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Wireless sensor networks (WSNs) are widely used in detecting, locating, and tracking moving objects. The cheap, low-powered,
and energy-limited sensors that are set up in large areas may consume large portion of energy and disable the whole network. In
this paper, a new energy-efficient method based on Distributed Incremental Gene Expression Programming (DI-GEP) is proposed
to collaboratively mine moving patterns of moving targets in order to turn on/off some sensor nodes at certain time to save
energy further. Meanwhile, an adjustable sliding window is designed to quickly train the latest collected location data in order to
improve the efficiency of DI-GEP. The simulation results show that the proposed method effectively prolongs the network lifetime

by around 25% compared with the EKF and ECPA.

1. Introduction

Recent advances in low-power micro-electro-mechanical
system (MEMS) technology, wireless communications, and
digital electronics have made it possible to design and de-
velop highly integrated, yet low-cost, low-power, multifunc-
tional microsensor nodes, with the capabilities of sensing,
processing, and wireless communications. Once deployed
in a certain region, the wireless sensor networks (WSN),
composed of thousands of sensor nodes, can work for several
years. Through cooperative processing of these sensor nodes,
WSNs work in many areas, for example, civil, military,
health, and so on. For example, WSNs can be deployed in
a hospital to track and monitor patients to remotely collect
the physiological data of a patient continuously. Unlike
traditional networks, WSNs are self-organized, application
specific, and data centric [1].

A wireless sensor node is typically battery operated.
Thus, the most important constraint in WSNs is the low
energy consumption requirement among their sensor nodes.
Sensor nodes carry limited, generally irreplaceable, battery-
power sources. So, WSNs must focus primarily on power
conservation and provide inbuilt trade-off mechanisms that
give end users the chance of prolonging network lifetime at

the cost of high quality of service (QoS). Sensor nodes may
fail due to energy depletion and lead to network failure. So
it is very important for WSN to operate energy efficiently.
Raising research interest promotes us to develop energy-
efficient protocols or algorithms for WSNs.

Target tracking is an important application in terms of
WSNs [2]. Bayesian Network and Kalman filtering are two
classical methods for achieving this task. One possible so-
lution is as follows. The system state includes the position,
direction, and velocity of the target. At each step, sensors
near to the target form clusters and select a leader to perform
the Kalman filtering, and the updated state is forwarded
to cluster leaders chosen from the next step. The Kalman
filtering implementation is straightforward in a centralized
environment. But it is difficult in the extremely distributed
environments such as WSNs due to the energy constraints
and lower computation capability of sensor nodes.

The target tracking applications in WSNs are always
limited by the inherent energy constraints of sensor nodes,
aiming to improve the energy efficiency in target tracking
applications in WSNs; the paper proposes a new scheme
based on Gene Expression Programming (GEP) [3]. GEP is
also adapted to fit for distributed environment. GEP works
well in modeling the moving patterns of targets without



aprior knowledge. Based on the historical location informa-
tion of the target, GEP automatically evolves a trajectory of a
moving object. To handle the problem, this paper makes the
following contributions.

(1) A new algorithm named Distributed Incremental
Gene Expression Programming (DI-GEP) is pro-
posed to mine moving patterns of targets. The basic
idea is that DI-GEP runs at multiple collaboratively
working sensor nodes to mine the trajectory of a
target.

(2) An adjustable sliding window is adopted to ensure
that distributed GEP can quickly train the latest
collected location data. When new location data
are received, old location data are discarded when
prediction error exceeds a certain threshold, which
is defined and can be calculated by (7). The policy
ensures that succeeding evolutions can energy effi-
ciently find latest moving patterns.

(3) Extensive simulations are conducted on OMNet++, a
discrete event simulator, to show that new algorithms
effectively prolong the network lifetime by about 25%
in average when compared to other algorithms, that
is, EKF and ECPA.

