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Abstract. 
A minimax estimation fusion in distributed multisensor systems is proposed, which aims to minimize the worst-case squared estimation error when the cross-covariances between local sensors are unknown and the normalized estimation errors of local sensors are norm bounded. The proposed estimation fusion is called as the Chebyshev fusion estimation (CFE) because its geometrical interpretation is in coincidence with the Chebyshev center, which is a nonlinear combination of local estimates. Theoretically, the CFE is better than any local estimator in the sense of the worst-case squared estimation error and is robust to the choice of the supporting bound. The simulation results illustrate that the proposed CFE is a robust fusion in localization and tracking and more accurate than the previous covariance intersection (CI) method.


1. Introduction
Multi-sensor networks have received an increasing attention in recent years, due to their huge potential in applications, such as communication, signal process, routing and sensor management, and many other areas. In this paper, we focus on a specific and simple estimation fusion model in a distributed multi-sensor system, which is in fact a two-level optimization in the estimation fusion. Every sensor first optimally estimates the state of target based on its own measurements and then transmits its estimate to the fusion center. The problem of estimation fusion is to find an optimal state estimator based on all the received local estimates. Although the centralized fusion which directly makes use of all measurements from the local sensors in time is theoretically the best fusion strategy, sometimes communication or reliability constraints make it impossible to transmit all the sensor measurements to a fusion center. In contrast, the distributed fusion which only needs to fuse all received local estimates has the advantages of lower communication requirements, improved robustness, and so forth.
However, the fusion algorithms in distributed system have to deal with troubles that do not exist in centralized fusion. One of the difficulties is that the errors of local estimates to be fused are generally correlated, and as a result the distributed fusion cannot be achieved by a standard centralized algorithm such as the Kalman filter. The reasons of this correlation may be a common process noise in target when the state estimates are not fused at each sampling instant, or common prior information in the estimates from previous communication.
Over the last two decades, much research has been performed on distributed fusion [1–6]. Some approaches are looking for the “optimal” linear combination of local estimates in some criteria, such as weighted least squares or minimum variance [1, 2]. In [7], the authors proposed a new multi-sensor optimal information fusion criterion which is weighted by matrices in the linear minimum variance sense. An optimal Kalman filtering fusion with cross-correlated sensor noises is proposed in [8], which assumes that the correlation of sensor noises is accurately known. A unified model for estimation fusion based on the best linear unbiased estimation (BLUE) is proposed in [9]. However, all of the aforementioned methods rely on two assumptions: one is that the local estimates are unbiased and the other is that the error covariance matrix of all local estimates is known.
There are other approaches attempting to reconstruct the optimal centralized estimate from the local estimates. A random weighting estimation method for fusion of multidimensional position data is proposed in [10]. The method in [5, 6, 11] deduces to a linear combination of local estimates, but is not particularly effective in handling the correlation in measurement noises. In the seminal papers [4, 6, 12, 13], the covariance intersection (CI) algorithm was proposed to deal with this problem. It fuses without assuming any knowledge on the correlation between the local estimation errors. A robust estimation fusion is proposed in [14], which assumes that the correlation between the local estimation errors is not accurately known but belongs to an uncertain set. However, it is also a linear combination of local estimates as the other aforementioned methods. Theoretically, the linear combination may not be an accurate formation of the distributed fusion. Recently, a nonlinear estimation fusion is proposed in [15], where it minimizes the estimation error covariance only for the most favorable realizations of the random matrix and models it as an optimization problem with a chance constraint. Such optimization problem is also nonconvex and with appropriate relaxation it can be simplified to a convex problem. Similar with all the other aforementioned methods, it considers the optimal fusion in the sense of statistics, which do not necessarily lead to a small estimation error. There may be the case that the estimation error is very large even though the optimal criteria considered is small. So far, the robustness of the fusion estimation is still a challenge.
