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Detecting abnormal events represents an important family of applications for wireless sensor networks. To achieve high
performance of event detection, a sensor network should stay active most of the time, which is energy inefficient for battery
driven sensor networks. This paper studies the fundamental problem of bounding detection delays when the sensor network is
low duty cycled. We propose a novel approach for statistically bounding detection latency for event detection in sensor networks.
The key issue is the wakeup scheduling of sensor nodes and minimization of wakeup activity. We propose a lightweight distributed
algorithm for coordinating the wakeup scheduling of the sensor nodes. A distinctive feature of this algorithm is that it ensures that
the detection delay of any event occurring anywhere in the sensing field is statistically bounded. In addition, the algorithm exposes
a convenient interface for users to define the requirement on detection latency, thereby tuning the intrinsic tradeoff between
energy efficiency and event detection performance. Extensive simulations have been conducted and results demonstrate that this

algorithm can successfully meet delay bound and significantly reduce energy consumption.

1. Introduction

Recent years have witnessed the rapid development of
wireless sensor networks. The surge of interest in sensor
networks is driven by the promising advantage of sensor
network as a low-cost solution to a wide range of real-
world challenges [1-6]. Event detection is an important
class of applications for sensor networks. The key issues of
designing a sensor network for distributed event detection
are twofold. First, the system needs to provide quality event
detection. That is, the detection of any event that occurs in
the physical environment should be as timely as possible.
Second, energy efficiency is critical since the battery-powered
system is supposed to be continuously functional for months
or even years.

Existing work [7—11] for event detection has extensively
focused on providing full sensing coverage such that any
potential event can be immediately detected after it arises.
For energy efficiency, only a fraction of sensors are selected
to be active, and the rest are put into sleep mode. The
advantage of these algorithms is that no detection latency
is incurred. The obvious drawback, however, is poor energy

efficiency due to the fact that all active sensors need to be
powered up constantly. Moreover, if a sensor fails, the sensing
coverage supported by this sensor becomes a blind spot, and
consequent critical events occurring at this spot will be lost,
which is so-called the blind spot problem.

Most physical events are persistent, rather than
ephemeral, which exist for a certain time, such as tens
of seconds or even minutes, after its occurrence [12].
Examples for such events include fire, radiation, and
pollution. This essential property allows sensors to capture
the events while being in a low-duty cycle. A straightforward
approach for energy-efficient event detection works as
follows, like in [12, 13]. Each sensor sleeps most of the time
and wakes up every 7ce time units, as shown in Figure 1,
while in active mode, a sensor detects any potential event
that occurs in its vicinity. Let 7,, denote the active time in
every cycle of 7¢yde. The duty cycle of the sensor in Figure 1
is clearly
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FIGURE 1: Example timing of three equally cycled sensors.
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FiGure 2: Illustration of the overdetection problem.

This suggests that the lifetime of the sensor node can be
roughly extended by a factor of 1/8. Nevertheless, it should
be noted that the lifetime extension comes at the cost of
additional detection latency. However, we argue that most
practical applications tolerate detection latency. Note that it
also takes time for the network to report the event back to the
base stations through many hop-by-hop transmissions.

Recent study [6, 14] has shown that to guarantee full
sensing coverage of the field, the density of sensors needs
to be high. This implies that an event can possibly be
detected by several ambient sensors. A critical challenge
emerges in this situation. The dense deployment can cause
a serious overdetection problem with Figure 2 when every
sensor blindly wakes up in each cycle. As illustrated in
Figure 2, an event that occurs at point g will be detected,
within a single cycle, four times, and an event at point p will
be detected three times since its emergence. Not only does the
overdetection problem waste precious energy but also incurs
additional energy overhead for event transmissions. Extra
efforts are further needed to make a decision on whether or
not event reports from different sensors are actually caused
by the same physical event. The overdetection problem
strongly motivates the idea that the duty cycle of each sensor
should be reduced for better energy efficiency.

In this paper, we propose an innovative wakeup schedul-
ing algorithm called PAD for energy-efficient event detec-
tion. The central idea is to reduce the duty cycle of
every sensor via probabilistic wakeup, exploiting the dense
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deployment of sensor networks. The wakeup of a sensor
is not deterministic, but instead probabilistic and adaptive
to its sensing neighbors, therein significantly alleviating
the overdetection problem. A distinctive feature of the
algorithms is that it allows users to specify the require-
ment on detection latency and meanwhile ensures that the
detection of any event is better than this requirement. The
algorithm is truly scalable and power efficient, prolonging
the system lifetime significantly. We have made the following
contributions in this paper.