The rest of the paper is organized as follows. Section 2
presents the related work on energy-saving algorithms.
Section 3 gives the preliminaries including GEP-related and
target tracking. Section4 introduces the target diction
model. Section 5 formally defines the problems. Section 6
proposes the main algorithms in our scheme. Section 7 gives
the experimental analysis. Section 8 concludes this paper and
gives the future research directions.

2. Related Work

There are many research efforts on target detection and
tracking in terms of WSNs, which describes several aspects
of collaborative signal processing [2, 4, 5] and real-time
application for biologists to find the presence of individuals
[6]. A set of approaches presented in [7-9] were proposed
recently to solve the target localization and tracking problem
with proximity binary sensors, which transmit only one bit
information to indicate whether a target is present. The
information transmitted among sensor nodes was greatly
reduced, while the localization error was increased. Shrivas-
tava et al. [8] proved that the accuracy in tracking a target is
of the order of p R, where R is the sensing radius and p is the
sensor density, which articulates the common intuition that,
for a fixed sensing radius, the accuracy improves linearly with
an increasing sensor density, which shows that, for a fixed
number of sensors, the accuracy improves linearly with an
increase in the sensing radius. Dai et al. present a light weight
target tracking method based on densely distributed sensor
networks [10, 11] and also propose a new node deployment
policy for target tracing applications in WSNs [12] to further
improve target tracking performance and quality including
accuracy, network lifetime, energy consumption level, trends
analysis, and so forth.
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The lifetime of a WSN depends greatly on power con-
sumption from each sensor node. Energy-efficient algo-
rithms, protocols, and node hardware and software designing
technologies can help prolong the lifetime of the network.
Several approaches have been proposed at hardware and
software levels to design energy efficient CPU, OS, algo-
rithms, and communication protocols [1]. Dynamic power
management (DPM) schemes have been proposed in [13-15]
to reduce the power consumption by selectively turning off
idle components, such as radio frequency (RF) transmitter,
RF receiver, sensing device, A/D converter, and the sensor
node.

Target tracking applications are special and have their
own characteristics. It is unnecessary to turn on all sensor
nodes because an object only appears at certain time and
place. It is feasible to turn off some idle nodes if we can pre-
dict the time and place where the object will appear. Classical
target tracking algorithms such as Bayesian Network and
Kalman filtering cannot be directly used to predict moving
patterns of targets in WSN's due to resource limitations.

To track moving targets energy efficiently, Allegretti et al.
[16] proposed a solution based on CA (Cellular Automata) to
reduce long distance communications among nodes because
of its locally data exchanging scheme, but a higher power
consumption is introduced because it cannot turn off those
nodes that are far away from the moving object. Qing et
al. [17] proposed ECPA (Enhanced Closest Point Approach)
to predict the location of targets during the phase of
moving, but the velocity and direction calculation algorithms
with regard to the targets are computation intensive for
sensor nodes, which often have low power and computation
capability.

3. Preliminary

3.1. Introduction of Gene Expression Programming. Gene
Expression Programming (GEP) was proposed by Ferreira in
2006 [3]. As a new member of Evolutionary Algorithm (EA)
family, GEP is widely applied in data mining areas, that is,
function finding, classification, association rule mining, time
series prediction, parameter optimization, and digital circuit
design, and so forth. In GEP, Genotype (Chromosome) and
Phenotype (Expression Tree (ET)) are separated. Without
prior knowledge, GEP automatically evolves over training
data and discovers knowledge as mathematical formula
depicting movement patterns of moving objects in WSNs.

In GEP, an individual, that is, a solution corresponding to
a problem, is represented as linear fixed-length string named
chromosome. It contains one or more genes. Each gene is
decoded into a nonlinear expression tree (ET). Decoded ETs
are linked together by prespecified linking function symbols
such as plus (+) and minus (—). One chromosome represents
one formula that is, the solution to a specific problem.
Genetic operations are applied on chromosomes, that is,
genotype and selection operations are performed on ETs.

