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Advances in embedded systems and mobile communication have led to the emergence of smaller, cheaper, and more intelligent
sensing units. As of today, these devices have been used in many sensor network applications focused at monitoring environmental
parameters in areas with relative large geographical extent. However, in many of these applications, management is often
centralized and hierarchical. This approach imposes some major challenges in the context of large-scale and highly distributed
sensor networks. In this paper, we present a multilayered, middleware platform for sensor networks offering transparent data
aggregation, control, and management mechanisms to the application developer. Furthermore, we propose the use of multiagent
systems (MASs) to create a computing environment capable of managing and optimizing tasks autonomously. In order to ensure
the scalability of the distributed data fusion, we propose a three-step procedure to balance the workload among machines using

mobile agent technology.

1. Introduction

Over the years, sensor networks (SNs) have gained a lot
of attention in both public and research communities.
Advances in embedded systems and mobile communication
have led to the emergence of small, energy-efficient, low-
cost wireless sensing units. This technology makes it possible
to deploy a large number of sensors in a widespread
geographical area forming a self-organizing and self-healing
wireless sensor network (WSN). Examples of application
domains include logistics and transportation, agriculture,
health care, and environment.

Despite the technological advances, individual sensor
nodes have still limited processing, storage, and communica-
tion capabilities. Furthermore, wireless sensor networks are
typically used in highly dynamic environments, and there-
fore, they must be tolerant to hardware failures and com-
munication problems of individual nodes. Consequently,
software developers have to deal with many complex low-
level system issues as well as with the design of protocols
facilitating the communication in error-prone sensor net-
works [1]. Sensor middleware [2] is exactly addressing this

matter, abstracting the internal operation and heterogeneity
of the sensor network, and offering standard interfaces,
suitable abstractions, and services to the developer.

As of today, most of the environmental sensing applica-
tions follow the traditional client/server architecture. In such
a system, data is collected in a (possibly distributed) database,
and processing is offered by a separate cloud infrastructure,
offering the required scaling and cost-effectiveness. However,
WSN management in such a centralized and hierarchical
approach is a real challenge. System size, hardware het-
erogeneity, dynamic environment, and the volume of data
contribute to the complexity. In our view, a multiagent
systems (MASs) approach is much better suited in an envi-
ronment which must be self-configuring, self-healing, and
self-optimizing. According to the software agent paradigm
[3], agents are autonomous problem solvers that cooperate
to achieve the overall goals of the system. Furthermore,
they have the ability to physically migrate from one device
to another including dynamic behaviour, actual state, and
specific knowledge. Because of the decentralized nature, no
single point of failure exists, and the solution is scalable with
respect to the number of devices in the network.



In this paper, we present a middleware platform that
addresses several key issues in modern sensor networks such
as autonomy, scalability, and adaptability. Operating and
networking details are hidden from applications, by adopting
a multilayered software architecture. In order to handle the
scalability and reliability challenges of the distributed data
fusion, we propose to use a multiagent-based collaborative
information processing.

The remainder of this paper is structured as follows.
Section 2 presents related work in the context of managing
complexity in WSN environments. We also refer to existing
multiagent approaches to achieve an intelligent and adaptive
sensor network. In Section 3, we give an overview of the
important challenges related to modern monitoring appli-
cations by the discussion of a use case focused at building
an extensive multisensor urban measurement network for
noise and air pollution. In this section, we also present
the designed architecture which supports straightforward
measuring tasks, but also acts as a platform hosting more
complex functionalities. Implementation details are dis-
cussed in Section 4 followed by the description of a three-
step procedure to balance the workload using mobile agents
in Section 5. The evaluation results of the currently deployed
prototype are presented in Section 6. Conclusions and ideas
for future research are given in Section 7.

2. Related Work

Recently, a number of lightweight component models have
been proposed as a promising approach to managing com-
plexity in WSN environments. Middleware platforms such
as RUNES [4], OSGi [5], and LooCI [6] enable the dynamic
deployment and rewiring of components to support adapta-
tion and reconfiguration.

The RUNES approach to middleware provision is to
offer an adaptive middleware platform based on a two-level
architecture. The foundation is a language-independent,
component-based programming model that is sufficiently
small to run on any of the devices typically found in
networked embedded environments. A second software
component layer offers the necessary functionality to con-
figure, deploy, and dynamically reconfigure both system
and application level software. The loosely-coupled compo-
nent infrastructure (LooCI) introduces a novel event-based
component and binding model for networked embedded
systems. The LooCI middleware is designed for Java devices
that support standard Java ME [7], aiming for maintaining a
minimal memory footprint and offering good performance.

Over the years, there is a growing interest in the integra-
tion of multi-agent systems (MASs) into sensor networks,
because of their intelligence and adaptation to the field. In
this context, agents can be seen as entities responsible for
executing tasks such as incoming measurement validation,
custom alarm identification, data processing, and manage-
ment functions. The BiSNET middleware platform [8], for
example, hides low-level operating and networking details
from applications and implements a series of mechanisms
to support autonomous, scalable, adaptive, and self-healing
applications. Agents on the sensor node are responsible for
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autonomously increasing power efficiency, collectively self-
heal (i.e., detect and eliminate) faulty data, aggregating data,
and react to environmental changes. Biswas et al. [9] propose
the use of mobile agents for scalable and energy-efficient
data aggregation. In such an approach, software code can
migrate from node to node performing data processing
autonomously.

Existing frameworks for environmental monitoring typ-
ically offer basic measurement services but fall short to offer
accompanying processing facilities. The main contribution
of this paper is presenting a platform enabling a tight
coupling between the data collection and data processing
functionalities. By adopting this approach, several optimi-
sation opportunities are possible such as dynamic filtering
on the sensor nodes, distributed cooperative data fusion, and
adaptive deployment strategies.

