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Optimal sensor placement (OSP) technique plays a key role in the structural health monitoring (SHM) of large-scale civil
infrastructures. This paper outlines an overview of current research and development in the field of OSP problems in a perspective
of both researchers and engineers. The paper begins with a definition of the model of sensor placement and provides the basic
issues covering relevant methodologies. The primary evaluation criteria and main sensor placement methods are then discussed in
details. Following that, the linkage between several influential sensor placement methods is described. Finally, existing problems
and promising research efforts in the OSP problem of civil SHM are discussed.

1. Introduction

Today, there are many more large-scale civil infrastructures
than in the past. These structures are susceptible to random
vibrations in its long service period; whether it is from
changes in temperature, severe wind gusts, torrential rain,
strong earthquake tremors, or abnormal loads such as
explosions [1–3]. The coupling effects between these natural
or man-made factors make the problem even more compli-
cated. Although the routine visual inspection is effective in
some cases, its effectiveness in finding the possible defects
in time is questionable. Therefore, it is imperative that a
continuous structural health monitoring (SHM) system be
developed. The SHM systems are generally envisaged to [4]:
(i) validate the design assumptions and parameters with
the potential benefits of improving design specifications and
guidelines for future similar structures; (ii) detect anomalies
in loading and response, and possible damage/deterioration
at an early stage to ensure the structural and operational
safety; (iii) provide the real-time information for the safety
assessment immediately after disasters and extreme events;
(iv) provide the evidence and instruction for planning and
prioritizing the structural inspection, rehabilitation, mainte-
nance, and repair; (v) monitor the repair and reconstruction

with the view of evaluating the effectiveness of maintenance,
retrofit and repair work; (vi) obtain the massive amount
of in situ data for the leadingedge research in structure
engineering, such as wind- and earthquake-resistant designs,
novel structural types, and smart material applications.

A typical SHM system includes three major components:
a sensor system, a data processing system (including the
data acquisition, transmission, and storage), and a health
evaluation system [5]. The sensors utilized in the SHM are
required to monitor not only the structural status including
stress, displacement, acceleration, but also those influential
environmental parameters, such as wind speed, temperature,
humidity, soil condition of its foundation. Generally, the
more locations of sensors placed on a structure are, the more
detailed information of the structure could be obtained. In
addition, advances in sensing technology have also enabled
the use of large numbers of sensors for the SHM. However,
high costs of data acquisition systems (including develop-
ment, purchase and maintenance costs for the sensors, as
well as resource and communication costs) and accessibility
limitations constrain in many cases the wide distribution of
a large number of sensors on a structure. Especially, many
structures have to be tested under operational conditions,
in which the sensors are not easily amenable to be removed
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or changed. In such cases, a practical question that naturally
arises is how to select a set with a minimum number of sensor
locations from all possibilities, such that the data collected
can provide adequate information for the identification of
the structural behavior. Otherwise, incomplete structural
and environmental characteristics may be measured and an
accurate SHM assessment will be impossible. Generally, the
design of a sensor network for the SHM system excepts
identifying the rational number and location of sensors in
order to fulfill specified performance requirements within a
set of system constraints. Another area of interest is sensor
network robustness, which aims at maintaining the stability
of the sensor network when some sensors malfunction [6].
The development and implementation of various kinds of
sensor placement methods capable of fully achieving the
above objectives and benefit are still challenging at present,
and need well-coordinated interdisciplinary research for
full adaptation of innovative technologies developed in
other disciplines to applications in the civil engineering
community. Actually, the optimal sensor placement (OSP)
has been a subject of important international research in
recent years. The research in this subject covers sensing,
structural dynamics, information technology, optimization
theory, and so forth [7, 8]. The current challenges for the
OSP method are being identified as intelligent and efficient
algorithms, evaluation criteria for different sensor placement
methods, inherent relationship between different sensor
placement methods, and uncertainty, sensitivity, reliability,
and redundancy in sensor networks, and so forth.

In this paper, a brief overview of the OSP problem is
given in Section 2; a detailed discussion of current status
of evaluation criteria and sensor placement methods are
provided in Sections 3 and 4, respectively; the comparison of
several influential sensor placement methods is described in
Section 5, and the concluding remarks are given in Section 6.
This paper is not intended to be encompassing in terms of
directly comparing the various techniques against each other
and assessing their performance. Rather, the review is based
on categorizing salient features of these approaches and the
desirability of certain features when they are applied to SHM
systems.

