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Many applications and protocols in wireless sensor networks need to know the locations of sensor nodes. A low-cost method
to localize sensor nodes is to use received signal strength indication (RSSI) ranging technique together with the least-squares
trilateration. However, the average localization error of this method is large due to the large ranging error of RSSI ranging
technique. To reduce the average localization error, we propose a localization algorithm based on maximum a posteriori. This
algorithm uses the Baye’s formula to deduce the probability density of each sensor node’s distribution in the target region from
RSSI values. Then, each sensor node takes the point with the maximum probability density as its estimated location. Through
simulation studies, we show that this algorithm outperforms the least-squares trilateration with respect to the average localization

€rror.

1. Introduction

The process of determining the physical locations of sensor
nodes is known as localization, which is a fundamental
problem in wireless sensor networks [1, 2]. The locations
of sensor nodes are essential in many applications and pro-
tocols. For example, the sensed information about an event
without the location where it takes place is often meaningless.
Similarly, geographic routing relies on the locations of nodes
to forward packets [3].

The locations of sensor nodes can be directly obtained
by preconfiguration or global positioning system (GPS). Pre-
configuration requires each sensor node being placed at a
known location, which is only suitable for the case that
sensor nodes are easy to be placed and their number is small.
On the other hand, a sensor node equipped with a GPS
receiver is costly and does not work indoors. Therefore, both
the above two methods are impractical for large-scale low-
cost wireless sensor networks. It is desired that the locations
of sensor nodes can be induced from their interactions, such
as the detections of the distances between neighbors.

Many localization algorithms first use a ranging tech-
nique to estimate the Euclidean distances between nodes,

and then use the least-squares trilateration to determine the
locations of sensor nodes by these estimated distances. Some
conventional ranging techniques are received signal strength
indication (RSSI), time of arrival (TOA), time difference
of arrival (TDOA), angle of arrival (AOA), and so forth
[4]. Among them, RSSI ranging technique has the least
requirement for hardware, as the radio chip of current sensor
node usually has a built-in function of reading RSSI value.
But RSSI value is vulnerable to being disturbed by the
surrounding environment and the ranging error of RSSI
ranging technique may be at most +50% [5]. Furthermore,
the least-squares trilateration is sensitive to ranging errors
[2]. If using RSSI ranging technique together with the least-
squares trilateration to localize sensor nodes, the average
localization error is very large.

To reduce the average localization error, we propose a
localization algorithm based on maximum a posteriori. This
algorithm uses the probability approach to estimate the
location of each sensor node directly from RSSI values.
Extensive simulation results have shown that the average
localization error of this algorithm is less than that of the
least-squares trilateration.



The remainder of this paper is organized as follows.
Related work is discussed in Section 2, the network model
is defined in Section 3, and our proposed localization
algorithm is described in Section 4. Simulation results that
illustrate the performance are included in Section 5, and
Section 6 is the conclusion.

2. Related Work

Since localization is a fundamental problem in wireless
sensor networks, there are many research works focusing
on it recently. Localization algorithms can be divided into
two categories: anchor-based localization algorithms and
nonanchor-based localization algorithms. An anchor is a
special node which has a priori knowledge of its location.

In anchor-based localization algorithms, the location
of each sensor node is determined only by its distances
from anchors. Priyantha et al. developed the cricket location
support system which provides localization services for
indoor mobile node [6]. Bulusu et al. proposed a GPS-less
localization algorithm in which each mobile node localizes
itself to the centroid of its adjacent connecting anchors
[7]. Niculescu and Nath proposed a family of distributed
localization algorithms “adhoc positioning system” (APS)
[8, 9]. In these algorithms, each node measures its dis-
tances from anchors by performing multihop propagation
of distances to anchors throughout the network. Kumar
et al. used RSSI-based weighted centroid to improve the
localization algorithm proposed by Bulusu et al. [10]. Li
and Liu proposed the rendered path (REP) protocol for
locating nodes in anisotropic sensor networks with holes
[11]. Lederer et al. also studied the problem of localizing a
large sensor network having a complex shape, possibly with
holes [12].

In nonanchor-based localization algorithms, the location
of each sensor node is determined also by the distances
between sensor nodes. Doherty et al. proposed a constraint-
based localization scheme using semidefinite programming
(SDP) to find a solution to the localization problem [13].
Shang et al. proposed an algorithm using classical multidi-
mensional scaling (MDS) technique to calculate the locations
of nodes given a set of distances [14]. Kwon et al. proposed
a localization algorithm based on least square scaling (LSS)
which is a variant of multidimensional scaling technique
[15]. Khan et al. proposed a distributed iterative localization
algorithm in m-dimensional Euclidean space with a minimal
number of m+ 1 anchors [16]. Ding et al. viewed localization
as a (nearest) Euclidean distance matrix (EDM) completion
problem and thus gave an EDM approach [17]. Zhu et al.
used stress normal property to localize sensor nodes with
enough perturbation data [18].