In this paper, we are looking forward to establishing a robust distributed fusion strategy under some basic assumptions. This robust fusion is aimed at minimizing the worst-case fusion error, which is achieved through a mini-max problem. Although it is non-convex, we can relax it to a semidefinite program (SDP) following [16]. The resulted SDP problem can be solved quite efficiently in polynomial time by an interior point method; in particular, by the homogeneous self-dual method [17] or toolbox CVX in Matlab. Then the resulted fusion estimate is a form of a non-linear combination of local estimates. Since the geometrical interpretation of our fusion method is in coincidence with the Chebyshev center, we call it the ion (CFE). The basic assumption of this paper is that the local estimation errors are bounded. Although it is not satisfied theoretically if the estimation error is a Gaussian distributed variable, it can be guaranteed in a nearly 
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 probability if the bound is large enough and in practical applications it can always be satisfied. We call this bound the supporting bound, which is directly related to the resulted Chebyshev fusion estimate. So we further investigate the sensitive analysis of the relationship between the Chebyshev fusion estimate and the supporting bound. The result shows that the performance of the proposed Chebyshev fusion estimation is robust to the choice of the supporting bound. Moreover, numerical simulations are used to corroborate the theoretical results which demonstrate the good performance of the proposed CFE method.
The remainder is organized as follows. We briefly introduce the distributed estimation fusion problem in Section 2 and propose the robust CFE method in Section 3. The sensitive analysis about the choice of parameter 
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 in CFE method is provided in Section 4, and some numerical simulations are carried out in Section 5. Section 6 gives conclusions.
2. Distributed Estimation Fusion Problem
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Kalman’s filtering is the best known recursive least mean square (LMS) algorithm to optimally estimate the unknown state of a dynamic system for a single sensor. Thus, the unbiased estimates 
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 are available by the Kalman filter. The distributed fusion problem is to generate an “optimal” estimate 
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There are three possible architectures in distributed fusion depending on the sources of 
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 [6]. In this paper, we consider the “Arbitrary distributed fusion,” that is,  
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In order to simplify the derivations, we start by reformulating the local estimate 
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. Moreover, because the noises of the dynamic system are norm bounded, we make the following assumption.
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We believe that Assumption 1 is reasonable, because in practice the estimation error of the local sensor is impossible to be infinitely large, and we can always find a bound on it. In practical applications, even when we have no additional information about 
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. In the rest part of this paper, a robust fusion estimation strategy will be derived based on Assumption 1.
3. The Robust Chebyshev Fusion Estimation Strategy
3.1. The Minimax Fusion Strategy
The most widely used fusion strategy is calculating the “best” linear combination of local estimates to minimize some criteria in statistics, such as minimum variance or weighted least squares. However, there may be some nonlinear formations to fuse the local information that performs better, which is at least as good as the linear combination because the linear combination is a special case of non-linear formation.
Moreover, the optimal fusion strategy in statistical meaning is not necessarily to get a good estimate with respect to the estimation error 
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However, computing the Chebyshev center (4) is a difficult optimization problem in general, because the inner maximization is nonconvex quadratic problem. Recent research in the context of quadratic optimization [3] shows that the Chebyshev center can be calculated efficiently when 
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3.2. The Relaxed Chebyshev Center Fusion Estimation
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 without confusion for notational simplicity.
4. Choosing the Support Bound 
	