(i) By recognizing the essential latency-tolerant property
of event detection applications, we investigate the
energy-efficient approach for event detection, which
addresses the serious overdetection problem.

(ii) We propose a soft bound model for detection delay
specification and devise a simple yet effective metric
to realize such a statistical soft bound.

(iii) We present insightful analysis on the nonadaptive
scheme, in which the sensors wake blindly, and reveal
the necessity to make adaptive control on wakeup
frequency.

(iv) We propose a lightweight algorithm in which each
sensor works adaptively and reduces its power dis-
sipation substantially, hence remarkable prolonging
system lifetime.

The rest of the paper is structured as follows. In Section 2,
we present the system model, statistical bound modelfor
detection latency, and the problem description. In Section 3,
we analyze DoC and detection delay with a simplified wakeup
scheduling and motivate the scheduling algorithm design.
Section 4 proposes the wakeup scheduling algorithm and
an extension. The performance evaluation is presented in
Section 5. Related work is reviewed in Section 6. The paper
is concluded in Section 7.

2. System Model and Problem Description

It is intuitive that there is an intrinsic tradeoff between
system lifetime and detection latency. Thus, it is unrealistic
to minimize detection latency and meanwhile to maximize
system lifetime. For real-world surveillance applications,
the system should deliver twofold performance. On the
one hand, the detection delay of an event should not be
arbitrarily large. Instead, it should be constrained to a certain
range. On the other hand, the system should operate in a very
power-efficient fashion. A longer system lifetime certainly
requires the wakeup scheduling to be energy efficient. To
extend the network lifetime, it is crucial to reduce the duty
cycle of each individual sensor.

In this section, we present the system model, propose a
soft bound model for event detection, and give the problem
description. In the rest of this paper, we adopt the notations
in Table 1.

2.1. Network Model. We consider a square field F with side
length L, and the sensors are deployed in the field according
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TasLE 1: Notations and descriptions.

Notation Description

r The detection range

) The duty cycle of the sensing device

1) The duty cycle of the transceiver

Fo() The' cumulative distribution function of random
variable D

D, The longest delay specified by the user

Dy The corresponding delay for y,

DoC Detectability in one cycle

Xp The DoC of an event at point p

X0 The lowest DoC all over the field

YqQ The wakeup probability of sensor Q

ya(p) The necessary wakeup probability of sensor Q at point p

S(p) The set of sensors covering point p

U(Q) The set of grid points contained by sensor Q

to a 2-dimensional Poisson process with rate n/L*. We focus
on persistent events which exist for a certain time before they
disappear. The event life is much longer than the wakeup
cycle, and we can safely assume that an event is always
detected. Each sensor has the knowledge of its location. A
good number of power-efficient algorithms [15, 16] have
been proposed for practical localization. Finally, each sensor
has a detection range defining a detection disk centered at the
sensor. An event is reliably detected by an active sensor if it
resides in the detection range of this sensor.

The power consumption of a sensor node is mainly
attributed to three units: processor, sensing device, and radio
transceiver. Ideally, each unit has separate power control
[17]. The duty cycle of the transceiver is subject to the control
of communication protocols. We focus on the study of the
duty cycling of the sensing devices. The transceiver may
have a different duty cycle from the sensing devices. This
indeed increases the flexibility for the algorithm to work with
different communication protocols.

A sensor node can be attached with multiple sensing
devices of different types. In the algorithm design, we
assume, for simplification, that a sensor node is equipped
with a single sensing device. However, such design can be
easily extended to accommodate the situation of multiple
sensing devices. In the rest of the paper, we call a sensor node
simply a sensor if not confused with the sensing device.

2.2. Soft Bound for Detection Delay. The detection delay of
an event is a random variable dependent on the arrival time
of the event, the number of sensors covering the event, and
the wakeup schedules of these sensors. It is ideal that the
system provides a hard bound for detection delay, that is,
any detection delay is less than a given value. However, this
compels sensors to wake up at least once in every cycle,
which will cause the serious aforementioned overdetection
problem.