Many of the above-mentioned algorithms [12, 14, 15, 17]
have a similar optimization objective as the least-squares
trilateration, that is, minimizing the (weighted) sum of
all squared differences between each estimated distance
and the corresponding distance calculated by the estimated
locations of nodes. But when the distances are estimated by
RSSI ranging technique, this optimization objective is likely
subject to a large average localization error. In this paper,
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we present another optimization objective with which sensor
nodes can be localized more accurately.

3. Network Model

Before describing our proposed localization algorithm, we
first assume the model of wireless sensor network as follows.

(1) A wireless sensor network is deployed in a planar
region B. Suppose that B is a rectangle, whose length
is I and width is w. But later we will see that the
proposed algorithm is not dependent on the shape
of B. Without loss of generality, we assume that the
lower left corner of B is the origin and the coordinate
of the upper-right corner of B is (I, w).

(2) All sensor nodes are uniformly distributed in B.
Anchors have a larger transmission range than sensor
nodes. Each sensor node and anchor is denoted by a
point in B. Let n denote the total number of anchors,
a; denote the ith anchor, and (x;, y;) denote the
coordinate of a;.

(3) Initially each anchor broadcasts a beacon containing
its location information. Then, each sensor node
collects the RSSI values of all its neighbor anchors
through these beacons. The RSSI value read by a
sensor node obeys the wide log-normal shadowing
radio signal propagation model [19]:

R(d) = Py — PL(dy) — 101710g10di0 + X,. (1)

In (1), R(d) denotes the RSSI value when the distance
between the receiver and the transmitter is d; Pr is the power
of the transmitter; PL(dp) is a known reference power value
at a reference distance dy from the transmitter; # is the
path loss exponent that measures the rate at which the RSSI
value decreases with distance; X, is a zero mean Gaussian
distributed random variable with standard deviation and it
accounts for the random effect of shadowing, that is, X, =
N (0, 02).

Given these known RSSI values, the locations of sensor
nodes can be estimated by a localization algorithm. The
major measurement of a localization algorithm is the
average localization error, defined as the average distance
between the actual location and the estimated location of
each sensor node [5]. Because wireless sensor networks
often work in unfriendly environments, some anchors may
be faulty, which means they have incorrect information
about their own locations. Therefore, fault tolerance is also
important to a localization algorithm. In this paper, we
define it as the ability to maintain a good localization
result even if some anchors are faulty. Besides, execution
time is also a common measurement of a localization
algorithm.
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4. Algorithm Description

In this section, we will describe our proposed localization
algorithm based on maximum a posteriori. Consider a sensor
node s. Let (x;, y5) denote the coordinate of s and rx denote
the random variable of the RSSI value of ai read by s, where
0 < k < n. Assume that the values of r,72,...,r, in a
test are Ry, Ry,...,R,, respectively. The basic idea of our
proposed localization algorithm is as follows. First, the target
region B is divided into small grids of the same size. Next,
the probability of s being in each grid is calculated from
Ri,R;,...,R,. Then, the center of the grid with the largest
probability is taken as the estimated value of (xs, ;). Let g
denote the side length of each grid. Without loss of generality,
assume that the target region B has exact I/g grids in the
horizontal direction and w/g grids in the vertical direction.
Let Gj; denote the grid locating at the ith row and the jth
column, where 0 < i< w/g,0 < j < I/g.

Let E;; denote the event of s being in G;;, whose prob-
ability is denoted by P{E;;}. Let the conditional probability
P{rx = Ry, 0 < k < n | E;;} denote the probability that for
all 0 < k < n, rx = Ry under the condition of s being in G;;.
Now we have the condition that for all 0 < k < n, rc = Ri
and want to compute the conditional probability P{E;; |
1 = Rk, 0 < k < n}. That is, to compute the a posteriori
probability from priori probability. By the Bayes formula, we
obtain P{E;; | rx = Ry, 0 < k < n} as follows:

P{E;j | 1 = Ri, 0 <k <n}

P{n =R, 0 <k<n|E;} P|E;]
- ZOsu<(w/g), Osv<(l/g)P{rk =Ry, 0<k<n|Eu}P{Ey}
(2)

