International Journal of Distributed Sensor NetworksVolume 2012 (2012), Article ID 271860, 12 pagesdoi:10.1155/2012/271860
Research Article
Survey: Discovery in Wireless Sensor Networks
Valerie Galluzzi and Ted Herman
Department of Computer Science, University of Iowa, Iowa City, IA 52242, USA
Received 16 July 2011; Revised 7 October 2011; Accepted 13 October 2011
Academic Editor: Yuhang Yang 
Copyright © 2012 Valerie Galluzzi and Ted Herman. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract. 
Neighbor discovery is a component of communication and access protocols for ad hoc
networks. Wireless sensor networks often must operate under a more severe low-power
regimen than do traditional ad hoc networks, notably by turning off radio for extended
periods. Turning off a radio is problematic for neighbor discovery, and a balance is needed
between adequate open communication for discovery and silence to conserve power. This
paper surveys recent progress on the problems of neighbor discovery for wireless sensor
networks. The basic ideas behind these protocols are explained, which include deterministic
schedules of waking and sleeping, randomized schedules, and combinatorial methods
to ensure discovery.
 

1. Introduction
In the decade following the introduction of Wireless Sensor Networks (WSNs) to the lexicon, the technical landscape of applications, network protocols, and research problems has shifted somewhat. The early focus on basic communication issues enabled more applications to be deployed, and the catalog of available WSN platforms increased to include many types of radio and processor features. Experience with applications and platforms showed that early perceptions of power challenges and solutions to power management were perhaps misinformed. For example, the lifetime of a sensor node running on battery was not significantly extended by attenuating transmission power. Rather, the most effective means of power conservation consists in powering off components entirely, including sensors and the radio. The appendix of this paper has a small example illustrating how the lifetime of a battery-powered sensor node could vary from days to years depending on effective use of sleep modes. Scheduling operations across a WSN, for example, selectively powering on and off nodes, is a problem of distributed control. Indeed, a fundamental balance is needed to minimize power utilization on one hand, yet facilitate application data forwarding through the WSN on the other hand. The situation is yet more challenging if the network topology is dynamic, nodes are mobile, or nodes depend on harvesting devices to scavenge sufficient power for radio operation.
 This paper surveys the literature of one facet of power management in sensor network protocols, namely the problem of neighbor discovery. Informally, the problem is to devise an efficient protocol whereby sensor nodes learn of the presence of other nodes within communication range even as they adhere to low-power operation, with the radio mostly off. The crux of the problem is as follows.
A sensor node 
	
		
			

				𝑝
			

		
	
 needs to communicate with some neighbor 
	
		
			

				𝑞
			

		
	
, but that is only possible when both 
	
		
			

				𝑝
			

		
	
 and 
	
		
			

				𝑞
			

		
	
 have their radios powered on at the same time.


 This problem is particularly relevant to ad hoc or mobile deployments where the set of (communication) neighbors of a node is unpredictable or dynamic. The parameters of the problem are many: design choices for power schedules, constraints of processor (resources and timing facilities), hardware features of the radio, and application requirements control what is the set of conceivable solutions. Though several techniques from the literature on neighbor discovery have some combinatorial flavor, the dependence on problem parameters makes framing neighbor discovery as a purely algorithmic problem somewhat difficult. To give the survey context, we examine some related problems, technology and older results from areas of networks and distributed computing. The survey then explains prominent techniques for neighbor discovery, metrics for analysis, and several important results from the literature. We have also simulated representative protocols for neighbor discovery, to illustrate for the reader how different design choices affect performance metrics.
Organization. For readers unfamiliar with the problem of neighbor discovery, Section 2 discusses a brief motivating scenario. The paper then presents historical background, sensor node and radio platform considerations before presenting protocols in Section 5 (eager readers may wish to start with Section 5). After reviewing some background concepts from distributed computing in Section 3, considerations that constrain and affect evaluation of protocols are discussed in Section 4. Material in Section 5 organizes neighbor discovery protocols thematically, grouping them by their basic discovery techniques (which mostly repeat historical themes mentioned in Section 3). Section 6 is devoted to performance metrics for neighbor discovery protocols. Final remarks are in Section 7. Some details about hardware and protocols considerations are deferred to the appendix.
2. Motivating Scenario
Protocols for low-power operation in sensor networks turn the radio off between communications. Schedules for turning radio on and off could be periodic, random, or some hybrid of these approaches. Figure 1 shows a scenario for four nodes, (1)–(4). The top part of the figure shows the communication network, which is a linear structure (node (1) is out of range of node (3)). Each of these nodes uses the same periodic awake schedule, waking once every five time intervals. Unfortunately, their schedules are not coordinated in the figure; hence no two nodes are unable to communicate, because their radios are not on at the same time. This unfortunate situation could be the result of improper initialization, crash and restart events at unpredicted times, or the normal dynamic arrival of nodes in an ad hoc WSN.





	
	
	
	
	
	
	


	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	


Figure 1: An uncoordinated node schedule.


Some MAC protocols arrange to have nodes occasionally sample radio activity during sleeping periods, with the aim of learning what other nodes are in the vicinity and what are their schedules; the appendix cites papers on low-power MAC protocols for WSNs that use sampling. These sampling techniques depend on a radio feature for channel sampling that is fast and consumes very little power. By contrast, the discovery protocols surveyed in Section 5 do not depend on extra radio features. If sampled neighboring node schedules are predictable (i.e., periodic), then some additional waking time can be scheduled. Figure 2 shows a modification to the scenario of Figure 1 in which node (3) has learned the schedules of (2) and (4), and then added to its waking times to facilitate communication. Note that in addition to enlarging its waking time to accommodate (2) and (4), node (3) retains its original schedule as well, in case any other nodes that have learned about (3) depend on its schedule.