3. Autonomous Environmental Monitoring

As of today, numerous platforms [10-12] have been devel-
oped for environmental measurement and processing appli-
cations. We have chosen to elucidate the requirements of
such modern sensor networks by presenting an application
in this domain, focusing on monitoring, and analysing data
related to noise and air pollution in an urban environment.
As will be shown, these networks have stringent requirements
in terms of bandwidth and deadline-sensitive data process-
ing.

In this section, we describe the actual use case, leading to
a summary of more generic challenges and possible solution
approaches for these demanding sensor applications.

3.1. Use Case. Urban environments are typically character-
ized by busy motorized traffic, leading to elevated noise levels
and high concentrations of airborne pollutants. As of today,
there is a specific interest in ultrafine particles (UFPs) that
could potentially be more harmful to health than the coarser
fraction more regularly measured (PM10, PM2.5).

Both noise and airborne pollutants share the same dom-
inant source in an urban environment, namely road traffic.
It was shown in [13] that UFP and specific noise indicators
can be reasonably well correlated and further improved
by including some basic meteorological observations. As a
result, one of the approaches followed is using a large number
of microphones as proxies for UFP sensors. As discussed
in [13], a few expensive UFP monitoring stations might be
needed in the network, to further adapt such correlations,
depending on specific conditions. However, deploying a
dense urban network of high-cost UFP sensor devices and
high-quality microphones is often beyond the budget of city
authorities. A solution to this problem is to deploy a limited
number of expensive (and high-precision) sensors together
with a large number of low-cost devices (offering lower data
quality). The high-precision nodes then serve to calibrate the
less expensive devices, while the latter are able to monitor
spatial variation. It was shown in [14] that some low-cost
microphones (used in consumer electronics) can be accurate
for environmental noise monitoring.
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Obtaining high-quality data from this type of sensor
network is more complex than in the case where a dense net-
work of expensive devices were available. Typically, advanced
calibration techniques and interpolation schemes (e.g., for
translating noise data to air pollutant concentrations) are
required, leading to the need for complex data processing in
the sensor network itself. Furthermore, centralized control in
such a dense and complex network becomes unfeasible. The
systems must become autonomous, having the possibility of
automatic self-adaptation to changes in the environment.

3.2. Design Principles. One of the goals of our middleware
platform is to ease the construction of environmental
monitoring applications by hiding as much as possible
the low-level complexities commonly found in modern
sensor networks. Therefore, we designed a component-based
service-oriented architecture allowing the dynamic rewiring
and reconfiguration of its features and functioning.

3.2.1. Extensible Software Architecture. Due to the hardware
restrictions and the heterogeneity typically encountered in
sensor devices, deployment and configuration of sensor
nodes is a challenge. We have developed a component-based
service-oriented architecture where the functionality is con-
tained in pluggable modules, as presented in Figure 1. Using
this approach, the sensing application can be easily adapted
to the underlying hardware. Furthermore, components can
be deployed and removed at run time. By taking intelligent
decisions about the deployment of modules, resource usage
can be optimized (e.g., replacement of preprocessing logic).

The main functions of each layer can be summarized as
follows.

(1) The sensor layer consists of sensor nodes and sensors.
This layer is responsible for controlling the sensors,
gathering sensory information, performing data pre-
processing, and data communicating with the back-
end infrastructure.

(ii) The virtualization layer hides the heterogeneity of
the actual hardware, providing a uniform interface
to the upper layers. This layer is also responsible for
checking the reliability of the sensor data. Special val-
idation agents compare the received measurements
with historical data and measurements from neigh-
bor sensors. Another responsibility is management
of sensor assets. To detect problems related to sensor
nodes, control agents continuously monitor the state
of a sensor node (i.e., heartbeat information).

(iii) The task distribution layer manages the data pro-
cessing functions. Jobs are planned on nodes in the
network and executed by software agents.

(iv) Various types of sensors exist, which can deliver dif-
ferent types of information, such as chemical analyses
of gases, weather data, images, and audio files, and so
forth. Furthermore, data can be generated through
algorithms or models. The purpose of the storage
layer is to hide the details of where and how the data
is stored.

(v) The interface layer enables the web-based discovery,
exchange, and processing of sensor data, as well as the
tasking of sensor systems in a standardized manner.
This layer provides the interoperability with third-
party systems.

3.2.2. Self-Configuring. An important characteristic of wire-
less sensor networks is that they are highly dynamic. As
a consequence, measurement and processing nodes should
discover each other and work together automatically. There-
fore, we implemented a discovery mechanism in the several
layers of the sensing application. On the sensor node, a
module can check the availability of other components and
adapt accordingly. The virtualization layer on the other hand
holds a registry containing all the dynamic information (e.g.,
IP address) needed to discover and contact sensor nodes.

3.2.3. Adaptability. In a traditional client/server-based com-
puting paradigm, sensor nodes send raw sensory data to a
back-end processing center for data fusion. In the case of
high-bandwidth sensors, the amount of data is extremely
high, and a local processing has to be performed before
transmission. The data fusion executed on the individual
sensor node results in a lower communication bandwidth,
increased scalability, and reliability.

We propose an agent-based control of the data fusion
and transmission, allowing an autoadaptation of each sensor
node to changes and failures. Several fault scenarios were
identified with possible solution approaches. These mech-
anisms were translated to agent logic, helping to remove
possible bottlenecks and enhancing the systems efficiency.
Examples include failing communication links, special events
in the measured phenomenon, and failing of sensors and
intermediary nodes.