Providing soft bound for event detection is also very valu-
able for users. More specifically, the user specifies a longest

delay (Dp) that is characterized by a cumulative distribution
function (CDEF). For example, it may be desirable for the user
that 30% of events are detected within 1's, 50% are within 2 s
and 80% are within 3 s. Note that this longest delay specified
by the user is actually a random variable. The system should
then ensure that the detection delay (D) at any point is less
than Dy.

Definition 1. Random variable D is less than D,, denoted by
D, < D, if the following condition holds:

FDl(d) = FDz(d)) d> 0, (2)

where D, and D, share the same domain.

To specify the requirement on detection latency, the users
can simply set the CDF of D;. The objective of the system
then becomes to ensure that the detection delay of any event
is less than Dj;. However, we have to address a new critical
issue, that is, how to realize such a soft bound. To address
this, we devise a simple yet effective metric, detectability in
one cycle (DoC).

Definition 2. The DoC of point p (denoted by yp) is the
probability that any event at p is detected, by at least one
sensor, within a single wakeup cycle since its occurrence.

In fact, the DoC of point p characterizes the detection
delay of any event at p, denoted by D,. We derive the CDF
of D, which reveals the essential relationship between x, and
D

p-

Theorem 3. The CDF of D,, is given by

c d—CTC cle
Fp,(d) =1~ (1-y) (1 - ”Xp),

Teycle

(3)
where ¢ = l d J
Teycle
Proof. By definition, the CDF of D, is
Fp,(d) = Pr(D, <d) = 1-Pr(D, > d). (4)

This implies that there is no sensor wakeup in the
duration of d since the emergence of the event. There are
¢ full cycles and an additional length of d — cteye. The
probability that no wakeup happens within one single cycle
is 1 — xp, and that within duration of d — cTeyce is 1 —
Xp(d/(Tcycle -c)). O

2.3. Problem Description. With the introduction of DoC, it
becomes possible to realize the soft bound on detection
latency. First, we determine such a DoC o that the corre-
sponding Dy is less than Dy, that is,

Dy, < Dj. (5)

Second, we let the DoC of any point within the sensing
field meet the following constraint:

Xp = Xo» VpeF (6)



It is apparent that a higher DoC at a point implies a
shorter latency of event detection at this point. Thus, the
derived D, is less than Dy, that is,

D, <Do, VpeF (7)

By combining (5) and (7), we can conclude that

D, <Dy, VpeF (8)

Thus, by guaranteeing that the DoC of any point is larger
than Yo, we are able to ensure that the detection delay of any
event is less than the user’s requirement Dy. Note that a more
rigid requirement on real-time detection needs a higher .
In the following, we derive the expected value of Dy, which
follows a theorem.

Theorem 4. The expected value of Dy is

(2 - XO) Teycle

E(Dy) = 20

)
Proof. The expected delay is 7¢,ce/2 if the event is detected
within the first cycle. If it is detected in the jth cycle, j > 1,
then additional (j — 1)7cyde latency is introduced. Let M
denote the number of full cycles that an event undergoes
before it is detected. The probability mass function (PDF)
of M is given by

k-1
PiM =k =(1-x) x». k=0 (10)

We derive the expected delay by conditioning on M,

9]

_ Teycle
EDo) = %(2 x Pr(M = i))

(2 _XO)Tcycle (11)

2){0

The expected delay is a function of y; and is inversely
proportional to xo. O

The goal of the network is to make sure that any
event e that occurs in the sensing field is detected by the
sensor network with a detection delay, D,, that is statistically
bounded by Dy:

D, < Dy. (12)

At the same time, the sensor network should be as energy
efficient as possible.

3. Analysis of DoC and Detection Delay

In this subsection, we are interested in the nonadaptive
scheme (NAS) in which the wakeup probability of each
sensor is identical, that is, not adaptive to its neighborhood.
To guarantee that the DoC of any point is greater than yo,
NAS simply sets the wakeup probability in each cycle of every
sensor to xo. The problem is that when the density is high, the
actual DoC of a point can be much higher than yo, resulting
in unnecessary waste of energy.
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FiGURE 3: Expected y, as a function of n and y, L = 300m, and
r=10m.