	
	
	
	


	
		
		
		
	
	
		
		
		
	
	
		
		
		
	
	
		
		
		
	


Figure 2: Node (3) accommodates its neighbors.


Does learning of neighboring nodes then accommodating their schedules solve the problem of neighbor discovery? Yes, however, one would hope to have a power-optimal solution to neighbor discovery rather than adding additional waking times to accommodate neighbor schedules. Remarkably, protocols (surveyed in Section 5), by careful arrangement of their schedules, are able to learn of neighbors without extra sampling of the radio during their sleeping periods. It should be possible for a WSN to overcome improper initialization or ad hoc network formation, so that eventually all schedules are coordinated, as shown in Figure 3. Having all nodes move to a common, coordinated schedule (analogous to TDMA) will result in lower power consumption.









	
	
	


	
	
	


	
	
	


	
	
	


Figure 3: Coordinated node schedule.


For more traditional, mobile ad hoc networks (MANETs) where power conservation is not so critical, neighbor discovery is the simpler problem of continuously detecting that mobile stations come into range—converging to a common schedule like that shown in Figure 3 is not important. Many WSN applications are either event-driven (and nodes cannot wait long to transmit data) or the power requirements are not so stringent. For these applications, learning of and accommodating to neighbor schedules is adequate.
3. Wakeup in Distributed Systems
A sensor node saves power by turning off its radio. While the radio is off, that sensor neither receives messages nor responds to queries or commands. It is dormant as far as other nodes in range of communication are concerned. We thus say that a node is asleep when its radio is off, and awake when the radio is on. Two nodes are (communication) neighbors if they can communicate when both are awake.
 Results from the WSN literature on neighbor discovery explore arbitrary communication topologies that have bidirectional communication links. That is, if 
	
		
			

				𝑝
			

		
	
 and 
	
		
			

				𝑞
			

		
	
 are neighbors, then 
	
		
			

				𝑝
			

		
	
 can hear 
	
		
			

				𝑞
			

		
	
’s messages and vice versa; in reality, the neighbor relation could be asymmetric, so that 
	
		
			

				𝑝
			

		
	
 could hear from 
	
		
			

				𝑞
			

		
	
, whereas 
	
		
			

				𝑞
			

		
	
 would be unable to receive from 
	
		
			

				𝑝
			

		
	
 presentation. In WSN deployments, it could be possible that a link is asymmetric; the papers surveyed in this paper generally presume bidirectional links. The assumption of symmetry simplifies analysis and protocol research. In our opinion, neighbor discovery with unidirectional links is an open problem. We suggest in Section 7 some considerations regarding unidirectional links in research. Note, however, if a network can be connected using bidirectional links, then unidirectional links could be ignored or discarded for routing or other applications; whether or not the case of unidirectional communication really matters depends on empirical properties of WSNs in practice.
Other simplifying assumptions about timing are introduced later in the article. Generally, we shall ignore the possibility of failures, including message corruption, radio interference, and frame collision during transmission. Because discovery is an ongoing protocol, engineered to cope with dynamic, ad hoc WSNs, the consequence of simplyfing assumptions is that the latency for discovery is prolonged by communication failures. So long as communication succeeds with sufficient probability, discovery eventually occurs. Even when more realistic models are used, the techniques and themes surveyed in this article would be valid starting points for design and implementation of neighbor discovery protocols.
 The neighbor discovery problem has a trivial solution if nodes are given the ability to “wake up” sleeping neighbors. It is common in wired local area networks to have a special wakeup command, which causes sleeping nodes to become awake. This feature turns out to be difficult or prohibitively expensive for sensor nodes at the current level of technology. There is one commonly used exception, passive RFID technology, where nodes receive not only a message but also the power needed to compute and respond, from an electromagnetic signal. Limitations on range and the power needed for signaling (plus the cost of extra components) rule this option out for WSN deployments, so the trivial solution of transmitting a wakeup command and hearing acknowledgments is not considered to be a satisfactory neighbor discovery protocol. However, wakeup considered in a broader context is sufficiently important, yielding many interesting and relevant techniques, as mentioned briefly in the following paragraphs.
 Among the well-studied problems for distributed algorithms are variants of the wakeup problem. Perhaps the oldest of these is the firing squad problem [1]: a multihop network is given with all nodes initially asleep; one node is selected to spontaneously wake up, and the goal is to have all nodes perform some action only once, and simultaneously. Algorithms for this task thus rely on the initiator node sending messages to neighbors, which are propagated to their neighbors, and so on, to wake up the entire network; superimposed on this wakeup scheme, there needs to be a timing strategy so that nodes only perform the desired action at the same instant all their neighbors do (transitively, the entire network). Metrics for optimization include the number of messages, the size of messages, the latency period between initial activation and the firing of the action, and the overhead (memory, program size) of the algorithm. Obviously, a sleeping node cannot know when the initiator will wake up, and this resembles one of the fundamental difficulties of the neighbor discovery problem: a node cannot know (except for very specific deployments) when another node enters into its neighborhood and is capable of being awake.
 Theoretical study of wakeup in a shared communication medium network starts with [2]. The network there is single-hop (i.e., a clique topology) and messages are unicast, unlike the wireless model where a single message can be received by all neighbors. Despite such differences from the WSN model, an important observation is relevant to neighbor discovery in a sensor network: the timing of when a node sends a message (or engages in some higher-layer multicast protocol) is important. The schedule of transmitting messages can be deterministic or random, and the choice of a schedule is crucial to efficiency. One schedule described in [2] gives each node in the system a different schedule, based on periodically transmitting after some silent period. The length of the period is chosen to be a prime number so that each node has a different prime, and this turns out to guarantee certain synchronization properties. We will see in Section 5.4 that such a technique has been exploited in several investigations of the neighbor discovery problem.
 Another perspective on discovery, again from the literature of distributed computing, is found in [3], which shows how to match up servers and clients in a distributed, message-passing system. With 
	