A gene in GEP consists of head and tail. The head
contains symbols from either function symbol set (F) or
terminal symbol set (T') and the tail only contains symbols
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FiGure 1: Individual representation in GEP: 2-gene chromosome, 2 expression trees, and corresponding one mathematical expression.

from terminal symbol set. The tail length satisfies (1), which
guarantees that a gene can be decoded into a valid ET

t=hn—1)+1. (1

In (1), n is the maximum parametric number of function
in F, h is head length, and ¢ is tail length. Example 1 below
shows a 2-gene chromosome in GEP and its ETs.

Example 1. Let C; be a chromosome with 2 genes in GEP. Let
{Q, *, /, —, +} be the function set F, and T = {a, b} the
terminal set, n = 2. If head length is 6, then tail length is 7 by
(1). The length of gene is 13 (the sum of head length and tail
length). Figure 1 shows the 2-gene chromosome, two sub-
ETs, which are linked by the linking function “plus,” denoted

s “+” and the mathematical function obtained from the
linked expression tree.

3.2. Target Tracking in WSNs. There are several target track-
ing methods that adopt distinct models. Kalman filtering
method requires that the velocity, direction, and acceleration
of a moving object are given to predict the next location of a
moving object. But it is impossible for WSNs to equip each
node with these devices due to its lower cost and lower power
supply. It is critically important to design energy-efficient
target tracking algorithms for WSNGs.

The tracking model is described in Figure 2. The moni-
tored region is covered with sensor nodes that are distributed
manually or randomly. A target moves along a trajectory that
is unknown before and is detected by some sensor nodes
that are depicted as black solid circle nodes. Suppose that the
location data the moving object passed are known at time
to, t1, t2, . .., ti. A question arises: where will it appear at time
tivls tigas...?

Once the trajectory of a moving object is found and
expressed as a mathematical function, then the following
tasks are straightforward.

(i) Predicting the locations that the moving object will
appear at time iy, tiz2,....

(ii) Activating the necessary sensor nodes and turning off
unrelated sensors to save energy.

Target-tracking applications need careful consideration of
trade-off between tracking error and energy consumption.
The tracking error is defined by the average target location
estimation error of sensor nodes. The better trajectory leads
to a better target location estimation.

To achieve the above goals, we propose three policies.

(1) DI-GEP, that is, a trajectory discovery algorithm
based on distributed incremental gene expression
programming. It mines the trajectory in order to
reduce tracking errors.
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FIGURE 2: Target tracking model.

(2) Node scheduling algorithm. It activates the necessary
nodes and turn off unrelated sensors at certain time
in future to save energy.

(3) Sliding window strategy is used to improve perfor-
mance of DI-GEP.

The experiments in Section 7 will demonstrate the effective-
ness and efficiency of proposed methods.

4, Target Detection Model

Sensor nodes receive the physical signal and convert it to
electrical signal. Based on the variation of electrical signal,
sensors can detect the existence of target.

To describe the model formally, we make the following
three assumptions.

Ap: There are N sensors s; € S distributed randomly or
manually across the monitored areas, where S is the
set of all sensors. Each sensor detects targets by its
reading x;, where i = 1,2,...,N.

Aj: There is a single target anytime.
Note that, by Assumption (A;), a present target is
depicted by (H;), and an absent target is represented
by (Hp). The criterion is based on the following
formulations [18]:

Ho L X = ny, (2)

lexi:wi+ni,

where w; is the obtained signal by sensor s;. Several
physical signals such as sound and electromagnetic
wave have signal strength decaying according to the
power law, and the noise is represented by #;.

As (borrowed from [19]): Le w; is the power emitted by
target

Wi, di < dO)
Wi = Lk: di = d(), (3)
(di/dy)

where dj is determined by the target shape and size
which is set to be small enough and satisfies d; > d,
where d; is the distance between the target and sensor
node x; and k is the decaying factor which is set
to 2-5 according to different physical signals and its
environment.

This study adopts a practical target detection model
shown in Figure 3, which satisfies

1, di <1
di\*
pi = <4> , r<d;<ry, (4)
To
0> di > Ty,

where 7; is the lower bound (LB) of sensing range, p; is the
probability of a target detected by the sensor node s;, and r,,
is the upper bound (UB) sensing range.