3.1. DoC Analysis. First, we analyze the DoC of any point in
the field of NAS and present it in a theorem.

Theorem 5. With NAS, the expected DoC of any point in the
sensing field is

E(yy) =1-e. (13)

Proof. Let point p be an arbitrary point in the field. Note
that we do not consider the special points on the edge. The
DoC of p is actually a random variable because it relies on
the number of covering sensors and the wakeup probabilities
of the sensors covering p. The number of sensors covering
point p is a random number, denoted by X,,, which is Poison
distributed with the PDF as

nmr?
I

1

Pr<XP = k) = H)\ke_l, where A = (14)

Let y denote the identical wakeup probability. By condition-
ing on X, we have

n

E(xy) = X ((1= (1=p)*) xPr(x, = k)) = 1 -,

k=1
(15)
O

Figure 3 plots the expected value of x, as a function
of n and y. We can find that both increasing density and
increasing the wakeup probability can increase the DoC of
p- When the density is high, even a relatively low wakeup
probability can produce a high DoC close to one. This
strongly suggests that the wakeup probability can be reduced
so that the DoC is close to yo, therefore conserving more
energy.

3.2. Delay Analysis. Next, we consider the detection delay
achieved by NAS.
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Theorem 6. With NAS, the expected detection delay of an
event that happens at any point is given by

1— (1+Ay)e e
+
Ay 1—e

E(D) = ( )Tcycle- (16)

Proof. Let Y, denote the number of sensors being active in a
cycle. We derive the PDF of Y, by conditioning on X,

Pr(Y, =i) = ;)Pr(yp =il X, = j) x Pr(X, = j) a”)

Interestingly, Y, turns out to be Poisson distributed with
rate Ay.

According to the analysis in [6], the expected delay of an
event is given by D, = 7¢yae/Y), if it is detected in the first
cycle. The expectation of D, is given by

E(D,) = i ( Teycle

= k+1

Pr(Y, = k)) (18)

Let N denote the number of full cycles that elapsed before
an event is detected. The PDF of N is

Pr(N =i) = (1-0)"'0, (19)

where 6 is the probability that an event is detected within one
cycle. It is apparent that

=1-Pr(Y =0)=1—-eM. (20)

If an event is detected in the ith cycle, an additional
latency of (i — 1)yl is introduced. Thus, we can compute
the expectation by conditioning on N,

0

E(D) = > ((E(De) + (i = 1)7eyate) X Pr(N = i)

- (21)
B (1 —(1+Ay)e e~V

O

Figure 4 plots the expected delay as a function of wakeup
probability. We have two observations. First, increasing
wakeup probability produces a decreasing delay expectation,
as is obvious in the sense that an event is more likely to be
detected in earlier cycles. Second, expected delays of NAS
are all much smaller than Dy, especially when the density of
sensors is high. This highly suggests that the system should
introduce adaptive control over the wakeup probability such
that each sensor operates more energy efficiently.

4. Probabilistic Wakeup

The design goals of the sensor system are (1) to extend system
lifetime by reducing the duty cycle of every sensor; (2) to
ensure that the detection latency of any event is statistically
bounded by the requirement posed by the users. As discussed

Expected delay (X Teyele)

0 1 1 1 1 1 1
0.3 0.4 0.5 0.6 0.7 0.8 0.9
Wakeup probability (y)
-+ Dy
-~ n = 800
—o— n=1600

FIGURE 4: Expected delay as a function of y, L = 300m, and r =
10 m.

previously, this is to be achieved by ensuring that the DoC
of any point is larger than yo. PAD adopts a probabilistic
approach and solves the overdetection problem by adaptively
tuning wakeup frequency, exploiting the natural dense
deployment.

Following the probabilistic approach, a sensor Q wakes
up in each cycle with probability yg and remains in sleep
mode with probability 1 — ypo. The key issue is clearly
the determination of the wakeup probability. The wakeup
probability should be as small as possible for the power
efficiency purpose. At the same time, however, it ought to
be sufficiently large to guarantee the DoC of location points
within its ambient neighborhood.

An event can arise anywhere in the sensing field, and
it is impossible to predict the arising location of the event.
Thus, we need to consider any location point in the field.
As there are infinite number of points, we divide the whole
sensing field into virtual grids and consider the finite set
of grid points. It is obvious that with division of smaller
grids, we can have more fine-grained guarantee on detection
latency. At the same time, however, a smaller grid size will
introduce more grid points, and thus a higher space and time
complexity will be incurred on each sensor node.