		
			

				𝑛
			

		
	
 servers and 
	
		
			

				𝑛
			

		
	
 clients, it turns out that 
	
		
			
				√
				𝑂
				(
			

			
				
			
			
				𝑛
				)
			

		
	
 messages suffice to guarantee a fully distributed rendez-vous between matching parties (a nondistributed solution would be to have one leader node coordinate all of the matching, but it then becomes a single point of failure or contention). The idea is based on an 
	
		
			
				𝑛
				×
				𝑛
			

		
	
 matrix, with rows representing servers and columns representing clients. The server of row 
	
		
			

				𝑖
			

		
	
 tells a set of 
	
		
			
				𝑃
				(
				𝑖
				)
			

		
	
 nodes about itself, whereas the client of column 
	
		
			

				𝑗
			

		
	
 queries a set of 
	
		
			
				𝑄
				(
				𝑗
				)
			

		
	
 nodes for the desired service. Then, by arranging 
	
		
			

				𝑃
			

		
	
, 
	
		
			

				𝑄
			

		
	
 so that 
	
		
			
				𝑃
				(
				𝑖
				)
				∩
				𝑄
				(
				𝑗
				)
			

		
	
 is nonempty, discovery will occur. It turns out that 
	
		
			
				√
				|
				𝑃
				(
				𝑖
				)
				|
				=
				⌈
			

			
				
			
			
				𝑛
				⌉
			

		
	
 and 
	
		
			
				√
				|
				𝑄
				(
				𝑖
				)
				|
				=
				⌈
			

			
				
			
			
				𝑛
				⌉
			

		
	
 effectively load balances the match-making process: a lower bound of 
	
		
			
				√
				Ω
				(
			

			
				
			
			
				𝑛
				)
			

		
	
 is shown in [3] on the average message complexity for discovery between client and server. The view of discovery through a matrix or table with rows and columns representing different parties occurs in the WSN neighbor discovery literature (see intersecting designs in Section 5.3). An earlier reference to such a problem can also be found in the seminal paper [4] on replica control in databases; later, a more sophisticated construction [5] was discovered for mutual exclusion, which achieves 
	
		
			
				√
				𝑂
				(
			

			
				
			
			
				𝑛
				)
			

		
	
 complexity, 
	
		
			

				𝑛
			

		
	
 being the number of nodes (incidentally, the initial construction depends on finding a prime factor to establish the existence of a particular subset of nodes that guarantee rendez-vous). Finding special arrangements of awake times, rather than node locations, turns out to be similar and useful for neighbor discovery.
4. Platform
This section briefly introduces terminology and facts about sensor nodes used later in descriptions of protocols. More detail on platform issues can be found in the appendix. Most of the protocols are based on discrete models of time and communication, so a slotted model of time is a reasonable discipline for protocols and a convenient analysis abstraction. The appendix discusses some of the concerns of the slot abstraction as well as duty cycle, processor, clock, and radio facilities relevant to neighbor discovery.
The Slot ModelBefore delving into the details of protocols, it is helpful to explain some terminology found in the literature of neighbor discovery. Time is modeled in discrete units called slots, which are supposed to be intervals of real time of sufficient length to permit communication. A node can either be awake or asleep in any given slot. Discovery protocols use schedules of awake and asleep intervals, most of them based on slots, with the objective of keeping the ratio of awake slots to total slots to a suitably low duty cycle (see appendix for details and motivation of duty cycles). During operation, we can refer to a node’s current slot by some fictional counter value, so that a protocol or schedule may be concisely described. For convenience of presentation and analysis, we further suppose that all nodes commence and terminate their slots in unison: a trace of a WSN execution is thereby depicted by a diagram in Figure 4 where rows are nodes, slot numbers increase left to right, and the starting points for all slots line up vertically. Given such an ideal arrangement of slotted time, the basis for neighbor discovery is easy to define. If 
	
		
			

				𝑝
			

		
	
 and 
	
		
			

				𝑞
			

		
	
 are neighbors who have not yet discovered each other, and if they are awake concurrently in some slot 
	
		
			

				𝑘
			

		
	
, then they discover each other and the fact of this discovery is retained for slots 
	
		
			
				𝑘
				+
				1
			

		
	
 and higher. We call the event of 
	
		
			

				𝑝
			

		
	
 and 
	
		
			