5. Problem Formulation

A trajectory of a moving object is treated as a sequence of
time-stamped locations that are collected by sensor nodes
around the target. It is described as follows.

Definition 2 (Trajectory). A trajectory of a moving object is
a time sequence with time interval At:

P(t) = [X(t)) Y(t)] = {(xO)yO)) (xl)yl)""’(xmyn)}’ (5)
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FIGURE 3: Target detection model.

where for all i € [0,n], t; < ti1, tisn = b + At (x5, yi) 1s
2D points that represent locations of the target appeared at
time t; and x(t;) = x;, y(t;) = yi, P(i) = [xi, yi]. At is used
to sample the locations collected by sensors to improve our
algorithms energy efficiency as well as performance. Because
the location data may be of large scale, which will put great
burden on sensors and exhausts a great of energy because of
huge amount of computations and communications.

P(t) describes a varying kinds of trajectories, that is, line
segments, quadric curves, cubic curves, and splines. Once
P(t) is obtained, it is easy to achieve single-step or multiple-
step location predictions.

P(t) can be obtained by trajectory mining algorithm.
In terms of target tracking applications, there are several
unnecessary historical location data during evolving process
in distributed GEP. To deal with this problem, we adopt a
sliding window prediction method (SWP) to load the latest
historical data to train trajectories. The basic idea of SWP is
given below.

Given the historical location data P(0),P(1),...,P(n)
with length n + 1. The sliding window size is denoted as
h(h<n+1).

(a) Find a formula P(t) = [f(t),g(t)] from h samples
and predict the location at time instant m, (m > n—1)
by (6). Example 3 illustrates the phases of evolutions
of trajectories.

B(m) = [X(m), Y(m)] = [f(tw)g(tw)].  (6)

(b) During evolving process, the size of sliding window
h determines how many historical location data are
used. The smaller & leads to less energy consump-
tion and faster convergence speed. h is adjusted
based on the location prediction error ¢, geometric
distance between the prediction value and the real
measurement. ¢ should be as small as possible and is
calculated by

e =JG0m) - x(m)* + G(m) — y(m)®.  (7)

5
TaBLE 1: Location data obtained.
ti X Yy
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2 3 11
3 4 19
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FIGURE 4: An example of a tracking trajectory.

In target-tracking applications, the trade-off between
the energy consumption and the prediction accu-
racy is balanced by adjusting ¢ to satisfy differ-
ent application requirements. In densely distributed
sensor networks, tracking-tolerant environment or
fast response time tracking areas, ¢ can be set to a
bigger value to save energy. But, in some areas with
higher tracking accuracy with slow moving targets
environment, ¢ can be set to a smaller one. In sum,
€ cannot be set to zero since the estimated trajectory
would always deviate from the actual path targets
passed.

Example 3. The historical locations are listed in Table 1.

Thus, f may be P(t) = [t + 1, £* + 3t + 0.5], P(t) =
[t+2, t2+2t+ 1] or even perfect approximation P(t) = [t +
1, t>+3t+ 1] given in Figure 4. All these approximations are
suitable in environments with different prediction accuracy
requirements.

6. DI-GEP Scheme

6.1. Fitness Evaluation of Individual. In evolutionary com-
putations, fitness functions and selection environments are
the two very important faces of fitness and are, therefore,
intricately connected. When we speak of the fitness of
an individual, on the one hand, it is always relative to a
particular environment and, on the other, it is also relative
to the measure (the fitness function) we are using to evaluate
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them. Consequently, the success of a problem not only de-
pends on the way the fitness function is designed but also on
the quality of the selection environment [3].

Create individuals of initial population on
each scheduled sensor node

Combining the fitness evaluation and prediction error, 1
DI-GEP calculates the fitness of each individual in distinct
populations by Express individuals by ETs
h
1
E; = ZZ(SIZ), (8) l
j=1

Evaluate individuals

where ¢; is the evaluation error of the ith location data and E;
is the fitness value of the ith individual.