The state transition diagram of the algorithm is depicted
in Figure 5.

4.1. Design of Wakeup Scheduling Algorithm. The algorithm
executes in two phases. In the initialization phase, each
sensor discovers its neighbors. Based on the neighborhood
information, a sensor determines a conservative wakeup
probability. This probability is sufficiently large to guarantee
the DoC of any point, and hence it results in power ineffi-
ciency. In the next phase, in response to energy inefficiency,
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FIGURE 5: State transition diagram of the PAD algorithm.

an iterative optimization procedure is carried out among the
sensors, to further reduce wakeup frequency.

4.1.1. Conservative Initialization. At the beginning, each
sensor tries to find its neighbors within 2r distance from itself
by exchanging HELLO messages with each other. For a given
sensor, a neighbor is a sensing neighbor (distinguished from
a communication neighbor) if its distance to the neighbor is
less than 2r. Every sensor maintains a table for its sensing
neighbors. Upon receiving a HELLO, the sensor records
the sender in the table if the sender is a sensing neighbor;
otherwise, the HELLO is silently dropped.

After the neighbor discovery, the sensors start to compute
its initial wakeup probability by executing the Conserva-
tive Wakeup Determination (CWD) algorithm. The initial
wakeup probability guarantees that the DoC of any point is
greater than yo. Let S(p) denote the set of sensors covering
point p. The DoC of point p is

xp=1- 1 (1-ys).

BeS(p)

(22)

To meet constraint (6), each sensor firstly computes
the necessary probability for every grid point (point level)
within its detection range and then computes the wakeup
probability of the sensor (node level). In CWD, the sensors
covering the same point are supposed to play an equally
important role in detecting events at this point. Take sensor
Q, for example, and its necessary probability for a point p
within its detection range is,

yo(p) =1-1-xo, where k= [S(p)].

To compute its wakeup probability at the node level, Q
takes the maximum out of the wakeup probabilities of all grid

(23)

points within its detection range. Let U(Q) denote the set of
all the grid points within the detection range of Q. Then, the
node-level wakeup probability of Q is

yo = max{yq(p), Vp € U(Q)}. (24)

CWD is conservative since each sensor takes the maxi-
mum as its wakeup probability. The wakeup probability is
sufficiently large for every grid point in its detection range
to have a larger DoC than required. The consequence is that
the DoC of a point may actually be much larger than the
required yo. Such conservativeness incurs unnecessary energy
consumption.

4.1.2. Optimization. It is imperative to further improve the
energy efficiency after the initial selection. Therefore, we
propose a cooperative refinement procedure (CRP) to refine
the wakeup frequency of each sensor node. Following this
procedure, each sensor derives a new wakeup probability
based on the wakeup probabilities of its sensing neighbors.
If the newly computed wakeup probability is smaller, it tries
to adjust its wakeup probability, attempting to reduce its
wakeup frequency. CRP executes round by round. In each
round, a sensor can update its probability at most once.
It is guaranteed that CRP terminates in a finite number of
rounds.

After determining the initial wakeup probability, sensors
exchange their wakeup probabilities by local broadcast. Each
sensor recalculates a feasible wakeup probability based on
the wakeup probabilities of its sensing neighbors. Similar to
CWD, a sensor firstly computes a new wakeup probability
for each grid point. The new feasible wakeup probability for
point p is given by

0, it [] (1-y8)>1-x
BeS(p)-1Q}
(k+1) _
P (p) = 1—xo . (25)
1 I (1= y50)’ otherwise,

BeS(p)-1Q}
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where (k) denotes the number of generation to which the
corresponding wakeup probability belongs.

To compute the new wakeup probability at the node level,
Q also takes the maximal probability among those of all the
grid points within its detection range,

polkth = max{yQ(k“)(p), pe U(Q)}. (26)

If the new probability is smaller than the original one,
the sensor will update the probability to the new one for the
energy efficiency purpose. Thus, any sensor that obtains a
smaller new probability makes an update attempt, trying to
reduce its probability.