				𝑞
			

		
	
 discovering each other mutual recognition. Slots are a convenient abstraction, though time on WSN platforms is not inherently divided into slots. Nodes can approximate being awake and asleep for intervals that would approximate multiples of slot length; also, nodes cannot be expected to have their slots precisely aligned as Figure 4 shows. Assume that a slot is the minimum-length time interval for two nodes to exchange messages, thus adequate for mutual recognition; that is, if neighbors are both awake for the duration of one slot, then each neighbor receives some message from the other. While it would be ideal for nodes to discover each other in one slot time, it is quite improbable in practice that that neighbors would have slots so precisely aligned, starting their slots simultaneously. Therefore, implementations of these slotted protocols may stretch the length of the awake interval, aiming for sufficient overlap even when the slots are not aligned. To see this, consider an awake interval comprising three slots, that is, three times the minimum-length time needed for mutual recognition.Figure 5 shows awake periods for two nodes, (1) and (2), which do not have aligned slots. Because each interval’s length comprises three slots, a sufficient condition is that these two awake intervals satisfy: the center slots of each have some (even small) overlap. That condition guarantees that the two intervals overlap by at least the duration of one slot, indicated, for instance, by the dotted vertical lines in the figure. The condition suggests an approach to designing a neighbor discovery protocol. First, assume that slots are aligned; then design a protocol that guarantees, neighbors eventually are both awake during some slot (the subject of Section 5). Second, when implementing this protocol, prefix any scheduled contiguous sequence of awake slots with one extra awake slot, and similarly add a suffix of one extra awake slot to the sequence. The idea from Figure 5 then overcomes the fact that slots are not aligned in practice. Thus the consequence of using simplistic model of aligned slots is that neighbor discovery protocol results, presented in later sections, will be degraded by some (hopefully constant) factor in an implementation of the protocol. Further motivations for extending the awake periods (due to collisions and other phenomena) are discussed in the appendix. The work of [6] suggests another way to deal with unaligned slots: at the start and end of each slot, a beacon is transmitted, which is enough to trigger discovery. The implementation findings reported in [6] using the slot abstraction state that only in 2% of cases did the actual discovery time exceed that predicted by analysis and simulation based on aligned slots.





	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
			
			
				
			
		
	


	
		
		
		
		
		
		
		
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
			
				
			
		
	
	
		
			
				
			
		
	
	
		
			
				
			
		
	
	
		
			
				
			
			
				
			
			
				
			
		
	
	
		
			
				
			
			
				
			
			
				
			
		
	
	
		
			
				
			
			
				
			
			
				
			
		
	
	
		
			
				
			
			
				
			
			
				
			
		
	
	
		
			
				
			
			
				
			
			
				
			
		
	
	
		
			
				
			
			
				
			
			
				
			
		
	


Figure 4: Slots for 
	
		
			

				𝑝
			

		
	
 and 
	
		
			

				𝑞
			

		
	
. ☼ denotes awake.















	
	
	


	
	
	


Figure 5: Unaligned slot sequences.


5. Protocols
Protocols for neighbor discovery exploit three basic themes, though a variety of constructions combine the themes and emphasize them differently. First, a sensor node can use randomness to influence behavior. Random choice of which slots are awake or sleeping is a probabilistic method of obtaining mutual recognition. Second, there are patterns of awake slots that guarantee neighbor discovery when all nodes use them. Third, a node can remain awake for a number of consecutive slots to assure neighbor discovery.
 Whatever the technique used for obtaining discovery, an important question is what should be done after discovery? Most papers gloss over this question, though it deserves some explanation. Suppose that neighbors 
	
		
			

				𝑝
			

		
	
 and 
	
		
			

				𝑞
			

		
	
 achieve mutual recognition in some slot at time 
	
		
			

				𝑡
			

		
	
. One design choice would be for both 
	
		
			

				𝑝
			

		
	
 and 
	
		
			

				𝑞
			

		
	
 to record the fact of a new neighbor in local state variables and then continue with the discovery protocol after time 
	
		
			

				𝑡
			

		
	
, each perhaps discovering other neighbors. If the discovery protocol also exchanges some extra information, then with each discovery a node may also obtain the schedule for each neighbor. Thus, node 
	
		
			

				𝑝
			

		
	
 would have a table of its neighbors and their sleeping schedules. A different design choice would be for nodes to change behavior following the event of neighbor discovery. Thus, at time 
	
		
			

				𝑡
			

		
	
 when 
	
		
			

				𝑝
			

		
	
 and 
	
		
			

				𝑞
			

		
	
 discover each other, at least one of the two nodes changes its sleeping schedule so that thereafter 
	
		
			

				𝑝
			

		
	
 and 
	
		
			

				𝑞
			

		
	
 have identical sleeping schedules. We call this a merge event. If two nodes merge, at least one of them switches its sleeping schedule (or changes its current slot number within the schedule). While this may seem simple, it can be more involved after a history of merge events: perhaps two connected components 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝐵
			

		
	
 each contain multiple nodes, that is, 
	
		
			
				|
				𝐴
				|
				>
				1
			

		
	
 and 
	
		
			
				|
				𝐵
				|
				>
				1
			

		
	
. Now if a node in 
	
		
			
				𝑝
				∈
				𝐴
			

		
	
 and a node in 
	
		
			
				𝑞
				∈
				𝐵
			

		
	
 discover each other, how should a merge event proceed? If 
	
		
			

				𝑝
			

		
	
 is to adopt 
	
		
			

				𝑞
			

		
	
’s schedule, then does 
	
		
			

				𝑝
			

		
	
 “move” from 
	
		
			

				𝐴
			

		
	
 to 
	
		
			

				𝐵
			

		
	
, or should all nodes of 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝐵
			