3.2.4. Autonomic Distributed Data Fusion. We designed an
architecture for an agent-based task distribution system,
which is presented in Figure 2. The idea is that each task
is assigned to a task force, which is a group of agents,
logically grouped for executing a job. This group can be
spread over multiple physical machines and has one agent
that acts as the manager. A task is assigned to a task force by
the task handler; this component has also the responsibility
of deciding which agents will be responsible for executing a
job and where in the network they will run. The task handler
should not be regarded as a central component; there exist
multiple instances of the component within the network, and
decisions are made on the basis of information available in
the registries, which are described in this section.

The responsibility of the task handler is accepting job
requests and assigning them to agents. When this component
receives a task, it first looks up which agents can handle this
task. Next step is the resource allocation, that is, assigning
agents to a way network utilization is minimized and the
computational resources are efficiently used. The task handler
relies on the resource, agent and task registries for its
execution. Multiple task handler instances exist in the system
to ensure scalability and reliability.
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FiGURE 1: Overview of the different layers in the environmental monitoring platform. High-level components can be grouped in these layers
according to their functionality, such as the sensing, transmitting, storage, and processing of sensor data. Each layer provides a uniform

interface, hiding the complexity.
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FIGURE 2: Architecture of the agent-based task distribution system
used in the context of long-running data-driven applications. A
submitted job is handled by the task handler which allocates the
task to a task force based on the information available in the registry
databases.

Processing nodes can range from mobile devices (e.g.,
smartphones) to powerful back-end servers. As a conse-
quence, the task handler needs an overview of all nodes where
agents can be allocated to. This application, in contrast to
general theory, has a very intensive interaction with the data,
for example, calculation of a one-hour mean involves only
a condition (is the quality of the data good) and a simple
(multiply and) accumulate for each second of data that is
retrieved from the database. Thus, there is a strong urge to

have the agents work on a resource that has a short distance
in time to the data.

The resource registry contains two types of information.
The first type is the static information which does not have
to be updated often. Examples are operating system, installed
libraries, total amount of main memory, the number of
CPUs, maximum bandwidth, location, IP address, and so
forth. The second type of information is updated frequently
and represents the current state of the node, for example,
comprising average CPU load, idle time, free memory
size, free disk space, and available bandwidth. During the
resource allocation phase, the task handler checks if the
requirements of an agent can be satisfied. Such constraints
are specified using description files. If a node does not fulfil
all requirements (e.g., size of main memory or free disk
space), it will not be used.

The agent registry acts as an agent information store.
It contains information like the resource requirements and
file locations (e.g., scripts, executables). It also provides a
mapping from task name to agent identifiers. When the task
handler receives a job, it first looks up the task identifier in
this registry to check if it is possible to handle the request or
not. Only registered jobs with registered job identifiers are
accepted for allocation.

When a task is accepted, planned and resources are
allocated, information has to be stored giving a consistent
and global overview of the multiagent systems. First of all,
we have to keep track of all running jobs, parameters, their
start dates, end dates, current state, and assigned resources.
This state is important to detect failures; if a task stopped
unexpectedly or missed its deadline, it has to be deleted and
rescheduled. The task registry also gives an overview of all
deployed agents. It holds the state of an agent (e.g., running
or waiting for input), but also the resources used by the agent.
This last type of information is especially useful for detecting
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bottlenecks or performance problems; it also can trigger a
relocation process from an agent to another.

The task force is a logical group of cooperating agents
responsible for executing a job, consisting of a task manager
Agent and multiple slave agents. The task manager agent acts
as a mediator for the group; it receives the tasks, splits it up
in subtasks, creates a workflow, and assigns subtasks to the
subordinates. This entity is also responsible for monitoring
the task progression and is responsible for resolving issues
locally. A possible scenario is the removal and recreation of
an agent that is blocked for a longer time. When no suitable
solution can be found, the agent manager agent can decide
to remove the task force from the system and resubmit the
assigned task to the task handler Agent.

4. Database Model and Technology Choices

4.1. Open Standards. Due to the large number of sensor
manufacturers and differing accompanying protocols, inte-
gration and discovery of sensor data is not straightforward.
Lee et al. [15] argue the need for open, standardized sensor
interfaces and sensor data formats to effectively integrate,
access, fuse, and use sensor-derived data.

OGC’s Sensor Web Enablement (SWE) [16] initiative
aims at standardizing the entire sensor web process to
bring sensor resources on the web. In order to manage
the heterogeneity of the sensor resources and make them
available on the application level, our monitoring platform
has been made compliant with the OGC’s SWE standards for
web-based discovery, subscription, publishing, and alerting.

4.2. Database Model. The OGC observations and measure-
ments standard (O&M) [17] defines a domain-independent,
conceptual model for the representation of (spatiotemporal)
measurement data. The open-source initiative 52 North [18]
has provided a reference implementation for the sensor
observation service (SOS) [19], using O&M to deal with
measurements in a standardized way. At the database level,
22 tables are used with a lot of constraints and triggers. In
our prototype, we implemented the subset shown in Figure 3.
According to the OGC O&M standard, the elements in the
database model are described as follows.

(1) Feature of interest refers to the real-world object to
which the observation belongs (e.g., City of Ghent).
In the context of our use case, we regard sensor nodes
as features of interest.

(ii) Procedure points to the method, algorithm, or instru-
ment used to generate the result.

(iii) Phenomenon is a property of a feature of interest (e.g.,
temperature).

(iv) Observation is defined as an act associated with a
discrete time instant or period through which a
number, term, or other symbol is assigned to a
phenomenon.

The sensor alert service (SAS) [20] plays an important
role for sending event-triggered alerts, for example, in case

of threshold transgression. To be able to store SAS-compliant
alerts, we extended the database model was extended with an
alert table.

