Hindawi Publishing Corporation

International Journal of Distributed Sensor Networks
Volume 2012, Article ID 273792, 9 pages
doi:10.1155/2012/273792

Research Article

Application-Oriented Fault Detection and Recovery
Algorithm for Wireless Sensor and Actor Networks

Jinglin Du,"?2 Li Xie,! Xiaoyan Sun,? and Ruoqin Zheng?

I Department of Computer Science and Technology, Nanjing University, Nanjing 210093, China
2 Department of Electronics and Information Engineering, Nanjing University of Information Science and Technology,

Nanjing 210044, China

Correspondence should be addressed to Xiaoyan Sun, sun.xiaoyan.1989@163.com

Received 30 July 2012; Accepted 17 September 2012

Academic Editor: Wenzhong Li

Copyright © 2012 Jinglin Du et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recent years have witnessed a growing interest in applications of wireless sensor and actor networks (WSANs). In WSANSs,
maintaining interactor connectivity is of vital concern in order to reach application level. Failure of a critical actor may partition the
inter-actor network into disjoint segments. This paper proposed an application-oriented fault detection and recovery algorithm
(AFDR), a novel distributed algorithm to reestablish connectivity. AFDR identifies critical actors and designates backups for them.
A backup actor detects the critical node failure and initiates a recovery process via moving to the optimal position. The purpose
of AFDR is to satisfy application requirements, reduce recovery overhead, and limit the impact of critical node failure on coverage
and connectivity to the utmost. The effectiveness of AFDR is validated through simulation experiments.

1. Introduction

One of the most attractive and important parts of The Inter-
net of Things is known as the wireless sensor and actor net-
works (WSANs) [1]. WSANs are finding applications in
many domains such as disaster management, homeland
security, battlefield reconnaissance, space exploration, search
and rescue, and so forth. A WSAN consists of numerous min-
iaturized sensor nodes and fewer actor nodes [2]. The sensor
nodes probe their surroundings, measure ambient condi-
tions, and transmit the collected data to one or multiple
actors for processing, making decisions, and responding to
events of interest.

In WSANS, connectivity of the network is crucial
throughout the lifetime of the network in order to meet the
desired application-level requirements. As far as WSAN’s are
concerned, in most application setups, actors need to coor-
dinate with each other in order to share and process the
sensors’ data and plan an optimal response. In such con-
nected WSAN:Ss, failure of one or multiple nodes may cause
the loss of other nodes or communication links, partitioning
of the network if alternate paths among the affected nodes
are not available, and stopping the actuation capabilities of
the node. Such a scenario will not only hinder the nodes’

collaboration but also has very negative consequences on
the considered applications. Therefore, WSANs should be
able to tolerate the failure of mobile nodes and self-recover
from them in a distributed, timely, and energy efficient
manner: first, the recovery should be distributed since these
networks usually operate autonomously and unattended.
Second, rapid recovery is desirable in order to maintain the
responsiveness to detected events. And finally, the energy
overhead of the recovery process should be minimized to
extend the lifetime of the network [3].

In this paper, we present an application-oriented fault
detection and recovery algorithm (AFDR) to determine pos-
sible partitioning in advance and self-restore the connectivity
in case of such failures with minimized node movement and
message overhead. Since partitioning is caused by the failure
of a node which is serving as a cut vertex (critical node)
[4], each node determines whether it is a cut vertex or not
in a distributed manner (Arrival Message Matrix (AMM)).
Each node in the network periodically sends out heartbeat
messages and decides whether it is a cut vertex based on
the received feedback. Once such cut vertex nodes are
determined, each node designates the appropriate neighbor
called backup to handle its failure. The backup detects any
failure of the cut vertex and chooses a suitable node (a leaf

node or itself) to replace the failed node. The alternative node
need not move to the exact position directly where the failed
actor is; it just moves to an optimal position to administer
more sensors. The goal of AFDR is to ensure the coverage of
actors and reduce the mobility and communication overhead
caused in the connectivity recovery process.