Because each sensor node is uniformly distributed in B, s
has the same probability in each grid, that is, forall 0 < u <
w/gand 0 < v < I/g, P{E,,} is equal. So (2) can be simplified
as follows:

P{Ej | i = Ri, 0 <k <n}

P{r = Re,0 <k <n|Ej} (3)
S Pire =R, 0<k<n|Ey}

L(i+1)g

Moreover, because s is also uniformly distributed in Gj;,
P{r, = Ry, 0 < k < n | Ej} is equal to the average
probability that forall 0 < k < n, 7, = Ry under the condition
of s being at each point in Gj;. Then, we obtain the following
equation:

P{n =Ri, 0<k<n|E;}

(i+1)g (]+1 gP

ig {rk=R, 0 <k<n|xp=x, yp=y}dxdy

(1+lgf]+lgdxd
J&

(4)

When s is at a certain point in B, the RSSI value of each
anchor read by s is not interfered with the RSSI values of
other anchors. Therefore, under the condition that x, = x
and y, = y, the events r; = Ry,r2 = Ry,...,r, = R, are
independent. Then, we obtain P{ry = Ry, 0 < k < n |
xp =% yp =yt =Pln =R | xp =x, yp = ytP{ra =
Ryl xp =% yp=yt---Plrn =Ry | xp = %, y» = y}.
Combine it with (3) and (4), and we obtain the following
equation:

P{E; | 1 = Ri,0 < k < n}

fm f(J+1gl_10<k<n Plrc=Ry | xp=x, yp=y}dxdy

Zuvfuﬂg v+18n0<k<n {rk:Rk |beX,)/b:)/}dXd)/.
(5)

According to (5), we need to calculate P{ry = Ri | x =
X, yp = y},0 < k < n. However, it can be seen from (1) that r,
is a continuous random variable, so we cannot directly obtain
P{E;; | rt = Ry, 0 < k < n} through (5). But we can compute
the probability of rx being in the interval [Rg, Ri + ¢) under
the condition of s being at a point (x, y), which is denoted by
P{Ry < rx <Rk +¢|xp =%, y» = y}.So we can obtain the
following equation:

]+1gﬂo<k<n P{Ry < e <Ri+elxp =xy, = yldxdy

P{ 1]|rk—Rk,0<k<i’l}_llm s

Let dj denotes the distance between the point (x, y) and

ay, that is, di = \/(x - xk)2 +(y — yk)2. Let fx = Ry — Pr +
PL(dy) — 10#log,,(dy), 0 < k < mn. According to (1), if

S 1 (O PR, < i< Rete 3= xvyp = yldxdy O
P{ﬁk + 104log,  dk < Xy < i + 104log,,dk + e}
B J/Sk+10}1]0g10dk+£ 1 _(1/2)sz (7)
= ——e z.
Br+104log, o dk 21

ri is in the interval [R, Ry + ¢), then X, is in the interval
[Bx + 1077log,dk, Bk + 104log,,dk + €), whose probability is
as follows:

Combine (6) and (7), and we obtain the following
equation:



g

(i+1)g (j+1) Br+10nlog,  di+e _ )
figl ¢ fj] * Tlozken f;;kkﬂo,ﬂogl‘;dkk (1/+/27 )e~ D7 dzdx dy
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P{Eij | e =R, 0 <k< n} = lim

Br+10nlog, di+e _ 2
ﬁkHOVIlOg]]oodk (1/v2m) e 25dz =

(e/+/27) e~ (V2(Bir10nlogod)” and substitute it into (8). Then,
we obtain the following equation:

We have lim,_,

P{Ej | i = Ri, 0 <k <n}

)

fig+1)g fj(éﬂ)g o~ (1/2)Zozien(Bit10ql0g,0d1)* 5 dy

S Lg;“)g fjgvﬂ)g e~ (1/2) ok (Bict10ml0810dk)* dxc d y

It can been seen from (9) that if Gj; has the largest

value of fig+l>g fj(jﬂ)g e—(1/2)Zo§k<n(Bwloﬂlogmdk)zdxdy among
all grids, then s has the largest probability in Gj;
among all grids. If the size of grid is small enough,

. (i+1)g ((j+)g _ 2
wehavelimg . [, [;;7 ¢ e” (W2 2oskan(Bit10mogdi dx dy =

gre 2)Zozken(Bit107l0810d)’  Therefore, we can select the point
with the smallest value of > r., (B + 1011log10dk)2 in the
target region B as the estimated location of s. We define the
function f(x, y) as follows:

