
  
    
  
International Journal of Distributed Sensor NetworksVolume 2012 (2012), Article ID 286981, 17 pagesdoi:10.1155/2012/286981
Research Article
Adaptive WSN Scheduling for Lifetime Extension in Environmental Monitoring Applications
Jong Chern Lim and Chris Bleakley
UCD Complex and Adaptive Systems Laboratory, UCD School of Computer Science and Informatics, University College Dublin, Ireland
Received 15 June 2011; Accepted 27 August 2011
Academic Editor: Yuhang Yang 
Copyright © 2012 Jong Chern Lim and Chris Bleakley. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract. 
Wireless sensor networks (WSNs) are often used for environmental monitoring applications in which nodes periodically measure environmental conditions and immediately send the measurements back to the sink for processing. Since WSN nodes are typically battery powered, network lifetime is a major concern. A key research problem is how to determine the data gathering schedule that will maximize network lifetime while meeting the user's application-specific accuracy requirements. In this work, a novel algorithm for determining efficient sampling schedules for data gathering WSNs is proposed. The algorithm differs from previous work in that it dynamically adapts the sampling schedule based on the observed internode data correlation as well as the temporal correlation. The performance of the algorithm has been assessed using real-world datasets. For two-tier networks, the proposed algorithm outperforms a highly cited previously published algorithm by up to 512% in terms of lifetime and by up to 30% in terms of prediction accuracy. For multihop networks, the proposed algorithm improves on the previously published algorithm by up to 553% and 38% in terms of lifetime and accuracy, respectively.


1. Introduction
Wireless sensor networks (WSNs) consist of nodes which detect and track real-world quantities [1]. Nodes are autonomous and are able to self-organize into intelligent networks. Each node consists of a microcontroller, memory, a radio transceiver, and sensors. Most WSN nodes are battery powered. The limited supply of energy means power consumption is a major issue in WSNs. In most applications, the radio transceivers are the largest consumers of energy [2]. Consequently, much research has been conducted on reducing the amount of time that the radio is on [3–5].
An important application area for WSNs is environmental monitoring [1]. Environmental monitoring applications require that a physical quantity is periodically measured and the measurements are relayed across the network to the base station, or sink, for processing. In many cases, the base station must maintain an up-to-date (online) view of the physical quantity being measured. Thus measurements must be transferred to the sink as soon as they are available [6–8]. WSN measurements of data, such as temperature, humidity, air pressure, wind speed, nitrogen dioxide, and light, often exhibit internode data correlation and strong temporal correlations between different sampling times at the same node [9–12]. Knowledge of these correlations can be exploited to reduce the number of measurements needed to meet the application-specific sensing accuracy requirements.
Figure 1 shows temperature readings taken from two nodes in an environmental monitoring deployment in a university campus. The figure shows that the data is correlated between the two nodes. Also from 17:00 onwards, a strong temporal correlation begins to emerge in the data. Figure 2 shows the results when the number of transmitted samples is reduced by 25%, with every skipped sample being temporally predicted from previous readings. The results show that the temporal predictor shows good accuracy from 17:00 onwards. In Figure 3, rather than having node 1 transmit data samples, only the readings from 25% of the nodes within the network are used at any one time to predict the samples (internode data prediction). The results show that the internode predictor works well between 12:00 and 15:00. In this paper an algorithm which takes advantage of both temporal and internode correlation is proposed to reduce the number of transmitted samples at the cost of an application-specific acceptable error.





	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
	
		
		
	
	
	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
			
		
	
	
		
			
		
		
			
		
		
			
		
	
	
		
			
		
	
	
		
			
		
		
			
		
		
			
		
	
	
		
			
		
	
	
		
			
		
		
			
		
		
			
		
	
	
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	


Figure 1: Temporal and internode data correlation of two nodes.







	
		
		
	


	
		
	
	
		
	
		
	
		
	
		
	
	
	
	
	
	
		
	
	
		
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
	
	
		
			
		
	
	
		
			
		
		
			
		
		
			
		
	
	
		
			
		
	
	
		
			
		
		
			
		
		
			
		
	
	
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
		
	


Figure 2: Performance of temporal predictor.







	
		
		
	


	
		
	
		
	
		
	
		
	
		
	
	
	
	
	
	
		
	
	
		
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	


	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
	
	
		
			
		
	
	
		
			
		
		
			
		
		
			
		
	
	
		
			
		
	
	
		
			
		
		
			
		
		
			
		
	
	
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
			
				
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
	


Figure 3: Performance of internode data predictor.