2. System Model and Problem Statement

AFDR is applicable to WSANSs that consist of sensors and
actors. Sensors detect and report events of interest to one
or multiple actors. Actors receive reports from sensors and
process and collaborate with each other to plan an optimal
coordinated response. The communication range of an actor
refers to the maximum Euclidean distance that its radio
can reach. An actor has two radios for sensor-actor and
actor-actor communications. To simplify analysis, nodes
are assumed to have the same communication range. Both
sensors and actors are deployed randomly in an area of
interest. After deployment, actors are assumed to discover
each other and form a connected inter-actor network [3]. An
actor is assumed to be able to move on demand and before
moving it informs its backup so that it may not be wrongly
perceived as faulty.

In order to provide qualified services, many applications
require overlays [5] to guarantee reliability and avoid net-
work failures [6]. For a large-scale distributed system, it
is often not cost-effective to protect all the nodes [7].
While node failures may affect network coverage [8] and
connectivity, this paper focuses on both, especially on
maintaining the latter when a node is lost. The impact of
an actor’s failure depends on the position of that actor
in the network topology. For example, losing a noncritical
node does not affect inter-actor connectivity. Meanwhile, the
failure of critical node will partition the network into disjoint
segments. AFDR pursues actor relocation to recover from
critical node failures. We consider one failure at a time and
assume that no node fails during the recovery of another.

3. Related Work

In most WSAN applications, actors establish a connected
inter-actor topology in order to coordinate with each other
on an optimal response and synchronize their operations.
However, the harsh environment which WSAN operates in
makes actors vulnerable to physical damage and component
malfunction. An actor failure may partition the inter-
actor network into disjoint segments and consequently
hinders inter-actor interaction. Numerous schemes have
been pursued recently for repairing network connectivity in
partitioned WSANS.

The main idea is to identify and relocate some of the
nodes. Employing node mobility to repair damaged network
topologies has started to attract attention. Most of the
existing approaches in the literature are purely reactive [9],
which can be categorized into block [10] and cascaded
movements. Block movement often requires a high prefailure
connectivity in order for the nodes to coordinate their
response. It often becomes infeasible in the absence of higher

International Journal of Distributed Sensor Networks

level of connectivity. Therefore, cascaded node movement
that can be further categorized based on network state
information that nodes are assumed to maintain is exploited.
Some approaches like DARA [2] and PADRA [3] require
each actor to maintain two-hop neighbors. One of the
neighbors of the failed node is picked to initiate the recovery
process such that the movement overhead and the number
of messages are minimized. While DARA designates the
node with the least node degree as the recovery initiator
and strives to restore connectivity lost due to failure of
cut vertex, PADRA identifies a connected dominating set to
determine a dominatee node in order to detect cut vertices.
The dominatee does not directly move to the location of
the failed node. Nonetheless, they use distributed algorithm
and their solution still requires 2-hop neighbor’s information
that increases messaging overhead.

Some localized algorithms require only 1-hop neighbor’s
positional information at the expense of lower accuracy of
cut vertices identification. Basically, some nodes are marked
as critical while they are not cut vertices. However, no critical
node will be missed. DCR [11] and RAM [12] employ a
simple localized cut vertex detection procedure that runs
on each node in a distributed manner to determine locally
whether a node is critical or not.

Akkaya et al. introduced a mutual exclusion mechanism
called MPADRA [13] in a localized manner. Both RAM and
MPADRA can handle simultaneous failure of multiple actors
but MPADRA differs from RAM in multiple aspects. First,
MPADRA requires a mutual exclusion mechanism to avoid
race conditions. Second, MPADRA reserves the nodes on
the path in advance before actual relocation. On the other
hand, RAM designates distinct backups and does not engage
relocating nodes beforehand. Third, MPADRA maintains 2-
hop network state information and requires primary and
secondary failure handlers for each dominator.

Younis et al. proposed an algorithm called RIM [14].
When a node fails, its neighbors move inward toward its posi-
tion so they can connect with each other. The rationale is that
these neighbors are the ones directly impacted by the failure,
and when they can reach each other again, the network
connectivity is restored to its prefailure status. The relocation
procedure is recursively applied to handle any nodes that get
disconnected when one of their neighbors moves.