		
			

				𝑅
			

		
	

From the expression of 
	
		
			

				𝐱
			

			
				R
				C
				C
			

		
	
 in (7), the fusion estimate is determined by the parameters 
	
		
			

				𝛼
			

			

				𝑖
			

		
	
, which is the solution of the SDP problem (9). Because 
	
		
			

				𝑅
			

		
	
 appears only in the optimal object, the choice of 
	
		
			

				𝑅
			

		
	
 does not infect the feasible set of (9). First of all, we discuss the sensitivity of the choice of 
	
		
			

				𝑅
			

		
	
 in CFE of distributed fusion estimation.
4.1. The Sensitivity of the Choice of 
	
		
			

				𝑅
			

		
	

Let us write the SDP problem (9) in the standard literature on linear semidefinite programs by
								
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				(
				P
				)
				m
				a
				x
				𝐠
			

			

				
			

			
				𝐲
				s
				.
				t
				.
				𝒜
			

			

				∗
			

			
				(
				𝐲
				)
				+
				𝐒
				=
				𝐂
				𝐒
				≽
				𝟎
				,
			

		
	

							where 
	
		
			

				𝒜
			

			

				∗
			

			
				∑
				(
				𝐲
				)
				∶
				=
			

			
				𝑙
				+
				1
				𝑖
				=
				1
			

			

				𝐲
			

			

				𝑖
			

			

				𝐅
			

			

				𝑖
			

		
	
, 
	
		
			
				𝐠
				=
				[
				𝑐
			

			

				1
			

			
				,
				…
				,
				𝑐
			

			

				𝑙
			

			
				,
				−
				1
				]
			

			

				
			

		
	
, 
	
		
			
				𝐲
				=
				[
				𝛼
			

			

				1
			

			
				,
				…
				,
				𝛼
			

			

				𝑙
			

			
				,
				𝑡
				]
			

			

				
			

		
	
, for 
	
		
			
				𝑖
				=
				1
				,
				…
				,
				𝑙
			

		
	
, 
	
		
			

				𝐄
			

			

				𝑖
			

			
				=
				d
				i
				a
				g
				(
				𝐞
			

			

				𝑖
			

			

				)
			

		
	
, 
	
		
			

				𝐞
			

			

				𝑖
			

			
				(
				𝑗
				)
				=
				1
			

		
	
 if 
	
		
			
				𝑖
				=
				𝑗
			

		
	
, else 
	
		
			

				𝐞
			

			

				𝑖
			

			
				(
				𝑗
				)
				=
				0
			

		
	
, and
								
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				𝐅
			

			

				𝑖
			

			
				=
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝐀
			

			

				𝑖
			

			
				𝟎
				𝟎
				𝟎
				𝟎
				𝐀
			

			

				𝑖
			

			

				𝐛
			

			

				𝑖
			

			
				𝟎
				𝟎
				𝐛
			

			
				
				𝑖
			

			
				𝟎
				𝟎
				𝟎
				𝟎
				𝟎
				𝐄
			

			

				𝑖
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
			

			
				(
				2
				𝑛
				+
				𝑙
				+
				1
				)
				×
				(
				2
				𝑛
				+
				𝑙
				+
				1
				)
			

			
				,
				𝐅
			

			
				𝑙
				+
				1
			

			
				=
				⎛
				⎜
				⎜
				⎜
				⎜
				⎝
				𝟎
			

			
				(
				2
				𝑛
				×
				2
				𝑛
				)
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎠
				0
				𝟎
				𝟎
				1
				𝟎
				𝟎
				0
				𝟎
			

			
				(
				2
				𝑛
				+
				𝑙
				+
				1
				)
				×
				(
				2
				𝑛
				+
				𝑙
				+
				1
				)
			

			
				,
				⎛
				⎜
				⎜
				⎝
				𝐈
				𝐂
				=
			

			
				𝑛
				×
				𝑛
			

			
				𝟎
				⎞
				⎟
				⎟
				⎠
				𝟎
				𝟎
			

			
				(
				2
				𝑛
				+
				𝑙
				+
				1
				)
				×
				(
				2
				𝑛
				+
				𝑙
				+
				1
				)
			

			

				.
			

		
	

							The dual of the primal program is
								
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				(
				D
				)
				m
				i
				n
				𝐂
				•
				𝐗
				s
				.
				t
				.
				𝒜
				(
				𝐗
				)
				=
				𝐠
				𝑋
				≽
				𝟎
				,
			

		
	

							where 
	
		
			
				𝐂
				•
				𝐗
				∶
				=
				t
				r
				a
				c
				e
				(
				𝐂
			

			

				
			

			
				𝐗
				)
			

		
	
 and 
	
		
			
				𝒜
				(
				𝐗
				)
				∶
				=
				[
				𝐅
			

			

				1
			

			
				•
				𝐗
				,
				…
				,
				𝐅
			

			
				𝑙
				+
				1
			

			
				•
				𝐗
				)
				]
			