		
	
 merge into one schedule? The latter choice would imply some kind of distributed algorithm to effect the schedule change, which is problematic for a low duty-cycle WSN application. We leave the details of merging questions open in this article, due to the lack of literature on this topic.
 Some WSN applications make use of the radio’s local broadcast ability: with one transmission, a node can send data to all its neighbors. If this feature is desired, then a merging protocol is superior to a nonmerging protocol, because after merging, all neighbors would be awake to receive a local broadcast (because they would have the same sleeping and awake schedules). For applications that use only unicast, a non-merging protocol could be sensible. A hybrid of these two approaches would be a discovery protocol for single-use deployments, where nodes engage in non-merging neighbor discovery for some fixed time period, and then all nodes switch to a common sleep schedule.
5.1. The Birthday Protocol
The idea of the birthday protocol is dual to the randomization strategy behind CSMA/CA in 802.15.4 for sensor networks. Recall that for CSMA/CA, a node delays for some random interval before attempting transmission. The purpose of delay is to increase the probability of finding a transmission time that avoids collision, that is, neighbors do not transmit simultaneously. In contrast, the goal of the birthday protocol is to use random selection between awake and sleeping states so that neighbors are awake simultaneously. The work of [7] proposed the birthday protocol for low-power communication, based on transitions between three node states. Entering a state amounts to starting either an asleep or awake interval of fixed duration, which is effectively a slot. At the start of each slot, a node chooses with probability 
	
		
			

				𝑝
			

			

				𝑠
			

		
	
, 
	
		
			

				𝑝
			

			

				𝑡
			

		
	
, and 
	
		
			

				𝑝
			

			

				ℓ
			

		
	
 whether the state for that slot is to be sleeping, transmitting, or listening. During a transmitting slot, a node broadcasts a discovery message. The work of [7] refines this approach further by arranging for nodes to have different modes, using timing parameters tuned for performance, which tune the frequency of entering a transmitting state.
A notable feature of the birthday protocol is that it does not require neighbor discovery as such. (Though [7] is oriented to neighbor discovery, we observe that it could directly be used as a MAC protocol in which nodes may sleep.) Nodes could use this protocol to send and receive messages, without needing any particular sleeping schedule, because the duration of sleeping is a random variable. An open question is how nodes should behave in birthday protocol following discovery—the argument of the authors of [7] is that the birthday protocol can be memoryless, with no durable consequences of discovering a neighbor. In contrast, other papers [7] as a discovery mechanism do suggest that discovering a neighbor could modify subsequent protocol behavior. We thus consider as an open problem how the randomized technique of the birthday protocol could be used for more durable discovery and scheduling. It seems that merging would be possible, though the behavior of a merged set of nodes should be the same with respect to random choices after the merge. That is, when nodes merge, they should adopt a common seed for a pseudorandom number generator, so that they coordinate sleeping.
 Analysis of the essential ideas of the birthday protocol appears in [8, 9] for a 1-hop network (fully connected) with application to ad hoc networks. We did not find analytic results on the birthday protocol for multihop networks. Analysis in [9] derives a time period after which, with high probability, all neighbor discovery is completed (this assumes that all nodes start at approximately the same time). Analysis in [8] compares the energy cost of the simple birthday protocol, of the kind outlined here, to a round-robin birthday protocol.
5.2. Brute Force
The simplest deterministic protocol for neighbor discovery is the periodic schedule of 
	
		
			

				𝑛
			

		
	
 slots, with the first 
	
		
			
				⌈
				(
				𝑛
				+
				1
				)
				/
				2
				⌉
			

		
	
 of these being awake and the remaining slots for sleeping. This can informally be called the “51%” solution, since the idea is to remain on for slightly more than half of a period. No matter how two neighbors are initially offset in where their periods begin, mutual recognition is assured because their awake intervals must overlap. Several papers either explicitly or implicitly use this brute force technique or similar [10–12]. Let the periodic interval of 
	
		
			

				𝑛
			

		
	
 slots be called a round. Clearly, neighbors discover each other within one round, which is optimal in terms of the latency of the discovery process. Unfortunately, the duty cycle is at least 50%, which is unacceptable for low-power operation.
 A method of reducing the duty cycle below 51% is proposed in [10, 12]. Let 
	
		
			
				𝑘
				=
				⌈
				(
				𝑛
				+
				1
				)
				/
				2
				⌉
				−
				1
			

		
	
 and consider a logical division of the initial 
	
		
			
				⌈
				(
				𝑛
				+
				1
				)
				/
				2
				⌉
			

		
	
 awake slots into the first slot and the 
	
		
			

				𝑘
			

		
	
 subsequent slots. Suppose that 
	
		
			

				𝑟
			

		
	
 is a divisor of 
	
		
			

				𝑘
			

		
	
. Now partition the 
	
		
			

				𝑘
			

		
	
 slots that follow the first slot of the round into 
	
		
			

				𝑟
			

		
	
 sequences, labeled 
	
		
			

				𝑓
			

			

				0
			

			
				,
				𝑓
			

			

				1
			

			
				,
				…
				,
				𝑓
			

			
				𝑟
				−
				1
			

		
	
. Each interval 
	
		
			

				𝑓
			

			

				𝑖
			

		
	
 consists of 
	
		
			

				𝑟
			

		
	
 consecutive slots. With this terminology, we consider a transformation of the 51% solution by letting each round begin with one awake slot, but distributing the intervals 
	
		
			

				𝑓
			

			

				𝑖
			

		
	
 over 
	
		
			

				𝑟
			

		
	
 rounds. For example, if 
	
		
			