4.3. Open Services Gateway Initiative. The OSGi (Open
Services Gateway initiative) component model provides
a secure execution environment, support for run time
reconfiguration, lifecycle, management, and various system
services. OSGi targets powerful embedded devices such as
smart phones and network gateways along with desktop and
enterprise computers.

The OSGi Framework was chosen as dynamic module
system and service platform for the Java programming
language. OSGi enables the creation of highly cohesive,
loosely coupled modules (also known as OSGi bundles)
that can be composed into larger applications and managed
remotely. Furthermore, each module can be individually
developed, tested, deployed, updated, and managed with
minimal or no impact to the other modules.

4.4. Agent Framework. JADE (Java Agent DEvelopment
Framework) [21] was chosen as the software framework for
developing interoperable intelligent multiagent systems. The
JADE run time provides the basic services (i.e., dynamic dis-
covery, asynchronous peer-to-peer communication, naming,
etc.) for distributed peer-to-peer applications in both wired
and mobile environments. Furthermore, JADE is compliant
with the FIPA [22] specifications that enable end-to-end
interoperability between agents of different agent platforms.

The JADE architecture is completely modular and, by
activating certain modules, it is possible to execute the
run time on a wide class of devices ranging from complex
server-side infrastructures to mobile devices. An example
of such a module is LEAP, which enables the division of
the JADE container into a front-end running on the mobile
device and a back-end running in the wired network. As a
consequence, the front end becomes lightweight because part
of the functionality of the container is delegated to the back
end. Furthermore, JADE provides a homogeneous set of APIs
that are independent from the underlying network and Java
version.

4.5. Target Computing Platforms. OSGi is best suited for
powerful embedded devices, because the smallest standard
implementation, Concierge [23], consumes more than 80 kB.
An OSGi Profile for Embedded Devices (OSGi ME) [24]
exists, but the minimal memory usage is approximately
40 kB. The LooCI middleware on the other hand is designed
for more constrained devices supporting Java ME, such as the
Sun SPOT hardware [25]. The LooCI component model has
a memory footprint of just 20.8 kB [6].

As of today, considerable success has been encountered
in porting multiagent technology on mobile devices such as
smart phones and battery-powered wireless sensor nodes.
Recent developments of mobile multiagent systems include
AFME [26], JADE-LEAP [27], micro-JIAC [28], and Mobile-
C[29].

With the choice of OSGi as component model, and the
JADE run time for multi-agent support, we target powerful
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FIGURE 3: Relational schema of the database structure for storing sensor measurements and alerts.

sensor gateway nodes. However, with these choices, there
is still a possibility to integrate sensor nodes that have
strict constraints in terms of processing capabilities, memory,
and communication abilities. In our proposed middleware
architecture as presented in Section 3.2, the sensor node
gateway can act as a data sink and controller to one or more
resource-constrained sensor nodes. A similar approach was
presented in [30] where a network of ad hoc ZigBee-enabled
devices are dynamically integrated into an OSGi-based home
gateway.

5. Autonomic Sensor Data Processing

Autonomous agents may consume and share resources in
an unpredictable manner. Therefore, there is a need for
dynamic and adaptive load-balancing strategies which allow
to respond to changes (i.e., resource consumption behaviour
of single agents). Possible mechanisms to deal with this
decreased performance include agent cloning, migration,
and task passing. Such load-balancing processes could either
be handled by each individual agent or by special manager
agents.

In the past, several approaches [31, 32] have been studied
to use mobile agents for dynamic resource sharing. Jan
Stender et al. [31] argue the need to introduce a load
balancing agent (LBA) which decides when load-balancing
is necessary and coordinates the process. In the presented
paper, only agent migration was considered. We improved
the algorithms to make use of agent cloning and taskdivision.

In our approach, a load balancing procedure is started when
one of the following preconditions is met:

(1) the execution time of a task is above a certain
predefined threshold determined from user demands
(e.g., based on desired task periodicity);

(2) the CPU usage and memory consumption of the
agent are above a threshold;

(3) the machine hosting the agent is overloaded;

(4) an external event occurs, for instance, another agent
needs to execute a task with high priority, as a result
the load of the other tasks on the machine should be
reduced.

Using the approach with dedicated load-balancing agents,
the logic of the agents responsible for processing is kept
simple and more maintainable. Each such LBA runs on
the nodes which are part of the multiagent processing
infrastructure and periodically executes a procedure as
presented in Algorithm 1. Based on the current level of load
I on the current host, the agent decides to optimize the task
throughput (Algorithm 2) or to reduce the resource usage
(CPU and memory) by migrating agents (Algorithm 4). Over
time, it is possible that agents are alive but have little or no
work, due to the unavailability of sensors. This problem is
addressed in Algorithm 3. In this section, we present a three-
step procedure to balance the load across machines used for
autonomic sensor data processing.

5.1. Task Throughput Optimization. The approach taken to
deal with a high agent workload is splitting tasks in subtasks
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1: Procedure LOADBALANCE()

if (I, < ly) then

end if

2
3
4
5
6: else
7
8
9: end procedure

A[] — discoverMobileAgents()

optimizeTaskThroughput(A[]) > Algorithm 2
optimizeNumberOfAgents(A[])

optimizeResourceUtilization(A[])

> Algorithm 3

> Algorithm 4

ALGorITHM 1: Load-balancing procedure to reduce the work load of an agent. A[]: list containing mobile agent identifiers, [.: CPU load on

the current host, and I: predefined CPU threshold.