Due to the computation dependence, it is critical to
avoid parallel updates. CRP requires that before a sensor can
actually update its wakeup probability, it must broadcast the
new probability to its sensing neighbors and suppress them
from updating simultaneously. An UPDATE message is used
to enclose the ID and the new probability of a sensor. Before
an UPDATE is broadcast, the sensor undergoes a random
backoff to minimize UPDATE transmission collisions. If
a sensor receives an UPDATE from its sensing neighbor
before its own UPDATE is broadcast, it suppresses its
planned UPDATE broadcast and cancels its own update
attempt (if any). However, if a sensor successfully broadcasts
its UPDATE, it commits the update attempt, updating its
wakeup probability.

After successfully broadcasting an UPDATE, in theory,
a sensor would not receive any UPDATE from its sensing
neighbors. However, unreliable wireless transmissions make
it still possible that the sensor receives some. In CRP, a sensor
that has successfully committed its update stays in the lazy
state, where it ignores any UPDATE following its broadcast.
For those sensors that cancelled its update attempt, they
actively listen, receive all the UPDATE from its sensing
neighbors, and update the corresponding wakeup probability
in the locally maintained table.

4.2. Extension for Differentiation. It is sometimes necessary
for some areas to be more carefully monitored, necessitating
detection differentiation. The differentiation can be in either
detection latency or detection degree. When the differentiation
is in detection degree, we modify the definition of DoC to
accommodate the need of higher degrees. Recall that the DoC
of a point is the probability that an event is detected, by
at least one sensor, within one cycle. If a point requires a
degree of two, we define the quadratic DoC of a point as the
probability that an event at this point is detected, by at least
two sensors, within one cycle. A higher degree provides more
robust event detection against sensor failure.

(i) To have a shorter latency for a specific point g, we
can easily set a larger DoC for point ¢, for example,
X0(q). Then all sensors covering g should replace yo
with xo(q) in all previous computations.

(ii) To have a higher degree, more sophisticate modifica-
tions over PAD are necessary, which are elaborated as
follows.

Suppose the degree for grid point q is two, rather than
one. In the process of computing the initial probability,
likewise, the sensors covering g should play an equal role,
therefore having an identical probability, denoted by y. For
differentiation, we term the DoC at g as quadratic DoC,
denoted by ¥,

fa=1- (=) ~k(1=y)""y, wherek=[S(q)].
(27)

Each sensor covering g needs to compute the necessary
initial probability for q. It is difficult to compute the exact
root of (27) since it needs to solve a high-dimensional
equation. Nevertheless, the quadratic DoC monotonously
increases with increasing y. Thus, we can develop a numer-
ical procedure to find a desirable y that is close to the real
root.

In the refinement procedure, a sensor adjusts its wakeup
probability based on the wakeup probabilities of its sensing
neighbors. When the detection degree is two, the formula
(25) should be reformulated as follows:

I-xo—-v .
1-——— ifl—y—v<vw,
y**(q) = vw X
0, otherwise,
where v = 1_[ (1 - )/B(k)>) (28)
BeS(q)-{Q}
e

w = — .
_ (k)
Besq—1q) L T VB

5. Evaluation

In this section, we first introduce the experiment methodol-
ogy and simulation setting. Next, we discuss the evaluation
results.

5.1. Methodology and Simulation Setup. To evaluate the
performance of PAD, we conduct extensive simulation
experiments with a simulator developed for simulating a
low-duty-cycled sensor network. We adopt the data of the
eXtreme Scale Mote [12]. The setting of the key simulation
parameters is shown in Table 2, if not specified elsewhere.
A sensor is usually powered by two AA batteries, which can
typically provide about 2 x 10*] energy. In our simulations,
however, the initial energy for every sensor is set to 50]
to reduce lengthy simulations. The results presented in this
section are averaged over 20 independent experiments with
different sensor deployments.

We compare the performance of PAD with NAS and
the upper theoretical bound in terms of system lifetime
extension. We define the hard lifetime as the time from the
starting time to the time instant when the DoC of any point
within the field drops below yo. We define a-lifetime as
the time until less than a% area of the field can meet the
DoC requirement. The hard lifetime is highly subject to the
influence of irregular deployment. To address this issue and
study the energy conservation ability of PAD, soft lifetime is
more suitable, which is less sensitive to sensor deployment.
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TaBLE 2: Simulation setting.
Parameter Value Parameter Value
R 30m L 300 m
r 10m & 50]
Ps 19.4 mW Teycle 10s
pr 20 mW Ton 0.5s
PR 24 mW n 2700
) 0.01 X0 0.8
Q
o
a .
0.4 E
0.2 . . \ R
0
0 2 4 6 8 10
Time x10*

F1GURE 6: DoC over time.