2. Objective of Sensor Placement for
SHM System

The OSP issue is important in cases where the properties of a
structure, described in terms of continuous functions, need
to be identified using discrete sensor information. Thus, the
sensor placement optimization is a kind of combinatorial
optimization problem that can be generalized as “given a
set of n candidate locations, find m locations, where m <
n, which may provide the best possible performance.” The
number of all distinct sensor configurations involving m
sensors is given by the expression

C = n!
m!(n−m)!

. (1)

For a structure that has simple geometry, or smaller
number of degrees of freedom (DOF), experience and a

trial-and-error approach may suffice to solve the problem.
For a large-scale complicated structure, whose finite element
model may have thousands, tens of thousands, and even
hundreds of thousands of DOFs, an exhaustive search would
be extremely time consuming or even impossible. Thus, a
systematic and efficient approach is needed to solve such a
computationally demanding problem.

2.1. Model for Sensor Placement in Structural Dynamics. The
sensor placement problem can be investigated from uncou-
pled modal coordinates of governing structural equations as
follows [9]:

q̈i + M−1
i · Ci · q̇i + M−1

i ·Ki · qi = M−1
i ·ΦT

i · B0 · u,

y = Φ · q + ε,
(2)

where, qi is the ith modal coordinate and is also the
ith element of the modal coordinate vector q in the 2nd
equation; Mi, Ki, and Ci are the corresponding ith modal
mass, stiffness, and damping matrices, respectively; Φ means
the mode shape matrix with its ith column as the ith mass-
normalized mode shape; B0 simply denotes the location
matrix formed by ones (with actuators) and zeros (without
actuators), specifying the positions of the force vector u; The
superscripts −1 and T represent the inversion and transpose
of a matrix, respectively; y implies the measurement column
vector indicating which positions of the structure are
measured, and ε is the stationary Gaussian white noise with
zero mean and a variance of σ2, describing measurement
uncertainties.

2.2. Basic Issues Regarding Sensor Placement. Sensor place-
ment problem described in (2) is, essentially, divided into
three aspects [10]. Firstly, what is the least number of
sensors required to be installed in a structure for a successful
dynamic testing? Secondly, where should these sensors be
installed, including those additional ones if available? And if
these additional sensors are available, should they be installed
as redundant sensors or place them in other positions? Lastly,
how could the effectiveness of different sensor placement
methods be evaluated?

In fact, these three aspects are intervening with each
other, and the first problem is partly resolved. It is known
that the minimum number of sensors to be instrumented
could not be less than the number of mode shapes to
be identified, which is determined by the observability of
the structure. Moreover, the practical number of sensors,
which is limitedly preset before test due to the availability
of instruments, is usually larger than the minimum number
because of the requirement to visualize the identified mode
shapes (i.e., the identified mode shapes are dependent on
each other and one or more of them can be determined by a
combination of others) [11]. The second problem is the core
one that has attracted the majority of research interest, which
depends largely, however, on the third aspect. For the limited
number of sensors available, the problem is the development
of a suitable sensor placement performance measure to be
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optimized and the selection of an appropriate method with
which it can be optimized. Some approaches require a single
calculation to be performed, some are iterative, and many
others take the form of an objective function to which an
optimization technique must be applied. The third aspect
includes several possibilities for assessing the performance of
chosen sensor sets. If the economical issues were not consid-
ered, only after the last two aspects are clearly understood,
it was then possible to know exactly the required number of
sensors to be installed.

3. Criteria to Evaluate Suitability of
Sensor Locations

It should be noted that a good method for sensor placement
in a particular application is not necessarily good for another
project. That means the effectiveness of a certain sensor
placement method depends on the evaluation criteria to
some extent. A criterion stresses one perspective whereas
another pays more attention to another aspect. Compro-
mises need to be made if one or several of the criteria are to
be used in dynamic testing. In this section, some influential
criteria are discussed both from historical points of view
and from their impacts on practices and the development of
sensor placement theory. Of course, bias and omissions could
not be avoided for such a daunting task because of personal
knowledge. Descriptions have been kept mathematically
light intentionally; full descriptions of the criteria may be
found in the references.