1:

2 lmax <0

3: g, —null

4: foralla € Ado

5: I, < getTaskLoad(a)
6 if I, > lih max then

7 lmax - la

8: a, —a

9: end if

10:  enffor

11:  if a, not null then

12: sids,, [] —getSensorIDs(a,)

13: splitsids,, [1[] —split(sids,,[], 2)
14: n —length(splitsids,, [])

33: end procedure

Procedure opTIMIZETASKTHROUGHPUT(A: SET OF MOBILE AGENTS)

15: if n = 2 then

16: 14, — numberOfClones(a,)

17: ns — length(A)

18: if (15, < Miha,) A (14 < Nena) then > Local cloning
19: ac, — clone(a,)

20: reAssignSensors(ac,,, splitsids,, [0])

21: reAssignSensors(a,, splitsids,, [1])

22: else > Remote cloning
23: Iba[] < discoverLBAs()

24: Iba, — findSuitableHost(Ibal[], a,)

25: if [ba, not null then

26: ac, — lba,.clone(a,)

27: Iba,,.assignSensors(ac,,, splitsids,, [0])

28: reAssignSensors(a,, splitsids,, [1])

29: end if

30: end if

31: end if

32:  endif

> Find max. loaded agent

> Split task load

ArcoriTHM 2: Algorithm to optimize the task throughput by assigning subtasks to clones. [,y maximum task load, I max: upper threshold
task load, [,: agent task load, ny 4: mobile agent instances threshold, a,: overload agent identifier, a.: agent clone identifier, sids[]: list with

sensor identifiers, and n, ,: agent instances threshold.

and to do the processing in parallel. In sensor networks,
a task can be split according to the sensor identifier and
distributed across other agents. This concept is illustrated in
Algorithm 2.

The first step is to search for overloaded agents (lines
22-10). An agent is considered overloaded if the average
task load [, exceeds a limit /ihmax. Only the agent with the

maximum load will be selected for task splitting. The next
step is to divide the sensor list in two (lines 12-14) and
assign one part locally and the other to a clone. To avoid
the presence of too many agents on one machine, there is
first a check (line 18) on the number of clones n,, and
total agents n4. If local cloning is possible, a copy is made
of the overloaded agent and the split task distributed over
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1: Procedure oPTIMIZENUMBEROFAGENTS(A: SET OF MOBILE AGENTS)

2: lmin —~0

3:  ay —null

4: forallac Ado > Find max. loaded agent
5: I, — getTaskLoad(a)

6: if I, < Ly min then

7: lmin - lu

8: ay) < a

9: end if

10:  end for

11:  if a,,; not null then

12: sids,,, [] —getSensorIDs(a,, ;)

13: ay;, — findSuitableAgent(sids,,,, [1)

14: if a,,> not null then > Local task passing
15: assignSensors(ay,,, sids,, [])

16: kill(a,,;)

17: else

18: Iba[] < discoverLBAs()

19: Iba, — findSuitableAgent(Ibal], sids,,,[])

20: if Iba, not null then > Remote task passing
21: au, — Iba,.findSuitableAgent(sids,,, [1)

22: Iba,.assignSensors(ay,,, sidsa, [])

23: kill(ay,;)

24: end if

25: end if

26: endif

27: end procedure

ArGorITHM 3: Algorithm to reduce the number of underloaded agents in the multi-agent system by using task merging. lyi,: minimum
task load, lih,min: lower threshold task load, I,: agent task load, a,,;: most underloaded agent identifier, a,,,: second most underloaded agent
identifier, and sids[]: list with sensor identifiers.

1: Procedure oPTIMIZERESOURCEUTILIZATION(A: SET OF MOBILE AGENTS)

2: lmax <0

3:  a, —null

4: foralla € Ado > Find max. loaded agent
5: I, — getTaskLoad(a)

6: if I, > I max then

7 lmax - la

8: a, — a

9: end if

10:  end for

11:  if a, not null then

12: Iba[] < discoverLBAs()

13: Iba, — findSuitableHost(Ibal], a,)

14: if [ba, not null then > Agent migration
15: ac, — lba,.clone(a,)

16: sidsg, [] — getSensorIDs(a,)

17: Iba,.assignSensors(ac,, sids,, [])

18: kill(a,)

19: else > Agent priority reduction
20: increasePeriodicity(a,)

21: end if

22:  endif

23: End procedure

ArLGorITHM 4: Algorithm to reduce CPU and memory usage by migrating agent across physical machines and task periodicity adaptation.
I;max: maximum task load, L max: upper threshold task load, I,: agent task load, a,: overload agent identifier, a.: agent clone identifier, and
sids[]: list with sensor identifiers.
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the two entities. If a local clone cannot be made due to the
constraints, an attempt is made to create a clone on another
machine (lines 22-28). Therefore, a discovery is needed of
all LBAs in the processing infrastructure. The local LBA has
to communicate to find out if a clone can be made on the
remote machine. Based on the free resources (e.g., average
CPU load, current amount of agents on the node), an LBA
will be selected for remote cloning.

5.2. Number of Agents Optimization. Because the number
of active sensors in the network is dynamic, it is difficult
to determine in advance the optimal number of processing
agents. Over time, it is possible that an agent is inactive most
of the time due to an inactive sensor. An approach to deal
with this problem is presented in Algorithm 3 and Figure 4
and entails task merging.

Firstly, there is a search for underloaded agents (lines 2—
10). If the number of tasks over time [, is below a threshold
lth,min, it will be considered as an underloaded agent. When
such an entity is found, there will be a task-merging attempt
with another local (lines 12—-16) or remote underloaded
agent (lines 18-24). After task-merging, one underloaded
agent will execute the combination of the two tasks, and the
other agent will be removed from the system.