Clearly, there is a tradeoff between sensing accuracy and lifetime [13, 14]. In general, it can be said that improved accuracy requires collection and transmission of a greater number of sensor measurements which, in turn, means shorter network lifetime. The efficiency of a particular data collection schedule depends on the characteristics of the data being collected. These characteristics vary with time. Hence, the natural question arises: for a given environmental monitoring application, how can the data gathering schedule be determined and dynamically adapted so as to maximize network lifetime while still meeting the application accuracy requirements?
In this work, we propose a new adaptive scheduling algorithm for WSNs which can be used in environmental monitoring applications. The algorithm determines the sampling schedule based on user-specified accuracy goals, network connectivity, and a preliminary data collection phase. During preliminary data collection, data is collected from all nodes at the full sampling rate. The preliminary data is divided into training and evaluation data sets. The training data is used to model the temporal and internode data correlation. The evaluation data is used to assess the performance of various candidate scheduling strategies. The models developed in the training phase are used to impute data which is not scheduled for collection according to the candidate strategy. The results of the imputation are compared with the measured data. The schedule which meets the user’s accuracy requirements and maximizes network lifetime is deemed to be the most efficient and is applied to the network during the operational phase.
The algorithm supports schedule adaptation to allow for the time-varying nature of the data relationships. Firstly, the algorithm divides the day into a number of time periods or slots. A different subschedule is allowed in each slot. This allows the algorithm to adapt to the differing degrees of correlation present in the data at different times of the day, for example, midnight versus midday. Secondly, the accuracy of imputation is assessed during the operational phase. If the accuracy drops below the user-specific accuracy requirements, the slot is retrained and the subschedule updated. This allows the overall schedule to track long-term changes, such as the lengthening of daytime during spring.
The algorithm differs from previous work in that it supports dynamic adaptation of schedules. The algorithm supports subsampling and round-robin subsetting scheduling strategies. Variants of the algorithm are proposed for two-tier and multihop networks. The performance of the algorithm is assessed by simulation using real-world data sets. The algorithm is shown to significantly extend network lifetime when compared with a previously published scheduling algorithm. In terms of the round-robin subsetting algorithm proposed herein, it is different from coverage-based subsetting algorithms [15–17] in that it uses a data similarity metric rather than physical distance to measure correlation when forming subsets. The benefit of doing this is explained in Section 2.
The remainder of this paper consists of five sections. Section 2 describes related work. This is followed by an explanation of the problem in Section 3. In Section 4, the proposed algorithm is described. In Section 5, the experimental method is described. In Section 6, the results and their implications are provided. Finally, the paper ends with conclusions.
2. Related Work
Two network topologies are commonly used for WSN applications: two-tier and multihop networks. Figures 4 and 5 show an example of a two-tier network and a multihop network. In the two-tier case, all battery-powered nodes have direct communication links with mains-powered nodes (master node) which can communicate data to the sink. In the multihop case, only the sink is mains powered and all communication must be routed to it via battery-powered nodes. In the two-tier case, power consumption per node is proportional to the number of measurements per unit time. In the multihop case, power consumption per node is, in the conventional case, not proportional to the number of measurements per unit time, since the routing nodes must be on all of the time. However, in recent research, a number of authors have proposed cross-layer network protocols in which network availability is optimized so that it closely matches the application data transmission requirements [18, 19]. This approach, assumed herein, significantly reduces energy consumption and means that the power consumption per node is proportional to the number of measurements per unit time in the multihop case as well.





	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
	


Figure 4: Two-tier network.







	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
	


Figure 5: Multihop network.


