WSN node

Detection 
learning

Detection agent

Interface agent

History Attribute

Database agent

Detection
rule

Prediction 
learning

Prediction agent

Prediction
rule

Figure 5: Node model of agent system.

Database Agent (BA)

(1) The History Module (HM) provides two distinct func-
tionalities: a convenient mechanism to log events and
actions that have occurred and an efficient mech-
anism to query these logged events. This module
provides history data for detection learning and
prediction learning.

(2) The Attribute Module (AM) provides an interface for
the detection agent (DA) and prediction agent (PA)
to query and update attributes of the data and users.

Prediction Agent (DA)

(1) The Prediction Learning Module (PLM) is designed
only in base station. It performs the reinforcement
learning algorithm described in Section 3. The
module acts as a classifier to perform intrusion pre-
diction. The rules for making decision are called from
prediction rule module. The results of learning can be
sent to prediction rule module for updating rules.

(2) The Prediction Rule Module (PRM) contains the
rule sets for intrusion prediction. The rules can be
updated adaptively by the learning algorithm in the
PLM.

3.5.2. Sequence Model of Interaction. In BLID, there are
several cases of interoperation among the learning modules
in different nodes in WSNs, which is similar with the
cerebellum, the basal ganglia, and the cerebral cortex. On
one hand, when unknown request presents to the sensor, the
sensor performs a promotion action for further detection by
helping of sink. After the sink finished the further detection
by using the clustering algorithm, it sends the responses
to the sensor. The response includes the subtree (see
Section 3.2) for updating the detection rules in the sensor. On
the other hand, for both sink and sensor, they must report
the features of the request to the base station if they find
the request comes from an attacker. Note that sensors report
the attack to base station via the sink, because sensor cannot
communicate with the base station directly. Because report
is an operation which is easy to understand, we just illustrate
the sequence of promotion operation in Figure 6.
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Figure 6: Sequence model of promotion operation.

4. Getting Data Set via
Wireless Attack Experiment

In this section, we report the attack experimentation,
through which we can get the data set for training and test.
Because many existing WSNs are deployed by IEEE 802.11
and mote device technologies [31], we use IEEE 802.11
based wireless link for our experiment. Moreover, for access
control, a role-based access control (RBAC) policy is used.

Feature selection is an important issue for intrusion pre-
diction. In order to enhance the prediction accuracy for the
attack from different layers, we consider both the application
layer features and MAC layer features to construct the data
set. We combine the features of access control and 802.11
wireless traffics [51] to construct the feature data set. On
one hand, we select the important features of access control
based on the feature selection method for access control in
[52]. On the other hand, according to IEEE 802.11 standard
[51], the fields of the MAC header can be extracted. We used
the information gain ratio (IGR) as a measure to determine
the relevance of each feature [53]. We can order the features
according to the score assigned by the IGR measure. The IGR
measure is based on the data set of frames collected from our
testing network. The features of access control and 802.11
traffics which we used for experiment are shown in Tables 1
and 2, respectively. The number of the selection features
depends on the requirements of security and the recourses of
the system. As a case study for resource-constrained WSNs,
we select 5 access control features and 7 traffic features of
802.11 for test.

We did the attack experiment in an 802.11 network. We
take ARP replay attack, forgery attack, ongoing dictionary

Table 1: Features of access control.

Order Features Description

1 LoginResult Access decision results before access

2 NumbWr
Number of write operation on access control
files

3 NumbCrea Number of create operation on rule file

4 NumbAccess Number of access

5 NumbDe
Number of delete operation on access
control files

Table 2: Features of traffic.

Order Features Description

1 WepResult The result of WEP ICV check

2 Duration The time the medium is expected to be busy

3 More Frag Whether a frame is nonfinal fragment or not

4 Desti Addr The MAC address of the receiving node

5 Fram Type The type of the frame

6 IfRetransmit If the frame is a retransmitted frame

7 Sour Addr The MAC address of sending node

attack [32], and chopchop attack [33], which are the
common attacks in 802.11 networks, as the examples for
evaluation. The tool we use to generate attacks is Backtrack,
which is available from the website [34].

In our experiment, the network was composed of three
wireless stations. We use one machine as a server node (access
point). Then, we use another machine to generate normal
traffic firstly and later attacks. The last machine was used
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Table 3: Data set.

Traffic type Training set Test set

ARP replay attack 200 200

Forgery attack 200 200

Ongoing dictionary attack 200 200

Chopchop attack 0 200

Normal 1200 1200

to collect and record both normal and intrusion traffic. The
number of related records in the data set is shown in Table 3.
There is no training set for chopchop attack, because we use
this attack as unknown attack for test. The other three kinds
of attacks can be regarded as usual attacks.