5.3. Resource Usage Optimization. In order to avoid high
CPU loads and excessive memory usage, it should be possible
to relocate a complete agent instead of a part of the workload.
Agent migration is a solution to free local resources. A
major challenge is to find the agent that is responsible
for the high load or memory usage on the local host. As
illustrated in Algorithm 4, we assume that the agent with
the most tasks will be likely using the most resources and
is a candidate for migration. Another approach is to use
monitoring information. The LBA checks the evolution of
the CPU load after a migration. When the relocation has no
significant influence on the resource usage, the LBA could
ignore this agent for future migration decisions. A fallback
step is to increase the periodicity (e.g., from each second to
every 5 seconds) of the task to decrease the CPU load.

In a first step, an agent will be searched with an average
number of tasks I, which is greater than a threshold I max.
If such an entity is found, there is a discovery phase to
find all LBAs in the infrastructure. If a host with sufficient
resources can be found, the agent will be migrated. Selection
of the suitable host will be based on the following parameters:
average CPU load, available memory, and number of agents
present on the node. The host selection and agent migration
procedure is presented in lines 12—-16. When no migration is
possible, the fallback step is executed which entails increasing
of the task periodicity (line 18).

6. Experimental Results

6.1. Test Setup. In order to evaluate the data collection and
processing functions, we created a test setup in a lab environ-
ment. The setup is illustrated in Figure 5 and consists of Alix
3C3 [33] single-board computers running the Voyage linux

[34] operating system responsible for measuring functions.
These devices are also handling the data preprocessing and
caching into files. At predefined intervals, measurements are
uploaded to a server. A processing server is responsible for
storing the data into a datastore. Table 1 summarizes the
hardware specifications and software versions of the devices
in the test setup.

6.2. Data Preprocessing. On-board preprocessing data is an
approach to limit the amount of data to be stored. By
carrying out as much as possible processing on the node
itself (as limited the resources may be), the required storage
capacity on the node and the needed bandwidth are reduced.
This approach has been successfully applied to the noise
sensors. The audio card on the Alix single-board computer
(SBC) is used to sample the input signal at 48000 Hz in
mono, and each sample has a size of 2 bytes. The required
storage to buffer one second of audio is 93.75 KiB. Storing
and sending this data can become problematic, due to the
storage and connectivity constraints of the sensor node.
Instead of storing and sending the raw audio signal, the
data is preprocessed into a format which still contains the
characteristics of the audio signal. A typical preprocessing
step is the calculation of the 1/3 octave band levels, which
represents the spectral content of the signal. As a result, it is
possible to store one second of sound in a format that needs
limited amount of storage and still contains enough infor-
mation to be meaningful for postprocessing and analysis. We
have evaluated the CPU load, memory consumption, and
required network bandwidth of the preprocessing process on
the sensor node. One of the most important parameters that
influence the system usage is the FFT input length, which
we varied from 1 to 0.125 s of audio samples. The results are
presented in Table 2.

In order to evaluate the importance of the on-board
preprocessing we implemented a test setup where the Alix
SBC is only used for recording audio files covering 1 second
and sending the data to the server for processing. The server
CPU load, memory consumption, and minimum network
bandwidth are shown in Table 3. We noted a huge increase
in average CPU load compared to the sensor node side
processing. This can be explained by the availability of the
audio samples. On the SBC, the calculation process blocks
until the FFT buffer is full, and the 1/3 octave band levels are
subsequently calculated. On the server side, this process does
not have to wait, resulting in a higher CPU load.

Tests showed that the Alix SBC is 15 times slower in
calculating the 1/3 octave band levels compared to the
server. Despite the speed difference, the server has an
additional overhead of reading the received audio files into
memory before the processing, which is not negligible. When
processing the audio file with an FFT input length of 1s, it
takes 5.45 ms to read the file and 5.23 ms to calculate the 1/3
octave band levels. In this configuration, the server is capable
of processing the data from only 9 audio sensors in real time.

6.3. Data Transfer Strategy. The used sensor nodes in the
test setup are all equipped with a 4GB compact flash
card. Despite the large storage capacity, data needs to be
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FIGURE 4: Flow chart illustrating the agent merge principle. The algorithm starts with searching for an underloaded agent (I, < lihmin). When
such an entity can be found, there is a second search with possible inclusion of other machines. As soon as two underloaded agents can be

found, tasks are merged and assigned to one entity.
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node node node
( ]
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File server Application Database
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F1GURE 5: Overview of the devices in the test setup.

transferred to the server regularly in an efficient and reliable
manner. We investigated two approaches: streaming of the
data and file-based uploads.

In the streaming approach, measurements are pushed
near real time (every second) to the server over a TCP
socket. For reliability reasons, the server sends back a 32-bit
checksum of the data. Only if the checksums match, the data
is deleted from the send buffer on the sensor node.

In the file-based approach, measurements are stored
in files which are uploaded at regular intervals (i.e., every

minute). When the file server confirms the successful upload,
data is removed from the sensor node.

We evaluated both data transfer strategies using data
from the high-bandwidth audio sensors for different output
rates. In order to make efficient use of the available network
bandwidth, we also applied GZIP compression on the data.
The results are shown in Table 4. In the file-based approach, a
higher compression ratio can be achieved resulting in a more
efficient use of the available network bandwidth.

We also evaluated the scalability of the server responsible
for receiving and caching the measurements. The tests were
executed in a configuration where one client machine sends
data to a server using a varying number of concurrent
connections. The data was transmitted over a 1 Gbps Eth-
ernet connection. In both transfer strategies, the server can
easily handle 100 concurrent connections without degrading
throughput. Because the file-based transfer strategy uses the
available network bandwidth more efficiently (as illustrated
in Table 4), we adopted such an approach. The throughput
results for this scenario are presented in Figure 6.

6.4. Agent-Based Processing Scalability. In order to evaluate
the effectiveness of the load balancing algorithm as described
in Section 5, a distributed multiagent processing infrastruc-
ture was implemented.