				𝑟
				=
				2
			

		
	
, there are two intervals 
	
		
			

				𝑓
			

			

				0
			

		
	
 and 
	
		
			

				𝑓
			

			

				1
			

		
	
, each having 
	
		
			
				𝑘
				/
				2
			

		
	
 slots, spread over two rounds: in the first round, we have 
	
		
			
				1
				+
				𝑘
				/
				2
			

		
	
 awake slots followed by 
	
		
			
				𝑛
				−
				(
				1
				+
				𝑘
				/
				2
				)
			

		
	
 sleeping slots; in the second round, there is one awake slot followed by 
	
		
			
				𝑘
				/
				2
			

		
	
 sleeping slots, then 
	
		
			
				𝑘
				/
				2
			

		
	
 awake slots, and 
	
		
			
				𝑛
				−
				(
				1
				+
				𝑘
				)
			

		
	
 sleeping slots. The schedule for a node is to repeat the pattern of these two rounds. Observe that, except for their first slots, the awake times of the first and second rounds are disjoint.
 Figure 6 illustrates an example where 
	
		
			
				𝑛
				=
				9
			

		
	
, 
	
		
			
				𝑘
				=
				4
			

		
	
, and 
	
		
			
				𝑟
				=
				1
			

		
	
, which produces a sequence of four rounds. The figure shows the four rounds as rows of a table, with columns representing slots. The symbol ☼ indicates that a slot is awake. The duty cycle for this schedule is less than half of the 51% approach, 
	
		
			
				2
				/
				9
			

		
	
. To get some intuition why this translation of brute force into multiple rounds is valid, consider two neighbors 
	
		
			

				𝑝
			

		
	
 and 
	
		
			

				𝑞
			

		
	
 that have an offset of six slots and the following scenario. Node 
	
		
			

				𝑝
			

		
	
 starts with the first round at time 0, and node 
	
		
			

				𝑞
			

		
	
 starts at time 6 with the first round (time and slot numbers are synonymous here). Thus 
	
		
			

				𝑝
			

		
	
 is awake at times 0 and 1, then asleep until time 9, when its second round begins. Following the patterns of rows for Figure 6 awake times for 
	
		
			

				𝑝
			

		
	
 are 0, 1, 9, 11, 18, 20, 27, 31, 36, and 37. Node 
	
		
			

				𝑞
			

		
	
 is awake at times 6 and 7, then asleep until time 15. The awake times for 
	
		
			

				𝑞
			

		
	
 include 6, 7, 15, 17, 24, 26, 33, 37, 42, and 43. We see that both 
	
		
			

				𝑝
			

		
	
 and 
	
		
			

				𝑞
			

		
	
 are awake at time 37, which suffices for discovery. The rationale for the pattern is seen from the table. The “union” of relative awake times for the four rows is the 51% schedule.

















































































	
	
	
	


	


	


	


	


	


	


	


	


	


Figure 6: Brute force transformed to lower duty cycle.


The translation of brute force to a scheme that spreads awake slots over time does reduce duty cycle, but at a cost: the time needed to guarantee discovery is larger: the discovery time is in the worst case 
	
		
			

				𝑟
			

		
	
 times greater (see analysis in [10]). This translation partitions a consecutive sequence of slots into an interrupted, irregular pattern of waking and sleeping. In many of the other discovery protocols we see a similar idea, where an irregular sleep pattern is used to obtain low duty cycle. Depending on application constraints, an irregular sleep pattern may not be useful for the application’s tasks of sensing, computing, and communicating. At least the first slot of each round in the transformed brute force approach occurs periodically. A hybrid adaptation of the idea, combining the translation and randomized selection, would be a schedule with two awake slots, one at the start of each round and the other randomly selected from the remaining slots in the round.
 A different method to reduce the duty cycle, again based on the brute force technique, is used in [11]. The basis for their method is to have one awake slot at the start of every round; however this is augmented by sometimes using the 51% solution in a round. For example, once every 
	
		
			

				𝑛
			

		
	
 rounds, a node is awake during 
	
		
			
				⌈
				(
				𝑛
				+
				1
				)
				/
				2
				⌉
			

		
	
 consecutive slots, this achieves a 
	
		
			
				2
				/
				𝑛
			

		
	
 duty round, at the cost of increasing the worst-case discovery time of the protocol. Because a node would need to be awake for 
	
		
			
				𝑛
				/
				2
			

		
	
 consecutive slots, this method might be unsuited to energy-harvesting platforms.
5.3. Intersecting Designs
Finding schedules of awake and sleeping slots to guarantee neighbor discovery has a combinatorial interpretation. The problem is to devise schedules with minimum duty cycle that are self-intersecting with respect to any rotation. Suppose that 
	
		
			

				𝜋
			

		
	
 denotes the indices of awake slots in an 
	
		
			

				𝑛
			

		
	
-slot round. An example of this for 
	
		
			
				𝑛
				=
				1
				6
			

		
	
 is 
	
		
			
				𝜋
				=
				{
				0
				,
				3
				,
				4
				,
				1
				2
				}
			

		
	
. A k-rotation of 
	
		
			

				𝜋
			

		
	
 is obtained by adding 
	
		
			

				𝑘
			

		
	
 to each index, modulo 
	
		
			

				𝑛
			

		
	
, denoted by 
	
		
			

				𝜋
			

			

				𝑘
			

		
	
. Thus the 5-rotation of the example produces 
	
		
			