Floy) =, [Rk ~ Pr+ PL(dy)

V& =% + (- ) ’
+1077log,, ] .

do
(10)

That is for the variable (x, y) whose domain is the
target region B, to find a point (x, y) with the minimum
value of f(x,y). However, the function f(x, y) is relatively
complicated, so we cannot obtain the analytic expression of

(x,y) by the partial differential method. Alternatively, we
adopt an approximation method described as follows. First,
the target region is divided into small grids and the value
of f(x,y) at the center of each grid is computed. Then, the
center of the grid with the minimum value of f (x, y) is taken

as the approximation of (x, y). If the size of grid is g X g, then
the total number of grids is Iw/g? and the time complexity of
localizing a node is O(nlw/g?). Obviously, when the target
region is fixed, the execution time will become longer as
the size of grid become smaller. For large wireless sensor
networks, we can use the multi-grid method to reduce the
execution time. First, the target region is divided into larger
grids and the value of f(x, y) at each grid point is computed.
Next, those grids with relatively larger value of f(x, y) are
discarded. Then, the remaining grids are repeatedly divided
into smaller grids until the size of grid reaches the required
accuracy.

Furthermore, we analyze (10). Let c?k denote the esti-
mated distance between s and gy only estimated from Ry. It

-0 (u+l)g (v+1
€ Zu,v fug vg

(8)

+107log) o dx+ :
# Tocken fﬁikﬂo:h,ogglfd: “(1/v2m )e- 22 dzdx dy

is easy to known that o?k should be equal to d in (1) when X,
is 0:

d
Ry = Pr — PL(dp) — 10;110g10d—(k). (11)

Combine (10) and (11), and we obtain the following
equation:

107 \2 ~\2
fley)= (ﬁ) > i, (Inde —Indy)".

Equation (12) illuminates that the optimum estimated
location of s should be the point with the minimum value

(12)

~ 2
of D g<ken(Indr —Indy) in the target region B.

5. Performance Evaluation

5.1. Simulation Environment. To evaluate the performance
of our proposed localization algorithm based on maximum
a posteriori (MAP), we developed a simulation program
realizing MAP algorithm. We compare MAP algorithm with
the least-squares trilateration (LST) in which the point with

the minimum value of >, (dx — dAk)2 in the target region
is taken as the estimated location of a node.

In the simulation, the target region B is a square region
of 1000m x 1000 m. The transmission range of anchors
is 1500 m. Sensor nodes and anchors are randomly and
uniformly distributed in B. The RSSI value read by a sensor
node is simulated according to (1). The value of each
parameter is taken from a typical wireless sensor network
[19]: Py is setto 4 dBm, dj is set to 1 m, PL(dy) is set to 55 dB,
n is set to 4, and the range of o is set to [2, 14]. The Gaussian
distributed random number X, is generated by the Box-
Muller method. The platform has Intel Dual Core 2.80 GHz
CPU and 1 GB memory. To make simulation results more
accurate, for each simulation we perform 100 times and take
the average result.

5.2. Grid Size. In MAP algorithm, the target area is divided
into small grids to approximately obtain the point with the
maximum probability density. The smaller the grid is, the
closer the approximate solution is to the accurate solution,
but the larger the amount of calculation is. Therefore, we first
need to select the appropriate grid size. In the simulation, o
is set to 5, the number of anchors is set to 20, the number of
sensor nodes is set to 100, and the side length of grid varies
from 5m to 100 m. Figure 1 shows the average localization
errors of MAP algorithm. It can be seen that when the
grid size is relatively large, the average localization error is
significantly impacted by the grid size. But when the grid
size of grid is small to a certain extent, this impact is almost
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FIGURE 2: A localization result of MAP algorithm and LST algo-
rithm. In the figure, the solid points represent the actual locations
of sensor nodes, the hollow points represent the estimated locations
of sensor nodes computed by MAP algorithm, and the cross points
represent the estimated locations of sensor nodes computed by LST
algorithm.

negligible. In the following, we will take the grid size as
10m X 10 m.

5.3. Localization Error. Figure 2 shows a localization result
of MAP algorithm and LST algorithm. Both algorithms have
the same inputs: ¢ is set to 5, the number of anchors is
set to 20, and the number of sensor nodes is set to 100.
It can be seen that the estimated location of most sensor
nodes computed by MAP algorithm are closer to their actual
locations. Accordingly, MAP algorithm has a smaller average
localization error than LST algorithm.