Three types of agents were used, and their functionalities
can be described as follows.

(i) The load balancing agent (LBA) executes the load
balancing algorithm and is deployed on each physical
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TaBLE 1: Overview of the hardware specifications and software versions.

Name Sensor node Application servers Database server
CPU Geode(TM) AMD Athlon (64) X2 Dual-core AMD
Integrated Dual core processor Processor 2212
CPU speed 498.095 MHz 1000 MHz 2010.325 MHz
RAM 256 MB 2048 MB 4096 MB
Linux Kernel version 2.6.30-voyage 2.6.38-11-generic 2.6.18-6-amd64
Java version 1.6.0u21-b06 1.6.0u21 1.6.0ul6-b01

OSGi version Apache felix 3.0.1

Apache felix 3.0.1 Apache felix 3.0.1

TaBLE 2: Overview of the average CPU load, memory usage, and
required network bandwidth of the Alix single-board computer
when audio is preprocessed on the sensornode side.

FFT input length CPU load Memory usage Network bandwidth

(s) (%) (MiB) (Bytes/s)
0.125 57.5 1.8 355
0.25 42.8 1.8 177
0.5 16.3 2.0 88
1 2.1 2.2 45

TaBLE 3: Overview of the average CPU load, memory usage, and
minimum network bandwidth of the server when the audio is not
preprocessed on the sensornode side.

FFT input length CPU load Memory usage Network bandwidth

(s) (%) (MiB) (Bytes/s)
0.125 98 2.5 96000
0.25 95 2.6 96000
0.5 92 2.6 96000
1 90 2.7 96000

machine in the multi-agent processing infrastructure.
Each of such LBAs decides when load balancing is
necessary and coordinates the process. Because the
amount of processing nodes in the network can be
dynamic, the agent should be capable of discovering
other LBAs at run time. As a consequence, an LBA
heavily relies on the discovery service provided by the
agent middleware. In order to select the most suitable
host for task allocation or agent migration, each LBA
should be able to communicate with other load-
balancing agents. The messaging services provided by
the agent framework are used for the interaction.

(ii) As an example of a very simple task that a data
analysis agent could perform, we consider an agent
that calculates a 10- or 15-minute average of the
incoming data. For this example, we also assume
that all measurement data are correct and all sen-
sors are reliable, so no prior check on validity is
needed. The task manager agent is responsible for
the management of average tasks in the processing
infrastructure. When a measurement is received from

30

25

Throughput (MiB/s)

1 5 10 50 100 500 1000

Number of concurrent connections

--- 2.64KiB == 10.35KiB
— 5.16KiB 20.8KiB

FIGURE 6: Overview of the server throughput as a function of the
number of concurrent connections and varying file sizes. Each file
contains 60 seconds of logging data with a different amount of
samples per second.

the sensor network, the task manager agent calculates
the interval start time (e.g., 10 min or 15min) and
stores this timestamp with the sensor identifier in the
task list. An average task can be seen as an object that
contains an interval start timestamp, length, and a
sensor identifier.

(iii) Average calculator agent has the responsibility for
calculating the average value of all measurements
within a certain interval for one or multiple sensors.
The processing is periodic, and when the agent wakes
up, it fetches all average tasks from the task manager
agent. When there are tasks available, measurements
within the interval are retrieved from the datastore,
the average value is calculated and stored. The tasks
are stored in the internal queue of each agent. When
a task is finished, the task manager agent is notified
who deletes the task. When all tasks are processed, the
agent suspends. The logic of the average calculator
agent and the interaction with the task manager agent
is illustrated in Figure 7.

6.4.1. Influence of Local Agent Cloning. In a first test, we eval-
uated the influence of local cloning on the task throughput.
We monitored the CPU load and used network bandwidth
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TaBLE 4: Comparison table of the average used bandwidth when preprocessed audio data is streamed to the server near-real time (every
second), and logging files holding 60 seconds of data are transmitted every minute.

Streaming File-based upload
FFT input length (s) Uncompressed Compressed Uncompressed Compressed
(Bytes/s) (Bytes/s) (Bytes/s) (Bytes/s)
0.125 1691 524 1558 355
0.25 863 312 797 177
0.5 449 214 409 88
1 242 156 210 45
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FIGUre 7: BPMN business process diagram illustrating the logic of the tasks manager agent and average calculator agent.

and task throughput in a configuration where a task queue is
processed in parallel by a varying number of agents. In this
test setup, the load-balancing algorithm was disabled, and
the number of agents was configured in advance. All agents
were located on one machine, and the measurement data
needed for executing the task was fetched from a database
server over a 100 Mbps network link. The test revealed that
an increased task throughput can be achieved by hosting
multiple agents on one machine, as illustrated in Figure 8.
During the processing of a task, 60% of the time is spent
on the calculation of the average audio levels and 40% on
database communication. In this configuration, we noticed a
decrease in task throughput when the task queue is processed
in parallel by five agents. The main reason for this is that the
processing is data driven and the communication with the
database server becomes the bottleneck.

6.4.2. Influence of Data Locality. In order to minimize net-
work communication with the datastore, we modified the
logic of the LBA, to also allow cloning to the database
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FIGURE 8: Overview of the task throughput, CPU load, and network
bandwidth when a task queue is processed by a varying number of
agents residing on one machine.
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server. The load-balancing algorithms were tested in a four-
machine processing infrastructure in two cases: with and
without using the data locality optimisation. On each node,
there was an LBA deployed communicating over 100 Mbps
network links. The test results are presented in Table 5. We
can conclude that by making use of data locality a huge
improvement in task throughput can be achieved.