The scheduling algorithm proposed herein is targeted at environmental monitoring applications in which all of the data is immediately sent back to the sink. Since all of the data is sent to the sink for data gathering purposes, it makes sense to use this data for centralized scheduling as well. This obviates the need for energy-inefficient intranode schedule negotiation and allows for exploitation of multihop data correlations. In addition, much more computationally complex scheduling algorithms can be used at the sink than can be performed on the nodes, further improving performance.
Reducing the amount of data gathered in a WSN can be done by subsampling or subsetting. Subsampling is the process of making measurements less frequently; for example, a subsampling ratio of 2 would increase node sampling periods from 1 minute to 2 minutes. Round-robin subsetting is the process of using only a proportion of the nodes at any one time in a round-robin fashion; for example, a subsetting ratio of 2 would mean that half the nodes are sampled in even-numbered minutes (1, 3, 5, etc.) and the other half are sampled in odd-numbered minutes (0, 2, 4, etc.). In both examples, the energy consumption of the network is halved. The level of accuracy in imputing missing data varies depending on the degree of temporal or internode data correlation. The algorithm proposed in this work uses both subsampling and round-robin subsetting.
A number of publications have dealt with subsampling [20–22]. In all cases, measurements are suppressed, that is, not transmitted, if they can be accurately predicted based on previous measurements. Data suppression can either be a priori, before the measurement is taken, or posteriori, after the measurement is taken. As will be seen, depending on the data set, sometimes subsetting outperforms subsampling and sometimes vice versa. Hence the proposed approach supports both subsetting and subsampling.
Several publications have proposed algorithms for subsetting. These algorithms can be classified according to whether the subsetting decision is made based on the geographical coverage of the nodes or based on the data sensed by the nodes. Coverage-based schemes attempt to schedule nodes such that the entire area of interest is covered by the fewest sensor nodes [15–17]. The difficulty with this approach is that when obstacles are present within the area being monitored, sensor readings will not be well correlated with location [23]. In such cases the predominantly assumed disc-shaped sensing radius no longer holds true. For example, two sensors may be close together but be on different sides of a wall. In addition, node location information may not be readily available. Hence, in this work, we focus on data-similarity-based approaches. Another benefit of using a data similarity/correlation approach is that it can detect correlation changes in the environment over a long period of time. In this paper it is shown that as internode data correlations change, remodeling/retraining has to be done to maintain high accuracy in data imputation.
A number of methods have been proposed for subsetting based on data similarity. These methods can be grouped according to whether they use a centralized or distributed approach. In the centralized approach, the sink determines the sampling schedule whereas in the distributed approach, the nodes themselves decide on the subsets. The disadvantage of the distributed approach is that, if subsets are large, initializing and maintaining them requires a significant amount of internode communication, as in KEN [24]. As a consequence, contour maps and CAG [19] limit the range of subsets to one hop. The disadvantage of this is that long-distance correlations cannot be exploited. Furthermore these subsetting algorithms do not use a round-robin scheme thus achieving poor load balancing.
Herein we compare the proposed approach with the algorithm (which is named GUPTA in this paper) described in [18]. The GUPTA algorithm uses a data-driven approach, and two-tier and multihop versions are described. Unlike the algorithm proposed herein, the GUPTA method does not consider temporal correlations, adaptive scheduling, load balancing, or slotted scheduling. In the multihop version, the GUPTA algorithm is semidistributed because even though nodes make individual decisions whether to join a subset, it requires a centralized data gathering phase in order for all the nodes to gather training data from their neighbors.
In order to achieve load balancing for two tier networks, two systems have been previously proposed which incorporate round-robin subsetting [25, 26]. The system proposed in [25] converges slowly, forming multiple clusters before finding a satisfactory solution. This means that the system produces a significantly higher number of schedules thus making it difficult to maintain. The system described in [26] was developed by the authors of this paper as a prototype. The version described in this paper has a number of improvements. In addition to that we propose a novel network optimized load-balanced subsetting for multihop networks.
Two systems have been previously described which use both subsetting and subsampling-KEN [24] and contour maps [27]. Unlike the proposal described herein, these algorithms do not perform any network level optimization, in the sense that nodes will still have to switch on their radios periodically to listen for packets as well as to relay packets even when they have no readings to send. Furthermore round-robin subsetting is not used.
Combining statistical WSN data models with probabilistic queries to improve the cost-effectiveness of WSN queries was investigated in the BBQ system [28]. However, BBQ focuses on multiple one-shot queries over the current state of the network, rather than continuous data gathering. In [29] SeReNe, a scheduling algorithm for answering queries is proposed. Similar to BBQ and the proposed method herein, it first gathers historical sensor readings. Through clustering SeReNe builds a subset of representative nodes to answer queries. The disadvantage of that is that for long-term queries SeReNe does not employ a round-robin scheme to achieve load balancing. In [30] the originators of SeReNe briefly discuss possible ways to adapt the model over a long period of time, but this was not evaluated. KEN uses data models as well to answer queries. KEN and SeReNe are similar in the sense that they are push-based methods whereas BBQ is a pull-based method. Herein, the user sets a probabilistic accuracy target a priori and possible schedules are assessed with respect to the target prior to their application.
A comparison between the various data-similarity-based scheduling algorithms that have been proposed is provided in Table 1. The algorithm proposed herein is the first to support schedule adaptation and round-robin subsetting.
Table 1: Previous algorithms: main features.
	

	Algorithm	Reference	Two-tier	Multihop	Centralized/distributed	Round-robin subsetting	Subsampling	Adaptive scheduling
	

	CAG	[19]	
														×
														√	Distributed	
														×
														√	
														×
													
	GUPTA	[18]	
														×
														√	Semidistributed	
														×
														
														×
														
														×
													
	KEN	[24]	
														×
														√	Distributed	
														×
														√	
														×
													
	SeReNe	[29]	
														×
														√	Centralized	
														×
														
														×
														
														×
													
	RRC	[25]	√	
														×
														Centralized	√	
														×
														
														×
													
	SS-MH/SS-2T	Proposed Method	√	√	Centralized	√	√	√
	



3. Problem Statement
The goal of the scheduling algorithm is to determine the network sampling schedule which minimizes network communication for the worst-case node while ensuring that application-level accuracy requirements are met. The reason for minimizing communication by the worst-case node is to maintain load balancing thus enabling the network to continuously gather data from all nodes within the network continuously for a longer period of time. Even though sensor data of dead nodes can still be imputed, because the node is dead, validation and retraining of the predictors cannot be done when needed.
The user defines the accuracy requirement by setting a limit on the average probability (
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As stated previously, data correlations can be exploited in order to impute the missing values. In most previous work, these correlations are assumed to be static. Figure 6 shows the variation of temperature at three nodes over a day in a real-world dataset. Clearly the rate of change and internode data correlations are dependent on the time of day. Thus a scheduling algorithm should account for the fact that data correlations drift during the day and, for best performance, should use different subschedules at different times of the day. In addition, over long periods of time, temporal and internode data correlations can vary. Thus, imputation becomes less accurate. This deterioration in performance should be detected and the models retrained.





	
		
		
		
		
		
		
		
	
	
	
		
	
		


	
		
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	


Figure 6: Data relationship of three nodes (temperature-LUCE deployment).


When subsetting, it is desirable that the subsets are disjoint and operate in a round-robin fashion so that the network is load balanced. Disjoint subsets are subsets such that for any two subsets 
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; that is, every node belongs to only one subset. In the two-tier case, determining disjoint subsets which provide accurate imputation of environmental conditions at all nodes is nontrivial. In the multihop case, the problem is more complex since every disjoint set must provide a representative node to represent each correlated region while also ensuring connectivity between all the nodes in the subset and the sink. For example, the three disjoint subsets in Figure 7 allow both load-balanced subsetting and continuous connectivity while having each correlated region represented by a node.





	
		
			
		
		
		
		
		
		
		
		
			
				
			
			
				
			
			
				
					
				
			
			
				
					
				
			
			
				
					
				
			
			
				
					
				
			
			
				
					
				
			
			
				
					
				
			
			
				
					
				
			
			
				
					
				
			
			
				
					
				
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
				
			
			
				
			
			
				
					
				
			
			
				
					
				
			
			
				
					
				
			
			
				
					
				
			
			
				
					
				
			
			
				
					
				
			
			
				
					
				
			
			
				
					
				
			
			
				
					
				
			
		
		
		
		
		
			
		
		
		
		
		
		
			
		
		
	
	
		
			
			
				
			
		
	
	
		
			
			
				
			
		
	
	
		
			
			
				
			
		
	
	
		
			
			
				
			
		
	


	
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	


Figure 7: Disjoint subsetting example.


Figure 8 shows the performance of subsetting and subsampling with 75% of the data being predicted. Both methods are explained in detail in the following section. The figure shows that both algorithms perform well in the morning and at night. During the afternoon, both algorithms experience a significant loss in performance. Thus, on average, even if the accuracy of the method meets the user’s requirements initially, it does not mean that the requirements are met throughout the day. To ensure user requirements are met, the amount of data being predicted during the afternoon has to be decreased. This can be done by reducing the subsampling/subsetting ratio.





	
		
		
	


	
		
	
	
		
	
		
	
		
	
	
	
	
	
	
		
	
	
		
	
	
		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
			
		
	
	
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
	
	
		
			
		
	
	
		
			
		
		
			
		
		
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	
	
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
	


Figure 8: Performance of subsetting and subsampling averaged over 105 days.


4. Proposed Algorithm
In this section we explain the proposed slotted scheduling algorithm with variants for two-tier (SS-2T) and multihop (SS-MH) networks. The following sub-sections provide an overview of the algorithm; explain how schedules are defined; describe how data imputation is performed; explain node-to-subset allocation for round-robin subsetting in both two-tier and multihop networks; explain the schedule selection process and detail the schedule update method.
4.1. Overview
Initially, the slotted scheduler gathers training and evaluation data and, in the multihop case, connectivity information from the network. During training and evaluation data collection, all nodes collect data at the user-specified maximum collection rate and transmit this data back to the sink. At the sink, the training data is used to build models for data imputation. The data from the evaluation phase is then used to assess the performance of various candidate scheduling strategies, that is, various ratios of subsetting and subsampling. The subschedule which meets the user’s accuracy requirements and minimizes energy consumption is selected for application to the network in that slot during the operational phase. The selected data collection schedule is transmitted from the sink to the nodes. The network then enters the operational mode and data is collected according to the schedule. Data collected is monitored in order to detect changes in temporal/internode correlation. If changes are detected, the network reenters the training and evaluation phases in order to update the models and schedule.
Figure 9 illustrates how the slotted scheduling algorithm operates. The figure shows a 4-slot schedule with subsetting, subsampling, full rate collection and subsetting in the first, second, third, and fourth slots, respectively. The figure also shows the temporal sequencing of the establishment, training, evaluation, and operational phases. The operational phase is divided into a series of slots which repeats.





	
		
			
		
			
		
			
		
		
			
		
		
		
			
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	