		
	
. The discussion of the sensitivity of the choice of 
	
		
			

				𝑅
			

		
	
 is based on the following assumption.
Assumption 4. The programs (P) and (D) are strictly feasible and there exist 
	
		
			
				
			
			

				𝐲
			

		
	
, 
	
		
			
				
			
			

				𝐒
			

		
	
, and 
	
		
			
				
			
			

				𝐗
			

		
	
 which are unique and strictly complementary solutions of (P) and (D), that is,
									
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			
				𝒜
				
			

			
				
			
			
				𝐗
				
				=
				𝐠
				,
				𝒜
			

			

				∗
			

			

				
			

			
				
			
			
				𝐲
				
				+
			

			
				
			
			
				𝐒
				=
				𝐂
				,
			

			
				
			
			

				𝐗
			

			
				
			
			
				𝐒
				=
				𝟎
				,
			

			
				
			
			
				𝐒
				≽
				𝟎
				,
			

			
				
			
			
				𝐗
				≽
				𝟎
				,
			

			
				
			
			
				𝐗
				+
			

			
				
			
			
				𝐒
				≻
				𝟎
				.
			

		
	

Based on the above assumption, we consider the solutions of the programs (P) and (D) when there is a perturbation 
	
		
			
				𝛿
				𝐠
			

		
	
 on 
	
		
			

				𝐠
			

		
	
 with the following theorem.
Theorem 5.  If the programs (P) and (D) satisfy Assumption 4 and the data 
	
		
			

				𝐠
			

		
	
 is changed by sufficiently small perturbation 
	
		
			
				𝛿
				𝐠
			

		
	
, then the optimal solutions of the perturbed semidefinite programs are differentiable functions of perturbation 
	
		
			
				𝛿
				𝐠
			

		
	
. Moreover, the derivatives 
	
		
			
				̇
				𝐲
				∶
				=
				𝐷
			

			
				
			
			
				𝐲
				(
				𝛿
				𝐠
				)
			

		
	
, 
	
		
			
				̇
				𝐒
				∶
				=
				𝐷
			

			
				
			
			
				𝐒
				(
				𝛿
				𝐠
				)
			

		
	
 and 
	
		
			
				̇
				𝐗
				∶
				=
				𝐷
			

			
				
			
			
				𝐗
				(
				𝛿
				𝐠
				)
			

		
	
 at 
	
		
			
				
			
			

				𝐲
			

		
	
, 
	
		
			
				
			
			

				𝐒
			

		
	
, 
	
		
			
				
			
			

				𝐗
			

		
	
 satisfy
									
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			

				𝒜
			

			

				∗
			

			
				(
				̇
				̇
				𝒜
				
				̇
				𝐗
				
				̇
				𝐗
				𝐲
				)
				+
				𝐒
				=
				𝟎
				,
				=
				𝛿
				𝐠
				,
			

			
				
			
			
				𝐒
				+
			

			
				
			
			
				𝐗
				̇
				𝐒
				=
				𝟎
				.
			

		
	

Remark 6. The perturbation 
	
		
			
				𝛿
				𝐠
			

		
	
 does not infect the feasible set of (P), and so does Slater's condition of (P). By continuity, Slater's condition of (D) is also satisfied for all sufficiently small perturbation 
	
		
			
				𝛿
				𝐠
			

		
	
. The result in this theorem is based on the fact that Assumption 4 is still satisfied when perturbed 
	
		
			

				𝐠
			

		
	
 by 
	
		
			
				𝛿
				𝐠
			

		
	
.
Remark 7. The result in this theorem is a special case in Theorem  1 in [18], which gives a comprehensive sensitivity result on the perturbation of all data of programs (P) and (D). Thus, our theorem could be a direct corollary from it.
Remark 8. Although the derivatives 
	
		
			
				̇
				𝐲
			

		
	
, 
	
		
			
				̇
				𝐒
			

		
	
, and 
	
		
			
				̇
				𝐗
			

		
	
 are characterized by a system of linear equations (16), it is an overdetermined system of 
	