It is difficult to derive the tight bound of the hard system
lifetime. We give an optimistic upper bound of the lifetime.
Let pp, ps, and pr denote the power rates of the processor,
the sensing device, and the transceiver, respectively. A point
in the field is covered by A sensors. Ideally, these sensors
share the same wakeup probability, which is 1 — (1 — o) 1/A.
Thus, the actual power consumption rate of the sensor unit
is psTon(1 — T = x0)/Teyde- The upper bound of the hard
lifetime can be computed accordingly,

— ¢
J = >
" prp+psd +prlp+ )

(1 i)

Teycle

(29)
where §" =

5.2. Typical Run. The first set of experiments investigates the
performance of PAD in a typical run. Figure 6 reports DoCs
of events over time. Each point in the figure represents the
DoC of a random point. The exponentially weighted moving
average of DoC is also shown using a solid curve. We can see
that PAD successfully guarantees that the DoC of any point is
larger than 0.8 before 4 x 10*s. After that time, some region
becomes uncovered because of sensor depletion. Beyond the
time 4 X 10%*s, the DoC in some area falls below 0.8. This
results in the factor that different areas in the sensing field
have different numbers of covering sensors.

International Journal of Distributed Sensor Networks

x10*

Hard lifetime (s)

1000 1500 2000 2500 3000 3500

Number of sensors

— Theoretical bound
-A- PAD
-0- NAS

Ficure 7: Hard lifetime versus number of sensors.

5.3. Lifetime Extension. The second set of experiments
investigates lifetime extension of the algorithm, in com-
parison to NAS and the theoretical bound. We vary the
number of sensors to study lifetime extension under different
density configurations. As we can see in Figure 7, the hard
lifetime of the upper bound increases proportionally with
the increasing number of sensors. We can see that PAD
extends the hard lifetime remarkably, compared with NAS.
With the increasing number of sensors, the lifetime extension
becomes more significant. This demonstrates that PAD can
effectively exploit high sensor density. NAS fails to extend
system lifetime even if the sensor density becomes higher.
It is because with NAS every sensor wakes up blindly with
probability xo in each cycle. In Figure 8, we show the soft
lifetime of PAD and NAS. As we can see, the soft lifetime
significantly increases with the increasing number of sensors.
For NAS, however, the soft lifetimes for different « remain
the same. In addition, the increasing density does not lead to
a longer system lifetime.

5.4. Detection Delay. In the third set of experiments, we
explore detection delay for different schemes. Figure 9
reports the average detection delay under different sensor
densities. We can see that the average delay achieved by
PAD is below the bound but larger than that of NAS. PAD
effectively reduces wakeup probability of the sensors and
consequently increases detection delay. In contrast, in NAS,
each sensor has the same wakeup probability. A point is
covered by more sensors when the density increases. This
suggests that detection delay decreases. It is worth noting that
with increasing density, PAD’s detection delay decreases, but
the decrease is much slower than NAS.

5.5. Algorithm Convergence. In this set of experiments, we
explore the convergence by investigating the number of
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FIGURE 9: Detection delay versus number of sensors.

requesting sensors (the sensors that try to update wakeup
frequency) in each round over time. The PAD algorithm
converges when there are no more requesting sensors.
Figure 10 illustrates the number of requesting sensors over
time. We can see that the number of requesting sensors in a
round decreases as time elapses. There is no more requesting
sensor, and the refinement procedure terminates when the
time reaches 28 s. This shows that the refinement procedure
of PAD is able to quickly converge and starts functioning
soon after the deployment of the sensor network.
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F1cURe 10: Number of requesting sensors over time.

0.8

o
o
o

o
o

Average number of messages
(=}
~

e
w
&

0.5 1 1 1 1 1 1
1000 1500 2000 2500 3000 3500

Number of sensors

FiGure 11: Number of messages per sensor versus number of
Sensors.