Another algorithm VCR [15] exploits the fact that some
neighbors of the failed node are not using their full commu-
nication range and would thus be able to reach more distant
nodes than the failed actor. In VCR, each actor maintains a
list of 1-hop neighbors and monitors their heartbeats. The
failure of an actor is detected through missing heartbeats.
The recovery process consists of two phases. At first, volun-
teer actors are identified. Then the topology repair is per-
formed through uncoordinated relocation of the volunteer
actors while exploiting partially utilized transmission range
and actor diffusion.

4. Connectivity Restoration Algorithm

4.1. Cut Vertex Identification. Every node in the system con-
siders itself as a cut vertex candidate and initializes a cut

International Journal of Distributed Sensor Networks

vertex detection process. The node that has zero or only one
connection does not need to initialize this process since it can
not be a cut vertex. At the beginning, the candidate assigns
a unique numerical identifier for its connections which is
called the connection number. For example, if a candidate
has ¢ connections, it will label them from 1 to c.

At first, the candidate sends a component probe message
to each of its neighbors. The message contains the following
elements: the candidate’s ID, a timestamp, a TTL threshold,
and the number of connections that connects this neighbor
with the candidate. So each node in the system has a
connection list. The format of the entry for a candidate in the
connection list is “candidate ID, timestamp, TTL threshold,
connection number 1, connection number 2, ...”. Upon
receiving a message, each node deals with it when one of the
following situations happens.

(a) If the node has already received the message, or the
message is old, the node simply just drops the
message.

(b) If there is no entry for the candidate that issues this
message, the node creates an entry for it.

(c) If the timestamp in the received message is newer
than the one stored in the connection list, the node
replaces the old timestamp and connection numbers
stored in the connection list with the new ones.

(d) If the timestamp in the received message is the same
as the one stored in the connection list but the
connection number of the message differs from the
old one, the node adds the new connection number
to the entry and sends an arrival message back to the
candidate.

So each candidate maintains an arrival list whose format
is similar to the connection list: “node ID, timestamp, con-
nection number 1, connection number 2, ...”. That is to say, a
node does not send any arrival messages until its probe mes-
sages contain at least two different connection numbers [3].

According to the arrival list, each candidate maintains a
c-by-c binary matrix, where ¢ is the number of connections
the candidate has. The row or column numbers of the binary
matrix represent the connection number and the matrix
is called the candidate’s AMM (Arrival Message Matrix).
Even though the node with high degree has a big matrix,
the storage overhead is so small when compared to the
movement overhead in the recovery process that it can be
ignored. For an entry (x, y) in the matrix, where x is the row
number and y is the column number, if the corresponding
connection number of x and y can be found in the same
entry of the arrival list, the value of this matrix entry is set
to 1. Otherwise, the value is set to 0. In other words, if any
node has sent back an arrival message containing connection
numbers x and y to the candidate, 1 is set in the (x, y) and (y,
x) entries of the candidate’s AMM. After waiting a defined
period of time, the candidate forms an undirected graph
coming from the matrix representation. The vertices of this
graph are corresponding to the candidate’s connections. We
call this graph the candidate’s AMM graph. Node x and node
y are connected in the AMM graph if and only if the value of

the AMM entry (x, y) is 1. If the candidate’s AMM graph has
more than 1 component (a connected graph), then we do a
local search among the two-hop neighbors of the candidate.
When this candidate is removed from the system, the rest
of the actors still stay connected and the candidate is not a
cut vertex. Instead, we determine that the candidate is a cut
vertex.

4.2. Backup Selection and Failure Detection. Once the cut
vertices are identified, the next step is to select and designate
appropriate neighbors as backups for them. The purpose of
the prenomination of backup nodes is to instantaneously
react to the failure of cut vertex and avoid the possible
network partitioning caused by such a failure.

4.2.1. Selection of Backup. The actors maintain minimum
state information (i.e., 1-hop neighbors) to avoid extra over-
head of messaging. Since neighbors become disconnected
when a critical actor fails, backup actors are determined and
notified before a failure of critical nodes takes place. A node
can serve as backup for multiple actors. The selection of a
backup among 1-hop neighbors is based on the following
ordered criteria.