5. Evaluation and Comparisons

This section evaluates BLID in terms of overhead and accu-
racy.

5.1. Overhead and Complexity Evaluation

5.1.1. Time Overhead and Memory Consumption in Sensor.
Usually the resources of sensor are limited, but the resources
of sink and base station are powerful. Hence, the evaluation
of sensor is crucial and typical. We focus on the time
overhead and memory consumption caused by our scheme
on sensor. We have implemented BLID for TinyOS and tested
it using TOSSIM [54]. The mote that TOSSIM simulates is
MicaZ.

There are two phases of the learning, training phase and
test set. Before the sensors being deployed, the training pro-
cess can be performed on some other well-resourced devices,
such as laptop, because the recourses of sensors are limited.
Hence, the initial detection rules can be constructed on well-
resourced devices and then loaded into sensors. In this paper,
the initial detection rules training is based on the training
data set in Section 4. Based on the above reasons, we just
focus on the test phase. The overhead caused by BLID and
related schemes during detection is reported in Figure 7,
which is the time needed by a sensor from receiving a request
to making a local detection decision.

In Figure 7, the vertical coordinates denote the overhead
caused by intrusion detection system. Four groups of
columns denote four cases which are corresponding with
four kinds of attacks described in Section 4. As shown in
Figure 7, the time overhead caused by BLID is lower than that
of the schemes in [12, 25]. The results show that detecting
unknown attacks usually needs more time than detecting
known attacks.

Loading the rules intrusion detection requires memory.
The memory consumption of our scheme is an impor-
tant measure of its feasibility and usefulness on memory-
constrained sensor nodes. The memory consumption is
shown in Table 4. Because MicaZ has 128 KB of instruction
memory and 512 KB of flash memory, the experiment results
mean that BLID leaves enough space in the mote’s memory

Table 4: Memory consumption in sensor.

Agent Size (bytes)

Detection agent 10274

Database agent 21857

Communication agent 3216

Total 35347

Table 5: Memory consumption in sink and base station.

Agent Size (bytes)

Prediction agent in BS 535341

Database agent in BS 732219

Detection agent in sink 152796

Database agent in sink 225678

Communication agent 3216

for user applications. In addition, we use PC act as the sink
and base station nodes. The memory consumption of high
level detection and prediction is shown in Table 5.

5.1.2. Energy Consumption of Sensor. Energy cost is one of
the most critical problems in resource-constrained sensors.
In this subsection, we estimate the energy consumption
of sensor using PowerTOSSIM [55], which is an energy
modeling extension of TOSSIM. PowerTOSSIM is often used
to evaluate the energy consumption of WSNs [56–58]. The
energy consumption is measured for five components: CPU,
RADIO, LED, SENSOR, and EEPROM. According to the
attack experiment in Section 4, ARP reply attack, forgery
attack, and ongoing dictionary attack act as the known
attacks, while chopchop attack acts as unknown attack. In
addition, based on the time overhead in Figure 7, the time
overhead of ongoing attack has higher time complexity than
ARP replay attack and forgery attack. Therefore, here we take
ongoing attack as the example of known attack for energy
consumption evaluation. Chopchop attack is still used as
unknown attack for the energy consumption evaluation.
Then, we fix the time of execution equal to 1200 simulated
seconds, which is because the motes in PowerTOSSIM take
boot time of 10 seconds. Here we consider three cases, which
are continuous known attack, continuous unknown attack,
and continuous normal access. In the simulation, the radio
is set as sleep mode if there is no promotion or report message
being transferred. The energy costs of different cases are
shown in Figure 8.

In our proposed system, storing feature and rule data
performed by EEPROM component and classification analy-
sis performed by CPU component course the corresponding
additive energy consumption in EEPROM and CPU, while
radio transmission is not always necessary which depends on
the promotion and report operations. As shown in Figure 8,
the CPU energy costs for unknown and known attacks are
higher than that of normal access and known attack. This
is because that the attacks course more computations of
the features analysis and must perform report operation to
the base station. RADIO energy consumption of unknown
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attack detection is higher than that of known attack, because
of the additive promotion messages. Energy costs of the all
the three cases are lower than that of related application
schemes of WSNs, such as some ECG monitoring schemes
in [57] and some data-stream protocol in [58]. Therefore,
the energy consumption of our scheme is acceptable for
resource-constrained WSNs.