6.4.3. Data Processing Scalability. In order to evaluate the
level of improvement using the load-balancing algorithms,
we first tested the task throughput when tasks are processed
sequentially by one agent with no load-balancing. A single
process is able to complete twenty tasks in one second, which
is illustrated in Figure 9.

Next, we tested our load-balancing algorithm with a
varying number of processing machines and virtual sensors,
also allowing cloning on the database server. The tests were
executed in four-machine infrastructure connected by a
100 Mbps network. On each node, there was LBA deployed,
with equal configuration parameters. During the tests, we
used the following parameters for each LBA:

(i) maximum number of tasks before an agent is marked
as overloaded (I max): 50,

(ii) minimum number of tasks before an agent is marked
as underloaded (It min): 5,

(iii) CPU load (l,) limit: 70%,
(iv) memory usage limit: 80%,
(v) maximum number of agent clones (#,4): 9,

(vi) maximum number of agents (#h,4): 50.

The test results showed that a significant increase in
task throughput can be achieved by balancing the load
across agents and machines in the processing infrastructure.
Making use of data locality results also in a significant
performance increase. The [y max parameter is of great
importance, because it influences how fast local and remote
clones will be created. As soon as the number of tasks exceeds
lih,max> @ procedure is started to create local or remote clones.
Setting this value too low will result in more unnecessary
cloning operations, resulting in overhead which has an
influence on the task throughput.

6.4.4. Influence of Agent Priodicity Adaptation. In the cur-
rently presented evaluation results, we assumed a uniform
task load for all the sensors. In real-world scenarios, this
may not be the case, for example, a sensor node can be
disconnected from the network for several days, and when
such a node is connected again, the task load for the attached
sensors will be high. Our load-balancing algorithms respond
to such a situation by moving the agents responsible for
those sensors to machines with the most free resources. This
can result in a situation where the agents are suboptimally
distributed over the machines. To avoid such a situation,
the load-balancing algorithms were improved by lowering
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TaBLE 5: Task throughput as a function of the number of machines
evaluated in two cases. In a first scenario, no agents are allowed to
run on the server hosting the database, resulting in a lower task
throughput due to the network delays. In a second case, agents are
given priority to clone on the database server and are exploiting the
data locality.

Number of Processing Maximum task throughput (tasks/s)

Nodes No data locality Data locality
2 71 144
3 75 156
4 78 161
200 R

—_

w

(=)
T

" Maximum CPU load (I3,)
on database machine

,‘J Cloning to database machine

Throughput (tasks/s)
3
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Number of sensors
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— 1 processing node with agents
-=-= 2 processing nodes with agents

~~~~~~ 3 processing nodes with agents
—— 4 processing nodes with agents

FiGure 9: Task throughput as a function of the number of sensors
in the network. All agents process one task per iteration.

the priority of the agents that meet all of the following
preconditions:

(i) the CPU load I. on the host where the agent resides is
higher than a predefined threshold /is;

(ii) the task load I, is above a threshold I may;

(iii) no suitable machines can be found for agent migra-
tion.

We evaluated this approach by measuring the task
throughput in two scenarios: with and without priority
adaptation. In both cases, a task queue with data of fifty
sensors was periodically processed by agents in a infrastruc-
ture consisting of four machines. At time fy, we assumed a
steady state of the load-balancing algorithms with a nearly
constant task throughput. Next, we increased the task load
for an increasing number of sensors from 1 task (15 minute
period) to 96 tasks (24-hour period) at time #;, f;, and ts.
In both scenarios, we measured a decrease in overall task
throughput. As illustrated in Figure 10, we noticed a higher
performance in the case where priorities were adapted.



14

Increased task load for

130 : 1% of the serisors : : : : : b

Increased task load for
25% of the sensors

120

Increased task load for
110 F - - - - - - - 50% of the sensors: E

100 F o

Task throughput (tasks/s)

9O Fr

to t 5] t3 14
t

—— Dynamic agent periodicity
—— Static agent periodicity

FicUure 10: Overview of the influence of the increased task load
for one or more sensors on the task throughput. The test was exe-
cuted with fifty sensors on a distributed processing infrastructure
consisting of four machines. In all cases, task load per iteration
was increased from 1 task (15-minute period) to 96 tasks (24-hour
period).

7. Conclusions and Future Work

In this paper, we have showed how intelligence can be
brought to the several layers of the sensing application to
achieve the required level of autonomy. By adopting the
mobile agent approach, logic can be distributed into the
measuring network. The intelligence from these agents can
range from regulating the data preprocessing on the sensor
node to the optimisation of the calculation tasks on the back-
end infrastructure. Secondly, we have implemented load-
balancing approaches to maintain the scalability of the fine-
grained data processing tasks in a distributed environment.
Therefore, this logic was incorporated into load-balancing
agents that optimize the task throughput and resource
utilisation on the current host and also collaborates with
other agents for its operation. We have proven that using
principles as cloning, task passing, and reallocation, a scal-
ability processing infrastructure can be achieved with respect
to the number of sensors. We also showed that the system
is able to handle sudden task load increases by lowering the
priority of those tasks, resulting in a fairer resource sharing.
For completeness, we included a performance analysis of the
current prototype, based on the design decisions.

In the future work, we plan to take advantage of the
self-learning capabilities of an agent. As a result, the load-
balancing agent will have the ability to take more intelligent
decisions, which results in less unnecessary agent migrations.
For example, by monitoring the resource utilisation after a
migration/cloning, the LBA can assess the effect of the action
and learn from it. This acquired knowledge can be used
during future decisions. Secondly, we plan to investigate sev-
eral database partitioning mechanisms. Data can be clustered
according to parameters such as geographical region, time,
and number of queries. The intelligent clustering of sensor
data can further decrease the number of agent migrations
and increase the overall performance.
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