Neighbor Position (NP). As discussed above, each actor
determines whether it is critical or noncritical depending
on the position of that node in the topology. A noncritical
neighbor actor is more suitable for backup because it will
limit the scope of recovery that ultimately reduces the
impact on application, coverage, connectivity, and incurred
overhead.

Actor Flow (AF). If a noncritical node is available in the 1-
hop neighborhood of the primary actor, we choose the actor
with the smallest flow package from sensors charged by it and
other actors; in other words, the one which receives the least
data packets from other nodes, as the cut vertex’s backup.

Flow package is divided into two categories.

(i) Actor-actor flow package (AAFP): this flow package
is transferred between an actor and another actor.

(ii) Actor-sensor flow package (ASFP): this flow package
is transferred between an actor and a sensor. If the
number of these packages for an actor is large, it
indicates that sensors under the jurisdiction of the
actor is more, so the actor can play a greater role for
the application system.

Actor Degree (AD). The impact of moving a node that has
many neighbors will be significant. Thus, if a noncritical
node is not available in the neighborhood, AFDR favors
replacing the failed actor with the neighbor that is a strongly
connected critical node (with high degree) because there is
more probability to have noncritical nodes in the neighbor-
hood. This will limit the scope of cascaded relocation and
thus lower the recovery overhead.

Take the circumstance in Figure 1 as an example. Green
pentagons represent the actors while yellow circles stand for
sensors. Among the 1-hop neighbors of actor 6, actor 7 is

not a critical node, so it is best suited to be the backup. If we
remove actor 7, in the rest of the neighbors of actor 6, actor
8 and actor 9 will have the same AD, which will be smaller
than actor 3. At this point, we continue to compare their AF.
The one whose AF is smaller will be chosen as a backup of
actor 6. Figure 2 shows the pseudocode of backup selection
of AFDR algorithm.

4.2.2. Failure Detection. Neighbor actors exchange heartbeat
messages as part of their network operation to update their
status. The chosen backup actors are notified via these
messages. Once an actor receives backup notification, it starts
monitoring the cut vertex through heartbeats. Missing a
number of consecutive heartbeats is perceived by backup as
a failure of the cut vertex.

4.3. Failure Recovery. Despite the fact that failure of a node
which is not a cut vertex will not cause any problems to the
inter-actor connectivity, it can create other problems such as
forming coverage holes, disrupting the data collection from
that particular region, and so forth. In such cases, depending
on the application-level requirements, these problems need
to be handled. We would like to note, however, that handling
such problems is out of scope of this paper. We only focus
on restoration of inter-actor connectivity when a cut vertex
node fails.

4.3.1. Definition: Optimal Position (OP). AFDR defines an
optimal position, when the actor failure, its replacement
node does not need to move to the original location where
the failure node is, the new location of this alternative node
has the following characteristics: it can communicate with
the surrounding sensors as many as possible, that is, the more
ASFP it received, the better; the distance it moved from its
original location to the optimal position should be as short as
possible to reduce overhead. If this location meets the above
conditions, we call it the optimal position.

4.3.2. OP Computation Model. We proposed a model to
calculate the OP. For the convenience of description, we
take the following circumstance as an example. In Figure 3,
actor 3 serves as a backup for the node E. When F fails, it
partitions the network into two parts. Actor 1 and actor 2
are respectively, the nearest nodes to F in the two subnets.
Communication range of actor 1 is shown as circle A and
simultaneously, circle B represents the communication range
of actor 2. These two circles’ intersections are M and N. C
is the overlap area of actor 1 and actor 2’s communication
range. According to the location of the backup, we determine
the optimal position.

(i) If actor 3 is located in A but not in C, do a connection
between actor 3 and actor 2; the intersection of the
line and circle B is the OP. If actor 3 is located in B
but not in C, just use the same method to pursue the
OP.

(ii) If actor 3 is located in C, the location of actor 3 itself
is OP.

International Journal of Distributed Sensor Networks

FIGURE 1: A connected interactor network with critical and
noncritical actors.