5.1.3. Communication Overhead. BLID can cause communi-
cation overhead into WSNs. In a WSN, the number of sensor
is usually much more than that of sink and base station, and
some sensors usually are deployed far from base station and
sink. In other words, the communication overhead is mainly
caused by sensors. Hence, we evaluate the case that the
attacks occur to sensors. Figure 9 depicts the communication
cost of BLID measured in overhead packets in WSNs.

As shown in Figure 9, the communication overhead in
case of unknown attack is higher than that in case of known
attack, because the sink needs to return a subtree to the
sensor in case of unknown attacks. The communication over-
head also depends on the number of hop from the intruded
sensor to the sink. For small scale WSNs, such as the number
of hop is 3, the communication cost is only 4 for known
attacks and 7 for known attacks, respectively. Moreover, for
larger scale WSNs, such as the case of 7 hop, the overhead
still remains low (8 packets for known attacks and 15 packets
for unknown attacks). The communication cost of BLID is
lower than that of cooperative intrusion detection scheme in
[59]. For the scheme in [59], the communication overhead
is 12 for 4 sensors cooperate for detection, and the overhead
increase to 19 when 8 sensors cooperate.

5.2. Prediction Rate. The evaluation of the accuracy of pre-
diction was obtained using Matlab and NeuroSolutions [60].
The detection accuracy of BLID depends on the learning
algorithm in sink and base station, because “promotion”
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operation exists in the low level detection in sensor. The
prediction accuracy depends on the reinforcement learning
scheme performed in base station.

We use two metrics to evaluate the intrusion prediction
performance, namely, prediction rate q and false alarm rate
η. The prediction rate is formally defined by

q = d

n
, (15)

where d is the number of prediction attacks, and n is the total
number of actual attacks.

We evaluate the prediction rate in this section. Because
the real sample cannot be gotten in WSNs for intrusion pre-
diction, DARPA Intrusion Detection Evaluation Data [61]
is used as the training and test data set to verify the prediction
rate of related schemes. The training data consist of five



12 International Journal of Distributed Sensor Networks

70

75

80

85

90

95

100

P
re

di
ct

io
n

 r
at

e 
(%

)

Sm
u

rf

M
sc

an

Ip
sw

ee
p

Po
rt

sw
ee

p

Po
d

M
ai

lb
om

b

Te
ar

dr
op

Sn
m

pg
et

B
ac

k

BLID

SGA based prediction

Attack type

Figure 10: Prediction rate.

weeks of network-based attacks in the midst of normal
background data. Attacks are labeled in training data. The
test data consist of two weeks network-based attacks and
normal background data. We also use the features defined
in DARPA 1998 as the feature parameters of our prediction
scheme. The prediction rate is shown in Figure 10. In
Figure 10, the vertical coordinates denote the prediction rate.
Nine groups of columns denote nine cases which are cor-
responding with nine kinds of attacks in DARPA Intrusion
Detection Evaluation Data. As shown in Figure 10, the
prediction rate of BLID is on average 12 percentages higher
than that of SGA based scheme in [48].

6. Conclusion

In this paper, we analyzed the important issues of accurate
intrusion detection and prediction in WSNs. To address the
problems, we proposed a brain-like hierarchical learning
based intelligent intrusion prediction scheme, called BLID,
in which the sensor, sink, and base station perform different
kinds of learning algorithms and interoperate optimally
with each other. Referring to brain-like hierarchical learning
model, we designed a relatively simple decision tree learning
algorithm in the sensor for low level intrusion detection,
which is corresponding with the supervised learning of cere-
bellum. Then, we proposed a decision tree based clustering
mechanism in sink and base station for intrusion detection,
which has a correspondence with unsupervised learning of
cerebral cortex. Furthermore, we developed a stable rein-
forcement learning model in base station for high level
intrusion prediction, which is referenced to reinforcement
learning of the basal ganglia. Through combing and connect-
ing different learning modules in the sensor, the sink, and the
base station as a global network, the function of distributed
detection and centralized prediction can be realized. The

implementation system of BLID is designed based on agent
technology. Our experiment shows that the proposed scheme
has several advantages in terms of efficiency of implemen-
tation and high prediction rate. Although we assume in
this paper that WSNs is deployed through the three-layer
architecture, BLID can also be applicable for the WSNs
deployed in two-layer architecture, which only includes
base station and sensor. This is because both unsupervised
learning and reinforcement learning modules are designed
in base station, then sensor can interoperate directly with
base station for promotion operation. An interesting future
work of BLID may be on the efficiently distributed intrusion
prediction of WSNs.
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