Sending signal to other

Iterate or stop

nodes
6.2. Trajectory Mining Algorithm. The main steps of trajec-
tory search algorithms are given below. Iterate l
(1) Sensor nodes are activated based on the node sched- Selection End
uling algorithm.

(2) Communications occur among sensor nodes when
one node succeeds in obtaining a trajectory and noti-
fies other nodes.

Reproduction operation such as
. . . replication, mutation, transposition,
(3) Other nodes stop running their algorithms and ob- and recombination
tain the trajectory to predict future location of the

moving object.

Figure 5 details the flowchart of DI-GEP.
DI-GEP stops if one of these stopping criteria is satisfied.

Individuals of next generation

(1) The maximum number of generations is reached.
(2) DI-GEP exceeds the specified runtime.

(3) One or more other nodes send stopping signal to the
node.

Ficure 5: The workflow of distributed GEP.

Input: settings and historic location data
Output: one individual representing a trajectory
or null if no trajectory is foun
(1) load historic location data of size h and initial
configuration

(4) The node succeeds in obtaining a trajectory.

The implementation of DI-GEP is described in Algorithm 1.

It mines a trajectory represented as individual in DI-GEP.

6.3. Location Prediction and Node Scheduling. Once a trajec-
tory is found, the model uses it to predict the location where
the target will appear as at time f;;; by (6), where 0 < j < L
and L is the prediction length that is used in single-step or
multistep predictions.

To reduce computational cost, we do not use a circle
but a square to select nodes around P(t:11). If sensor node
sk(xk, yi) satisfies (9), then it should be selected and activated

(2) randomly create an initial population

E.’); decode each chromosome into one ET

4) calculate each chromosome’s fitness by (8).

(5) while (stopping criteria are not satisfied) {

(6) select individuals, generate next generation

(7)  apply genetic operations sequentially on
the new generation

(8) decode each chromosome into ET.

E% calculate each chromosome’s fitness

1 1; return an individual with best fitness.

ArcoriTHM I: Distributed GEP trajectory mining.

at time t;;; to detect the target

f(ti+j) — 10 SXka(tiJrj)‘f'ro, 0<] <L,

. ) (1) Trajectory is described as a curve. Any complex curve
g (ti+1> “T=Yk=§ (t”f) tro, 0<j=<L can be spitted into multiple simpler curves that are
described as line segments, quadric curves, or cubic
curves. This method can not only ensure the flexibil-
ity of modeling the trajectory but also guarantee less

computation cost.

The node scheduling algorithm is given in Algorithm 2.

6.4. Incremental Evolution Strategy. In real-world practice, a
trajectory of a target is very complex and variable. Thus, to
improve the performance of DI-GEP, the key steps of our
policy are as follows.

(2) To capture the variation of a trajectory and accel-
erate the evolving process, sliding window policy is
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Input: functions P(t) found in Algorithm 1 and
prediction length L.

Output: activated sensor nodes

(1)  for (k = 0;k < Lyk + +){

(2) for each (sensor node s;(x;, y;) in WSN) {

(3) if (f(tike1) — R < xjand x; < f(tirn) +R

(4) and g(tike1) — R< yjand y; < g(tiker) +R)
(5) S; is scheduled awake at t;,511

(6) else

(7) Si is scheduled asleep at t;,141

(8) 1}

ArgoriTHM 2: Node scheduling.

ti tj t

F1GURE 6: Sliding window.

proposed to keep a certain number of latest historical
data during individual evolving.

(3) When the obtained function cannot represent the
current moving behaviors, that is, the prediction
error is greater than a certain threshold; distributed
GEP and the node scheduling algorithm should run
again with location data in sliding window.

We assume that a trajectory function P(t) is obtained
through historical location data sampled at t;, ¢;_1,..., ti—p—1.
These data fall in the sliding window w; described in
Figure 6.

P(t) works well in predicting the future location during
the time interval [£;11,¢ 1], that is, & < 7. Suppose that at
time ¢;, P(t) does not work well because ¢ > 7, the trajectory
should be recalculated as follows.