F: Primary Node
/* Backup Selection */
If (isCritical(A) = false && isCritical(D) = true)
EnableBackUp (A4)
endif
If (isCritical(4) = false && isCritical(D) = false) then
if{ ActorFlow(A)<= ActorFlow (D)) then
EnableBackUp (A)
else
EnableBackUp (D)
endif
endif
If (isCritical(4) =true && 1sCritical(D) = true) then
if{ ActorDegree{ &)>= ActorDegree (D)) then
EnableBackUp (A)
else
EnableBackUp (D)
endif
endif

FIGURE 2: Pseudocode of backup selection of AFDR algorithm.

(iii) If actor 3 is located neither in circle A nor circle B,
either M or N will be the OP. Choose the one that is
closer to actor 3.

The predesignated backup actor immediately initiates a
recovery process once it detects the failure of the cut vertex.
There are four scenarios that may happen. First, if the backup
is noncritical then it simply replaces the cut vertex and moves
to the OP so that recovery is complete. Second, if the backup
actor is critical and has a leaf node in its neighborhood,
the leaf node just replaces the cut vertex and moves to
the OP. Third, if the backup actor is critical then it checks
whether the failed node was also its backup or not; when

International Journal of Distributed Sensor Networks

M

"/

M
N
M
N
@

FiGure 3: OP calculation.

the two nodes are backup for each other, the backup actor
appoints another backup using the same criteria as specified
in the preceding section and moves to the OP. Finally, if
the predesignated backup actor is critical and its backup is
alive then it just sends a movement notification message to
the backup and moves to the OP. Since, in scenario 3 and
scenario 4, moving a critical backup actor further partitions
the network, a cascaded relocation may be triggered.

In Figure 4, the two circles, respectively, represent the
communication range of actor 3 and actor 9. Obviously,
actor 7 is the backup of actor 6. When actor 6 fails, based
on the above OP calculation method, we can get the optimal
position for actor 7. As long as actor 7 is a leaf node, it directly
moves to the OP to ensure the connectivity of this network.
Figure 5 indicates the location of actor 7 after the recovery
progress is finished.

Figure 6 shows the pseudocode of the recovery process of
AFDR algorithm.

5. Algorithm Analysis

5.1. Simulation Setup and Performance Metrics. In the sim-
ulation experiments, we have created inter-actor topologies
consisting of a varying number of nodes (20-100). Nodes
are randomly placed in an area of 1000m X 600m with
no obstacles that hinder a node from moving to a new
position. We have varied the transmission range of actors
from 50 to 125m so that the topology becomes strongly
connected. The following parameters were used to vary the
WSAN configuration in the experiments.

F1GURE 4: Original topology when an actor fails.

(i) The number of deployed nodes (N) in the network
affects the node density and the inter-actor connec-
tivity.

(ii) The node communication range (r) influences the
network connectivity and highly affects the recovery
overhead in terms of the traveled distance and the
number of involved actors.

FIGURE 5: Recovery process when an actor fails.

We assessed the performance of AFDR by using the fol-
lowing metrics.

(i) The total traveled distance: it gives the total distance
caused by all node movements involved in the recov-
ery. This metric gauges how much energy will be con-
sumed by the whole network due to the mechanical
movements of nodes.

(ii) The number of messages exchanged among nodes:
this metric also indicates the energy dissipation and
recovery overhead.

(iii) The percentage of coverage reduction: although con-
nectivity is the main objective of a recovery algo-
rithm, node coverage is important for many setups.
The loss of a node usually has a negative impact on
coverage. This metric captures the loss of coverage
resulting from the node movements.

(iv) Average node degree: it measures the level of inter-
actor connectivity and availability of alternative paths
after the recovery is complete.

The performance of AFDR is compared to DARA and
RIM. Both DARA and RIM are reactive approaches and do
not provision for recovery ahead of time. Like AFDR,
DARA and RIM are distributed algorithms and exploit node
relocation to recover from node failure. However, they have
differences in the procedure. When a node fails, DARA
selects a best candidate among its 1-hop neighbors and
replaces it. This algorithm uses a recursive method to tolerate
connectivity loss due to movement, that is, the chosen
candidate will be replaced with one of its neighbors and so
on. On the other hand, RIM moves all the 1-hop neighbors
towards the failed node until they become connected again.
As a result, when growing the communication range, the
performance of RIM significantly worsens.