				{
				5
				,
				8
				,
				9
				,
				2
				}
			

		
	
. The combinatorial task is to find minimum size 
	
		
			

				𝜋
			

		
	
 such that 
	
		
			
				𝜋
				∩
				𝜋
			

			

				𝑘
			

			
				≠
				∅
			

		
	
 for 
	
		
			
				0
				≤
				𝑘
				<
				𝑛
			

		
	
. Finding such a sequence readily provides a schedule so that no matter how neighbors are offset, a common awake slot is guaranteed within a complete round.
 While self-intersection for any 
	
		
			

				𝑘
			

		
	
-rotation yields discovery within a round, the neighbor discovery problem in general does not require discovery within one round. Depending on how important discovery is to the application, weaker combinatorial problems, perhaps asking for intersection over a history of rounds, would be satisfactory. The results surveyed in this subsection target guaranteed discovery within one complete round. Also, note that the problem of finding self-intersecting sequences need not be restricted to all nodes using the same sequence. We may distinguish between symmetric solutions, where all nodes use the same sequence, and asymmetric solutions where nodes use different sequences from a set 
	
		
			

				𝒮
			

		
	
 of patterns, such that any 
	
		
			
				𝑆
				∈
				𝒮
			

		
	
 is guaranteed intersection with 
	
		
			

				𝑇
			

			

				𝑘
			

		
	
 for 
	
		
			
				𝑇
				∈
				𝒮
			

		
	
. We concentrate first on symmetric solutions and return in the next subsection to asymmetric solutions.
 Lower bounds on the number of awake slots needed for self-intersection are explored in [13, 14]. The problem requires 
	
		
			
				√
				Ω
				(
			

			
				
			
			
				𝑛
				)
			

		
	
 slots to be awake for discovery. In effect, the solution schedules with 
	
		
			
				√
				𝑂
				(
			

			
				
			
			
				𝑛
				)
			

		
	
 awake slots correspond to the match-making work cited in Section 3. The schemes proposed in [13] are combinatorial designs, which have other applications in discrete mathematics. However, the first paper to explore such schedules for discovery is [15], which used the quorum idea, similar to the work of [5] on mutual exclusion. The works of [13, 14] improve on the quorum construction with lower power and considering multihop topologies and investigating randomized schedules with high probability of self-intersection with rotation.
 Designs based on self-intersecting schedules are chiefly of interest to applications that need to minimize discovery latency, while also minimizing power usage. Whereas the brute force approach has a duty cycle of at least 1/2 to minimize latency, the existence of self-intersecting schedules would argue that power can be substantially reduced. However, there are some considerations for using these schedules with low duty cycles. Suppose that a 0.1% duty cycle is needed, and ignore constants in the 
	
		
			
				√
				𝑂
				(
			

			
				
			
			
				𝑛
				)
			

		
	
 bound, for estimation purposes. To obtain the 0.1% duty cycle, we require 
	
		
			

				√
			

			
				
			
			
				𝑛
				/
				𝑛
				=
				1
				/
				1
				0
				0
				0
			

		
	
; hence 
	
		
			
				𝑛
				=
				1
				0
			

			

				6
			

		
	
. A deterministic self-intersecting schedule could impose some complex representation challenges for software implementation, depending on platform resource. Also, the schedule will be irregular, which may not be compatible with desired application behavior. Finally, the platform typically puts a practical lower bound on the duration of a slot, typically in tens to hundreds of milliseconds: the duration of a round, and therefore worst-case discovery time, will be on the order of several hours. (This last observation merely illustrates that there is a tradeoff between low duty cycle and discovery latency.)
5.4. Coprime Schedules
The last type of protocol we survey is based on periodic rounds that have relatively prime length with respect to neighbors, reprising an idea mentioned in Section 3. Thanks to the Chinese Remainder Theorem [16] if neighbors 
	
		
			

				𝑝
			

		
	
 and 
	
		
			

				𝑞
			

		
	
 have rounds in which the first slot is awake and the rest sleeping, and the two round lengths are relatively prime, then discovery is guaranteed. Put more formally, let 
	
		
			

				𝑐
			

			

				𝑝
			

		
	
 and 
	
		
			

				𝑐
			

			

				𝑞
			

		
	
 be the respective number of slots in the rounds of 
	
		
			

				𝑝
			

		
	
 and 
	
		
			

				𝑞
			

		
	
. Numbers 
	
		
			

				𝑐
			

			

				𝑝
			

		
	
 and 
	
		
			

				𝑐
			

			

				𝑞
			

		
	
 are coprime if their greatest common divisor is 1. The latency for mutual recognition is, in the worst case over any offset between the two rounds, 
	
		
			

				𝑐
			

			

				𝑝
			

			
				⋅
				𝑐
			

			

				𝑞
			

		
	
.
 Several observations concerning coprime schedules affect its suitability for WSN deployments. First, nodes need individualized programs so that each node has a round length coprime to all its neighbors. This can be done by assigning each node its own prime number; however this adds to deployment cost (and may be error-prone). Second, the duty cycle for a schedule of 
	
		
			

				𝑐
			

			

				𝑝
			

		
	
 rounds is 
	
		
			
				1
				/
				𝑐
			

			

				𝑝
			

		
	