Next, we test how the localization error is impacted by
the number of anchors. In the simulation, ¢ is set to 5, the
number of sensor nodes is set to 100, and the number of
anchors varies from 5 to 25. It can be seen from Figure 3
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FIGURE 3: Average localization errors of MAP algorithm and LST
algorithm under different numbers of anchors.
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FIGURE 4: Average localization errors of MAP algorithm under the
random layout and the grid layout of anchor nodes.

that with the number of anchors increasing, the average
localization errors of both algorithms are reduced. But MAP
algorithm can achieve a smaller average localization error,
which is reduced by nearly 34.8% compared with the least-
squares trilateration.

Then, we test how the location error is impacted by the
layout of anchor nodes. In the simulation, o is set to 5, the
number of sensor node is set to 100, the number of anchors
varies among 4, 9, 16, 25, 36, and 49, and anchors are placed
by the random layout and the grid layout, respectively.
Figure 4 shows the average location errors of MAP algorithm
under these two layouts. The average location error under
the grid layout is nearly 87.8% of that under the random
layout. Therefore, anchor nodes should be placed by the grid
layout in practice.

The ranging error is a primary cause of the localization
error, which depends on o: the larger o is, the larger the
ranging error is. In the simulation, the number of anchors
is set to 20, the number of sensor nodes is set to 100, and ¢
varies from 2 to 14. Figure 5 shows the average localization
errors of MAP algorithm and LST algorithm. It can be seen
that the average localization errors of both algorithms are
approximately proportional to o.



300
250
200
150
100

Average localization error (m)

—€— MAP algorithm
—A— LST algorithm

FIGURE 5: Average localization errors of MAP algorithm and LST
algorithm under different values of 0.

[N}
w
(=}

[S=]
(=
S

—
w
(=}

100

w
S

1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

Number of faulty anchors

Average localization error (m)

(=}

—@— MAP algorithm
—A— LST algorithm

FIGURE 6: Average localization errors of MAP algorithm and LST
algorithm under different numbers of faulty anchors.

5.4. Fault Tolerance. In MAP algorithm, the location of each
sensor node is determined by all its neighbor anchors. If
only a small number of anchors are faulty, the estimated
location of each sensor node cannot have a big change. In the
simulation, o is set to 5, the number of anchors is set to 20,
the number of sensor nodes is set to 100, and the number of
faulty anchors varies from 0 to 10. Figure 6 shows the average
location errors of MAP algorithm and LST algorithm. It can
be seen that when less than 25% of anchors are faulty, the
average localization error of MAP algorithm increase less
than 85%.

5.5. Execution Time. Finally, we analyze the average execu-
tion time of MAP algorithm by simulation. In the simulation,
the number of sensor nodes is set to 100. Figure 7 shows the
average execution times of the two algorithms under different
numbers of anchor nodes when the size of grid is 10m X
10 m. Figure 8 shows the average execution times of the two
algorithms under different grid sizes when the number of
anchors is 20. It can be seen that the execution times of both
algorithms are approximately proportional to the number of
anchor nodes and are approximately inversely proportional
to the acreage of grid. This result is consistent with the
analysis in Section 4. In a general case, MAP algorithm can
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FIGURE 7: Execution times of MAP algorithm and LST algorithm
under different number of anchors.

Execution time (s)

5 7 9 11 13 15 17 19 21 23 25
Size length of grid (m)

—@— MAP algorithm
—A— LST algorithm

FiGure 8: Execution times of MAP algorithm and LST algorithm
under different grid sizes.

localize a sensor node in a short time. Since MAP algorithm
has a more complicated calculation than LST algorithm, the
execution time of MAP algorithm is longer.

6. Conclusion

RSSI ranging-based localization is regarded as a cost-effective
solution for sensor node localization. But RSSI ranging
technique has a large ranging error, which will bring a large
average localization error to the general least-squares trilat-
eration. In this paper, we propose a localization algorithm
based on maximum a posteriori probability (MAP). In this
algorithm, the point with the maximum probability density
in the target region is taken as the estimated location of a
sensor node. Extensive simulation results demonstrate the
effectiveness of MAP algorithm. This algorithm reduces the
average localization error by nearly 34.8% compared with
the least-squares trilateration. Even if the number of anchors
is small, this algorithm can also achieve a relatively small
average localization error. In addition, the execution time of
this algorithm is very short.

As a future work, we are currently studying when anchors
are absent, how to determine the probability density of the
distribution of a sensor node only by the RSSI values of
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sensor nodes. Moreover, we plan to conduct some practical
experiments to confirm the effectiveness of our proposed
algorithm.
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