5.2. Results and Analysis. The number of nodes has been
set to 20, 40, 60, 80, and 100. The communication range
of actors is changed among 50, 75, 100, and 125. When

International Journal of Distributed Sensor Networks

AFDR (A)+
/* Recovery Process */«
If{EnableBackUp(A)==true) then«
if (Primary actor ¥ fails) then«
if{isCritical(A) = false) then«
MoveToOP(F, A)«
else ifif HasLeafNode(A, By=true) then«
MoveToOP(F, B)«
else if{ SimPrimBackUp(F, A) = true) thene

AssignBackUp(A)«
NotifyBackUp(A4)+«
MoveToOP(F, A)¢

elsed
NotifyBackUp(A)«
MoveToOP(F, A)«

endif+

endife
endife
endife

MoveToOP (F, A)«
Mowe A to the optimal position of 7

HasLeafNode(A, B)«
B is the leaf node of A«

SimPrimBackUp(F, A)+
F and A are backup for each other«

FIGURE 6: Pseudocode of the recovery process of AFDR algorithm.

«_»

changing the node count, “r” is fixed at 100 m; when
changing the communication range, “N” is set to 100. The
results of individual experiments are averaged over 50 trials.

5.2.1. Total Traveled Distance. Figure 7 shows the distance
traveled by all nodes until the connectivity is restored. AFDR
obviously outperforms the existing approaches DARA and
RIM.

As these two graphs in the figure indicate, the total
node traveled distance of AFDR has not changed drastically
even with higher node density and communication range.
This is because AFDR strives to avoid moving critical
nodes that causes further partitioning and requires cascaded
relocations. It performs cascaded relocations only when
noncritical nodes in the neighborhood of the failed actor are
not available. RIM moves all the 1-hop neighbors towards the
failed node until connectivity is reestablished. That is why its
curve in the graph is steep.

5.2.2. Number of Messages Exchanged. Figure 8 presents the
communication overhead when the network size and radio
range take different values. As the figure indicates, AFDR
begets less messaging overhead than DARA and RIM and

International Journal of Distributed Sensor Networks

300
T 250 *
1)
g 200 * |
[
g msopb——— 4 —A
g L 4 |
A 100 —=
50
0
20 40 60 80 100
Number of nodes
- RIM
AFDR
= DARA
(a)
450
400
£ 2
T 350
S 300
aEd 250
£ 200 * =
2 150 L
= *
A 100]
50—
O 1 1 1
50 75 100 125
Node radio range
¢ RIM
AFDR
m- DARA

()

FIGURE 7

remains unchanged. Unlike DARA and RIM, AFDR strives
to involve noncritical nodes in the recovery which limits the
need of cascaded movement and thus reduces the number
of notification messages. Therefore, AFDR makes best use
of these messages, since most of the backup nodes are
noncritical and they are not required to send any message.
The average number of exchanged messages sent by AFDR
in Figures 8(a) and 8(b) are less than 1. On the other hand,
Figure 8 shows that the communication overhead in RIM
grows rapidly for a higher actor density and long radio range.

5.2.3. Coverage Reduction Percentage. Figure 9 shows the
impact of node failure on coverage, measured in terms of
percentage of coverage reduction while changing N and r.
Figure 9(a) indicates that the difference of curve trend among
the three approaches is not too much as increasing the node
number. Although increasing the node density helps, DARA
and RIM still do not match AFDR’s performance.