5.6. Overhead. We also study communication overhead
introduced by the PAD algorithm. Figure 11 shows the
number of algorithm messages per sensor under different
configurations with varying number of deployed sensor
nodes. We can see that the average number is below
0.9 messages per sensor. More interestingly, the number
of algorithm messages per sensor is decreasing when the
number of sensors is increasing. This shows that increasing
density does not incur higher overhead per sensor. Such
communication complexity is affordable for sensors, and
hence PAD is scalable with respect to sensor density.

6. Related Work

It has been an effective approach for conserving power of
sensor nodes with duty cycling [6, 12, 13, 18-22]. Many
methods have been proposed in the literature. Armstrong
made a good survey on energy-conserving methodologies
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[23]. A lot of power-scheduling algorithms [18] are aimed
to extend network lifetime via scheduling sleep/active states
of sensors. Asynchronous wakeup scheduling [10] is superior
since it is not dependent on time synchronization. However,
it introduces additional packet delivery delay. On the MAC
layer, the low-duty cycling of the radio transceiver can be
employed to reduce energy consumption of the senor node
[24-26].

For object tracking applications, when the sensor nodes
are duty cycled, energy-quality tradeoffs are intrinsic [2, 4].
Probabilistic coverage in sensor networks has been studied
in the context of object tracking [27]. In [28], the authors
deployed a test of 70 sensors to track positions of mobile
vehicles. In the testbed, only 5% of sensor nodes were kept
active, and the rest of the senor nodes operated at a very low-
duty cycle (4%). Under this configuration, the network was
still capable for tracking vehicles.

Maintenance of full sensing coverage has been of sig-
nificant importance for many sensor network applications.
Several algorithms have been proposed to select a small
subset of the sensor nodes to stay active to maintain full
coverage and turn off the rest sensor nodes for energy
conservation. PEAS [10] makes use of a heuristic that when
a sensor is active its neighborhood sensors can go to sleep.
Each sensor periodically sends probe signals based on which
neighbor sensors can decide to sleep or not. Yan et al. [9]
identifies a redundant sensor node whose sensing coverage is
jointly covered by its active neighbors. In [29], random and
coordinated algorithms have been studied for maintaining
the network coverage of a sensor network in which sensor
nodes are low duty cycled.

Gupta et al. [30] proposed a randomized algorithm to
determine an active schedule of the sensors. At any time,
the set of currently active sensors guarantee to provide
full sensing coverage. Some other effort [8] considers both
sensing coverage and network connectivity. These algorithms
provide full sensing coverage and meanwhile maintain
network connectivity.

Shakkottai et al. [31] studied the coverage of a sensor
network where the sensor nodes are not reliable. In [30],
the sensors were divided into several groups and algorithms
were developed to maximize the sum of sensing coverage.
Event detection using low-duty-cycled sensors has also been
discussed [12, 13]. In [13], the authors propose a two-stage
optimization algorithm to minimize detection latency. A
node platform eXtreme Scale Mote [12] was designed for
long-lived operations detecting ephemeral events.

Some existing works focus on detecting complex events
[3, 32, 33]. In these works, an event may span a certain
region. The occurrence of an event must meet a certain
requirement on its boundary. Thus, contour mapping
becomes an important operation for event detection in
sensor networks. A few effective distributed algorithms [3,
32, 33] have been proposed for event detection based on
contour mapping.

In this work we focus on providing soft detection
bound for event detection in sensor network. The unique
contribution of this work is twofolds. First, we propose a
novel soft bound model for delay tolerance specification
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by users or applications. Second, we propose a distributed
wakeup scheduling algorithm that ensures the detection
delay of any event in the sensing field to be statistically
bounded. Thus, this work is complementary to existing
works for event detection. Some preliminary results of this
work have been published in [22].

7. Conclusion

In this paper, we have investigated the probabilistic approach
to distributed event detection in sensor networks. We
empower the users to define the requirement on desirable
detection latency of event detection. The system guarantees
that the detection latency of any event is statistically bounded
by the latency requirement by the users. The probabilistic
paradigm allows each sensor to tune its wakeup frequency
and hence minimize its power dissipation. It also finely
solves the overdetection problem. The developed algorithm
is completely distributed, being scalable up with increasing
network scale and sensor deployment density. In addition,
it supports fine-grained differentiation of event detection
throughout the sensing field. Comprehensive simulation
experiments demonstrate that the algorithm remarkably
prolongs the functional network lifetime and introduces
minimal communication overhead.
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