		
			
				𝑙
				+
				1
				+
				(
				2
				𝑛
				+
				𝑙
				+
				1
				)
				(
				3
				𝑛
				+
				3
				𝑙
				/
				2
				+
				2
				)
			

		
	
 linear equations for the 
	
		
			
				𝑙
				+
				1
				+
				(
				2
				𝑛
				+
				𝑙
				+
				1
				)
				(
				2
				𝑛
				+
				𝑙
				+
				2
				)
			

		
	
 unknowns.
Theorem 9.  The derivatives 
	
		
			
				̇
				𝐲
			

		
	
, 
	
		
			
				̇
				𝐒
			

		
	
, and 
	
		
			
				̇
				𝐗
			

		
	
 in (16) can be given as the unique solution of the following nonsingular system of 
	
		
			
				𝑙
				+
				1
				+
				(
				2
				𝑛
				+
				𝑙
				+
				1
				)
				(
				2
				𝑛
				+
				𝑙
				+
				2
				)
			

		
	
 linear equations for the 
	
		
			
				𝑙
				+
				1
				+
				(
				2
				𝑛
				+
				𝑙
				+
				1
				)
				(
				2
				𝑛
				+
				𝑙
				+
				2
				)
			

		
	
 unknowns.
Proof. By the conditions in Assumption 4, 
	
		
			
				
			
			

				𝐗
			

			
				
			
			
				𝐒
				=
				𝟎
				=
			

			
				
			
			

				𝐒
			

			
				
			
			

				𝐗
			

		
	
, and thus the matrices 
	
		
			
				
			
			
				𝐗
				≽
				𝟎
			

		
	
 and 
	
		
			
				
			
			
				𝐒
				≽
				𝟎
			

		
	
 commute. This guarantees that there exists a unitary matrix 
	
		
			

				𝐔
			

		
	
 that simultaneously diagonalizes 
	
		
			
				
			
			

				𝐒
			

		
	
 and 
	
		
			
				
			
			

				𝐗
			

		
	
. Therefore, by Corollary 1 in [18], the derivatives 
	
		
			
				̇
				𝐲
			

		
	
, 
	
		
			
				̇
				𝐒
			

		
	
, and 
	
		
			
				̇
				𝐗
			

		
	
 can be solved from the following system:
									
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				𝒜
			

			

				∗
			

			
				(
				̇
				̇
				𝒜
				
				̇
				𝐗
				
				Π
				𝐲
				)
				+
				𝐒
				=
				𝟎
				,
				=
				𝛿
				𝐠
				,
			

			
				u
				p
			

			
				
				𝐔
			

			

				
			

			
				
				̇
				𝐗
			

			
				
			
			
				𝐒
				+
			

			
				
			
			
				𝐗
				̇
				𝐒
				
				𝐔
				
				=
				𝟎
				,
			

		
	

								where 
	
		
			

				Π
			

			
				u
				p
			

			
				(
				𝐗
				)
			

		
	
 denotes the upper triangular of 
	
		
			

				𝐗
			

		
	
.
So far, we have theoretically analyzed the sensitivity of a perturbation 
	
		
			
				𝛿
				𝐠
			

		
	
 for SDP (P). The derivatives of the optimal solution to the perturbation could be calculated by a nonsingular system of linear equations. Because the variable 
	
		
			

				𝑅
			

		
	
 only exists in the object parameter 
	
		
			

				𝐠
			

		
	
, the change of 
	
		
			

				𝑅
			

		
	
 leads to a perturbation 
	
		
			
				𝛿
				𝐠
			

		
	
 on the direction 
	
		
			
				[
				1
				,
				…
				,
				1
				,
				0
				]
			

			

				
			

		
	
. If the value of 
	
		
			
				̇
				𝐲
			

		
	
 is sufficiently small, the performance of the proposed CFE is robust due to the choice of 
	
		
			

				𝑅
			

		
	
.
4.2. The Geometrical Interpretation of 
	
		
			

				𝑅
			

		
	

From the expression in (3), we see that 
	
		
			

				𝑅
			

		
	
 in fact determines the size of the 
	
		
			

				𝑙
			

		
	
 ellipsoids. We illustrate in Figure 1, that the RCC of two interacting ellipsoids is still the same when changing the sizes simultaneously. 