The advantage of AFDR in terms of coverage is obviously
due to the limited scope of node relocation, which causes a
coverage loss at the network periphery. In Figure 9(b), the
advantage of AFDR highlights out as increasing the radio
range. However, the performance of RIM worsens when
growing the radio range above 100 m. With the increased

7
30
2 25 E 3
<1s)
£ 20
S
5 15
g .
% 10 . *
—m |
= S g = = C
0 0 0 0 0
20 40 60 80 100
Number of nodes
¢ RIM
AFDR
®m- DARA
(a)
45
40 »
T 35
£ 30
g 25
o 20
g 15 .
§ 10 *
5 [= n L L
0 1 1 1
50 75 100 125
Node radio range
¢ RIM
AFDR
= DARA

(b)

FIGURE 8

value of r, the network becomes more connected and the
number of neighbors of the failed node grows. RIM moves
nodes inwards making the area around the failed node to be
more crowded, thus leaves uncovered parts at the network
periphery and causes a great loss of coverage.

5.2.4. Average Node Degree. Figure 10 shows the average
actor degree and coverage in the network after connectivity is
restored by all approaches. As showed in the figure, the data
in the four graphs are basically the same. Figures 10(a)-10(d)
confirm that AFDR does not have disadvantages in maintain-
ing network connectivity.

Through the above analysis, we find that AFDR has
advantages in reducing movement and communication over-
head and keeping connectivity, which can make the life
expectancy of the entire network longer. In other words, it
will be easier to meet the application-level requirements.

6. Conclusion

In this paper, we have presented an application-oriented fault
detection and recovery algorithm that focus on application-
level concerns while recovering from critical node failure.
The issued AFDR uses AMM to identify critical actors and

International Journal of Distributed Sensor Networks

0.06 0.012
=
0.05 —& g 001|—* -
8 £ » e n
S 004 § 0.008 o — 8
= =
£ 0.03 g 0.006
& " g
£ 0.02 . g 0.004
2 n S
Q - A ©
S 0.01 — 0.002
0 L L L L 0 L L L
20 40 60 80 100 50 75 100 125
Number of nodes Node radio range
¢ RIM ¢ RIM
AFDR AFDR
= DARA = DARA
(a) (b)
FIGURE 9
6 8
5 2 / =
< 3 A T 4
2) o g 3 I3
% 2 = <LC) 2 A
0 1
1 1 1 1 1 O 1 1 1
20 40 60 80 100 50 75 100 125
Number of nodes Node radio range
¢ RIM ¢ RIM
AFDR AFDR
®m- DARA #- DARA
(a) (b)
1600 2500
1400 - A
2000 -
. 1200 P Y
§o 1000 £ 1500 A}
g 800 A 2
S 600 - S 1000 -
400 500 ‘
200 — &
0 | | | . 0) | .
20 40 60 80 100 50 75 100 125
Number of nodes Node radio range
¢ RIM ¢ RIM
AFDR AFDR
- DARA = DARA
(c) (d)
F1GURE 10

designates backup for them according to actor flow and actor
degree. It tries to choose noncritical neighbors as backups
to reduce the movement overhead and highly connected
nodes as backups in order to limit the scope of cascaded
relocation and nodes receiving smallest flow package as
backups to minimize the communication overhead. In the

recovery process, it finds an optimal position for backups
to restore the inter-actor connectivity. The simulation results
have proved the effectiveness of AFDR compared to contem-
porary recovery approaches in terms of satisfying application
requirements, reducing recovery overhead and limiting the
impact of critical node failure on coverage and connectivity.

International Journal of Distributed Sensor Networks

In the future, our study can focus on how to identify cut
vertex from a large amount of nodes in WSANs more quickly.

Acknowledgments

This work was supported by the 973 Program of China (nos.
2006CB303000 and 2009CB320-705), the National Natural
Science Foundation of China (nos. 60873026 and 61021062),
the National Science and Technology Support Program of
China (no. 2012BAK26B02), the Science and Technology
Support Program of Jiangsu Province (nos. BE2010178 and
BE2011195), and the Industrialization of Science Program
for University of Jiangsu Province (no. JH10-3).

References

[1] L E Akyildiz and I. H. Kasimoglu, “Wireless sensor and actor
networks: research challenges,” Ad Hoc Networks, vol. 2, no. 4,
pp. 351-367, 2004.