(1) The sliding window moves to w;, to include the latest
location data. The process can be simplified by w;
sliding right when prediction is performed to reduce
memory usage.

(2) DI-GEP and the node scheduling algorithm run
again.

The performance of these algorithms is evaluated on OMNet
++ and Castalia.

In order to compare the performance with other tar-
get tracking algorithms, we evaluate DI-GEP, ECPA, and
extended Kalman filtering (EKF). The target cannot be
found until the network fails, and the tracking task stops
simultaneously.

7
TaBLE 2: Parameters setting in DI-GEP.

Parameters values
Function set {+ - %,/}
Basic terminal set {t}
Number of generations 1000
Population size 100
Head length 7
Mutation rate 0.044
Inversion rate 0.1
IS rate 0.1
RIS rate 0.1
Length of insertion sequence {1,2,3}
One-point recombination rate 0.3
Two-point recombination rate 0.3
Gene recombination rate 0.1

7. Experiments

7.1. Sensor Networks Setting. Suppose that hundreds of sen-
sor nodes are uniformly distributed in a square of 100 x 100
meters. A target can present at a random place in the WSNs
and sends signal with the strength of w;. The signal decays
according to (3), with parameters dy = 0.15 and w; = 15d;*.
The prediction accuracy 7 is 2 meters and h = 7.

The sensing range r, of sensor nodes is set to 7 and r; is
set to 10. The sensing energy e; is 100 uJ, and transmission
(receiving and sending) energy for one packet is e, = e, =
100uJ. The initial energy of each sensor node is 100 m].
Parameters used in distributed GEP are listed in Table 2.

7.2. Network Lifetime. Suppose that different number of sen-
sor nodes are uniformly distributed in the grid network,
this experiment analyses the impact of the number of sensor
nodes on the network lifetime. The results are given in
Figure 7. It shows that the three algorithms often obtain
longer network lifetime when the number of sensor nodes
gets bigger. The network lifetime of DI-GEP is averagely 35%
longer than EKF and ECPA.

7.3. Energy Consumption. In this experiment, four hundred
sensor nodes are used to monitor the grid network. The
sensor nodes are manually distributed at cross points in the
grid network.

This experiment analyzes the energy consumption of
three algorithms. The results are given in Figure 8. The
results show that the total left energy decreases when the
time passes. The total left energy cannot be zero because all
these algorithms are invalid when the network fails. Note
that, some sensor nodes consume their energy and cannot
communicate with other nodes any more. Meanwhile, DI-
GEP performs better than EKF and ECPA. This is because it
consumes less energy than EKF and ECPA after running the
same time.
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FIGURE 8: Energy consumption and time elapsed.

7.4. Active Nodes. This experiment uses the similar setting as
given in the previous section and testifies the influence of the
number of the active nodes as shown in Figure 9. DI-GEP
outperforms EKF and ECPA in node scheduling because of
its better trajectory prediction, so the number of active nodes
in DI-GEP is about 25, 30% less than that in EKF and ECPA,
separately.

7.5. Prediction Accuracy. This experiment uses the same
setting as given in previous section and will testify that
the prediction accuracy can heavily affect the network
lifetime. The results are shown in Figure 10. Distributed GEP
outperforms EKF and ECPA because of its better trajectory
prediction, so at the same prediction accuracy, the network
lifetime is averagely 28% longer than that in EKF and ECPA.
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8. Conclusions

In order to track targets energy-efficiently in WSNs, we
presented a distributed incremental algorithm based on GEP
for target tracking applications in WSNs, proposed sliding
window policy for distributed GEP to improve evolution
process, proposed a new target tracking model, and give
extensive experimental results to show the good performance
of our method.

The future work includes (a) optimize DI-GEP to capture
abrupt moving behaviors, (b) optimize DI-GEP to suit
randomly distributed wireless sensor networks, and (c)
consider border intrusion detection to save more energy in
the initial state.
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