; if different primes are used, the asymmetry of different duty-cycle rounds in the network will depend on the set of primes chosen (though, after fully merging, all nodes could use a common round). Third, the schedule’s arrangement of periodic rounds with one awake slot is a good fit for applications performing periodic sampling, perhaps by extending the one awake slot to an awake interval of slots. Note that in coprime scheduling we see a tradeoff between latency and duty cycle: lower latency is obtained by using smaller primes, but this entails higher duty cycle.
 Several papers propose coprime scheduling for neighbor discovery [6, 10, 11], using different techniques that deal with the possibility that neighbors were given the same prime number for their rounds. The choice of a prime can be dynamic, by random selection. That enough does not ensure that neighbor rounds have coprime length, because there remains the possibility of unlucky random choices that deal with the same prime to a pair of neighbors. The technique proposed in [10] is to repeat the random prime selection process. For example, 
	
		
			

				𝑝
			

		
	
 may start with a randomly selected 
	
		
			

				𝑐
			

			

				𝑝
			

		
	
, use that for 
	
		
			
				𝑘
				⋅
				𝑐
			

			

				𝑝
			

		
	
 rounds, and then choose again randomly another prime value for 
	
		
			

				𝑐
			

			

				𝑝
			

		
	
. The value 
	
		
			

				𝑘
			

		
	
 can be tuned, and random selection is confined to a set of two coprime numbers 
	
		
			
				{
				𝑧
				,
				𝑧
				+
				1
				}
			

		
	
 to get an expected discovery latency in 
	
		
			
				𝑂
				(
				𝑧
			

			

				2
			

			

				)
			

		
	
 slots. Two deterministic approaches are investigated in [6, 11]. The idea of [6] is to assign a pair of primes 
	
		
			
				{
				𝑐
			

			

				𝑝
			

			
				,
				𝑑
			

			

				𝑝
			

			

				}
			

		
	
 to any node 
	
		
			

				𝑝
			

		
	
. The sleeping schedule is modified so that a slot 
	
		
			

				𝑡
			

		
	
 is awake when either 
	
		
			
				𝑡
				m
				o
				d
				𝑐
			

			

				𝑝
			

		
	
 or 
	
		
			
				𝑡
				m
				o
				d
				𝑑
			

			

				𝑝
			

		
	
 is zero. Because 
	
		
			

				𝑐
			

			

				𝑝
			

			
				≠
				𝑑
			

			

				𝑝
			

		
	
, even if neighbors have the same pair of primes, discovery is assured. Tuning the selection of primes for a desired duty cycle, and a refinement using a triple of primes per node is also proposed in [6]. An advantage of multiple primes is that duty cycles can be adjusted at finer grain, because the duty cycle is approximately 
	
		
			
				1
				/
				𝑐
			

			

				𝑝
			

			
				+
				1
				/
				𝑑
			

			

				𝑝
			

		
	
; moreover, different nodes can have distinct duty cycles, if an asymmetric schedule is useful to the application. The remaining technique, proposed in [11], to overcome using the same prime at different nodes is the one mentioned at the end of Section 5.2 proposed (a transform of brute force) where one in every 
	
		
			

				𝑐
			

			

				𝑝
			

		
	
 rounds is a round with the 51% solution.
6. Metrics
Two criteria for evaluating a neighbor discovery protocol are latency and duty cycle. Latency is informally the time taken to discover a neighbor. Formally, latency can be measured in several ways: (i) the {mean, median, maximum} times for two neighbors to mutually recognize, taken over all nodes and all initial configurations (of offsets and protocol parameters, such as prime number assignments) between the nodes; (ii) the mean time for a node to discover all its neighbors, taken over different offsets, nodes, and topologies; and (iii) the mean and maximum time to “termination”, that is, when all nodes have discovered all their neighbors, again taken over all initial conditions and protocol parameters. In addition to these systemic questions of latency, one could ask about time taken for a new node added to a network, or a topology change, to be recognized. We focus on latency in this section, particularly the worst case and distributions of discovery times.
 The work of [11] starts with the observation that, for certain worst-case latencies in the class of deterministic protocols, the characteristics of optimal schedules, with respect to the number of awake slots, were shown in [13]. An optimal schedule’s number of awake slots can be used as a benchmark for evaluating different protocols. The authors of [11] propose that a combined metric, the power-latency product, be a basis for comparison. Their analysis for power-latency product shows that the quorum protocol [15] and the pair-of-primes protocol [6] are at least a factor of two greater than the optimum, whereas the single prime protocol of [11] is a factor 3/2 greater than the optimum. Another paper [12] suggests that randomizing the choice of which slot is awake (in the transform at the end of Section 5.2) may have better mean time to discovery than [11].
 Is the power-latency product a good target for optimization? When either factor, time to discovery, or duty cycle is held constant, the other factor indeed should be minimized. The attractiveness of the power latency product is its neutrality with respect to tradeoffs for the several protocols surveyed: if latency is to be reduced, using several of the techniques explained in this article, it is at the cost of increased power utilization (for an optimal protocol), due to higher frequency of scheduled awake slots. If these two factors are commensurate, then tuning latency does not change the metric. Power-latency as a metric is similar to the delay-power product for design of switching circuits, where higher power can be necessary for faster response. One aspect missed in the power-latency comparisons in [11] is the distribution of discovery latency times, rather than comparing by analysis of the worst-case latency.
6.1. Simulations
The performance behavior of discovery has been evaluated in [6, 11] by simulation and implementations. The Disco paper [6] explores several questions by simulation, but left open the issue of how discovery times are distributed. To better understand how protocols surveyed in Section 5 compare with respect to discovery time distribution, we simulated them. While a number of sensor network simulators are available, for instance, [17, 18], these tools sim