A. Abbasi, K. Akkaya, and M. Younis, “A distributed connec-

tivity restoration algorithm in wireless sensor and actor net-

works,” in Proceedings of the 32nd IEEE Conference on Local

Computer Networks (LCN °07), pp. 496—503, Dublin, Ireland,

October 2007.

[3] K. Akkaya, A. Thimrnapuram, E. Senel, and S. Uludag, “Dis-
tributed recovery of actor failures in wireless sensor and actor
networks,” in Proceedings of the IEEE Wireless Communications
and Networking Conference (WCNC "08), pp. 2480-2485, Los
Vegas, Nev, USA, April 2008.

[4] X. Liu, L. Xiao, A. Kreling, and Y. Liu, “Optimizing overlay
topology by reducing cut vertices,” in Proceedings of the 16th
Annual International Workshop on Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV 06),
May 2006.

[5] Y. Lin, B. Liang, and B. Li, “Data persistence in large-scale
sensor networks with decentralized fountain codes,” in Pro-
ceedings of the 26th IEEE International Conference on Computer
Communications (INFOCOM °07), pp. 1658—-1666, May 2007.

[6] V. N. Padmanabhan, H. J. Wang, and P. A. Chou, “Resilient
peer-to-peer streaming,” in Proceedings of the IEEE Interna-
tional Conference on Network Protocols (ICNP ’03), 2003.

[7] Y. He, H. Ren, Y. Liu, and B. Yang, “On the reliability of large-
scale distributed systems—a topological view,” in Proceedings
of the 37th International Conference on Parallel Processing
(ICPP °08), pp. 165-172, September 2008.

[8] G. Wang, G. Cao, T. La Porta, and W. Zhang, “Sensor reloca-
tion in mobile sensor networks,” in Proceedings of the 24th
Annual Joint Conference of the IEEE Computer and Communi-
cations Societies INFOCOM ’05), pp. 2302-2312, March 2005.

[9] N. Tamboli and M. Younis, “Coverage-aware connectivity res-
toration in mobile sensor networks,” in Proceedings of the
IEEE International Conference on Communications (ICC °09),
Dresden, Germany, June 2009.

[10] P.Basu and J. Redi, “Movement control algorithms for realiza-
tion of fault-tolerant ad hoc robot networks,” IEEE Network,
vol. 18, no. 4, pp. 36—44, 2004.

[11] M. Imran, M. Younis, A. M. Said, and H. Hasbullah, “Parti-
tioning detection and connectivity restoration algorithm for
wireless sensor actor networks,” in Proceedings of the 8th
IEEE/IFIP International Conference on Embedded and Ubiqui-
tous Computing (EUC ’10), pp. 200-207, Hong Kong, China,
December 2010.

[2

[12] M. Imran, M. Younis, A. M. Said, and H. Hasbullah, “Local-
ized motion-based connectivity restoration algorithms for
wireless sensor and actor networks,” Journal of Network and
Computer Applications, vol. 35, pp. 844-856, 2012.

[13] K. Akkaya, E. Senel, A. Thimmapuram, and S. Uludag, “Dis-
tributed recovery from network partitioning in movable sen-
sor/actor networks via controlled mobility,” IEEE Transactions
on Computers, vol. 59, no. 2, pp. 258-271, 2010.

[14] M. Younis, S. Lee, S. Gupta, and K. Fisher, “A localized self-
healing algorithm for networks of moveable sensor nodes,” in
Proceedings of the IEEE Global Telecommunications Conference
(GLOBECOM ’08), pp. 1-5, December 2008.

[15] M. Imran, M. Younis, A. M. Said, and H. Hasbullah, “Volun-
teer-instigated connectivity restoration algorithm for wireless
sensor and actor networks,” in Proceedings of the IEEE Interna-
tional Conference on Wireless Communications, Networking and
Information Security (WCNIS ’10), Beijing, China, June 2010.

- i

/> . =
= &

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

The Scientific
WQrId Journal

International Journal of

Rotating
Machinery

Journal of

Sensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Y :-
.

VLSI Design

‘.
.

Internatio Urna
Antennas and
Propagation

Modelling &
Simulation
in Engineering

International Journal of
Navigation and
Observation

e

Active and Passive
Electronic Components

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering