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
		
	
		


	
		
		
	
	




























	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	


























	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


	


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
		
	
		
	
		


	
		
		
	
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	

Figure 1:  The illustration of the insensitivity on the choice of 
	
		
			

				𝑅
			

		
	
.


  A geometrical interpretation about this phenomenon is that the RCC reflects the center point of the intersection of some ellipsoids in some sense. When simultaneously enlarges or reduces the sizes of these ellipsoids, the resulted RCC still represents the center location in the same sense, so it is not strange that the RCC is insensitive to the choice of 
	
		
			

				𝑅
			

		
	
. In fact, as in the simulations in Section 5, we illustrate that the influence of the value of 
	
		
			

				𝑅
			

		
	
 on the fusion estimation is trivial.
However, we should certify that when changing the value of 
	
		
			

				𝑅
			

		
	
, these ellipsoids own a common interaction area. Therefore, we suggest making a conservative choice of 
	
		
			

				𝑅
			

		
	
. In practice, we can estimate it from the experienced learning or prior information.
Also from Figure 1, we see that the RCC of two ellipsoids may be either the linear combination of the centers of the ellipsoids or not. So the CFE varies a larger space comparing with the other linear fusion methods.
5. Simulation Experiments in Localization and Tracking
In this section, some simulation experiments are designed to show the performance of the proposed CFE method in localization and tracking and compare it with the result of the previous CI method. In addition, we have designed a numerical simulation to test the sensitiveness of the choice of the value 
	
		
			

				𝑅
			

		
	
 as well.


5.1. Simulation of Dynamic System
We consider the following dynamic system: 
								
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝐱
			

			
				𝑡
				+
				1
			

			
				=
				Φ
				𝐱
			

			

				𝑡
			

			
				+
				𝐯
			

			

				𝑡
			

			
				,
				𝐲
				(
				𝑡
				=
				1
				,
				…
				,
				𝑇
				)
			

			
				𝑡
				(
				𝑖
				)
			

			
				=
				𝐇
			

			
				(
				𝑖
				)
			

			

				𝐱
			

			

				𝑡
			

			
				+
				𝐰
			

			
				𝑡
				(
				𝑖
				)
			

			
				(
				𝑖
				=
				1
				,
				2
				)
				.
			

		
	

Case 1. Consider
									
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				⎛
				⎜
				⎜
				⎝
				
				Φ
				=
				c
				o
				s
				2
				𝜋
			

			
				
			
			
				
				
				3
				0
				0
				s
				i
				n
				2
				𝜋
			

			
				
			
			
				
				
				3
				0
				0
				−
				s
				i
				n
				2
				𝜋
			

			
				
			
			
				
				
				3
				0
				0
				c
				o
				s
				2
				𝜋
			

			
				
			
			
				
				⎞
				⎟
				⎟
				⎠
				3
				0
				0
				,
				𝐇
			

			

				𝑖
			

			
				=
				⎛
				⎜
				⎜
				⎜
				⎝
				√
			

			
				
			
			

				2
			

			
				
			
			
				2
				√
			

			
				
			
			

				2
			

			
				
			
			
				2
				−
				√
			

			
				
			
			

				2
			

			
				
			
			
				2
				√
			

			
				
			
			

				2
			

			
				
			
			
				2
				⎞
				⎟
				⎟
				⎟
				⎠
				,
			

		
	

								and the noises 
	
		
			

				𝐯
			

			

				𝑡
			

		
	
 and 
	
		
			

				𝐰
			

			
				𝑡
				(
				𝑖
				)
			

		
	
 are normally distributed with zero means and covariances 
	
		
			

				𝑅
			

			

				𝐯
			

			
				=
				[
				0
				.
				0
				5
				0
				;
				0
				0
				.
				0
				5
				]
			

		
	
 and 
	
		