(1) Modal Assurance Criterion (MAC). As known, the mea-
sured mode shape vectors have to be as linearly independent
as possible, which is a basic requirement to distinguish
measured or identified modes. Moreover, the linear indepen-
dency is also particularly important when the test results are
to validate or to update the FE model. The larger space angles
among the measured modal vectors should be guaranteed
while choosing measuring points in order to keep the original
properties of the structure if possible. Carne and Dohmann
(1995) [12] thought that the MAC was an ideal scalar
constant relating the causal relationship between two modal
vectors

MACi j =
(
ΦT

i Φ j

)2

(
ΦT

i Φi

)(
ΦT

j Φ j

) , (3)

where, Φi and Φ j represent the ith and jth column vectors
in matrix Φ, respectively, and the superscript T denotes the
transpose of the vector.

The element values of the MAC matrix range between 0
and 1, where zero indicates that there is little or no corre-
lation between the off-diagonal element MACi j (i /= j) (i.e.,
the modal vector easily distinguishable) and one denotes
that there is a high degree of similarity between the modal
vectors (i.e., the modal vector fairly indistinguishable). For
an optimal (orthogonal) set the MAC matrix would be
diagonal, thus the size of the off-diagonal elements could be
an indication of optimal result.

(2) Singular Value Decomposition Ratio (SVDR). The singu-
lar value decomposition of mode shape matrix specified at a
certain DOF provides another measure to the chosen sensor
locations [13]. The method evaluates the ratio of the largest
to the smallest singular value of the mode shape matrix:

SVDR = σmax

σmin
, (4)

where, σmax and σmin denote the largest to the smallest singu-
lar value of the mode shape matrix, respectively.

The smaller the ratio, the better the choice of sensor
locations. There are three reasons to adopt the SVDR criteria:
namely, mode orthogonality, the condition for mode expan-
sion, and the observability of the modes [14]. The lower
limit of the SVDR is one in the case that the mode shapes
are orthogonal, which is an ideal situation. This criterion
can also be termed as the condition criteria since the SVDR
of a truncated mode shape matrix is nothing else, but its
condition number.

(3) Measured Energy per Mode. Since the kinetic energy of
a structure is usually not evenly distributed into the modes
of the structure, the measured DOFs are expected to capture
a large part of the total kinetic energy of the structure, and
the energy contained in the measured DOFs for each mode
should be a significant portion of that mode to satisfactorily
measure the modes. It is based on the traditional heuristic
visual inspection, which is to visually inspect the response
of a structure, to examine the mode shapes of interest, and
to select locations with high amplitudes of responses. This
criterion helps to select those sensor positions with possible
large amplitudes, and to increase the signal to noise ratio,
which is critical in harsh and noisy circumstances.

(4) Fisher Information Matrix (FIM). The criterion of the
FIM results from minimizing the covariance matrix of the
estimate error for an efficient unbiased estimator from the
perspective of statistics. It relates also to the information
contained in the measured responses from the viewpoint of
information community:

FIM = ΦTΦ. (5)

Therefore, the procedure using this criterion for selecting
the best sensor placements is to unselect candidate sensor
positions such that the FIM is maximized. In practice, three
variants of the FIM are used, the determinant, the trace, as
well as the minimum singular value of the FIM, which are
maximized to increase the information or to decrease the
uncertainties of the estimates. What need to be mentioned is
that these three variants are just different norms of a matrix,
that means, different sensor placement methods based on
these variants of the FIM will yield similar, if not the same,
results for most cases [15, 16].

(5) Probability-Based Damage Detection Criterion. Since any
SHM issue is fundamentally a detection problem in its
simplest execution, Flynn and Todd [17] developed a global
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optimality criterion within a detection theory framework
that seeks to optimize a given sensing network resource
allocation for minimizing the expected appearance of type
I or type II error.

The first global performance measure, which is called the
global false alarm rate, is the expected proportion of the
structural undamaged regions that will be incorrectly iden-
tified as damage, or render type I error. It can be expressed
as

PFA =
K∑

k=1

P(dk1 | hk0)P(hk0)∑K
k=1 P(hk0)

, (6)

where, P(dk1 | hk0) = Pr(T[k] > γ[k]hk0) is the local detec-
tion rate for region k, dk1 denotes m1 is the local damage
state, hk0 represents m0 is the true local damage state, γ[k]
means the cost ratio.

The second global performance measure, which is labeled
the global detection rate, is the expected proportion of the
structural damaged regions that will be correctly identified
as damaged. This is equivalent to the complement of the
proportion of the structure to exhibit type II error. It can be
expressed as

PD =
K∑

k=1

P(dk1 | hk1)P(hk1)∑K
k=1 P(hk1)

, (7)

where, P(dk1 | hk1) = Pr(T[k] > γ[k]hk1) denotes the local
detection rate for region k, hk1 represents m1 is the true local
damage state.

(6) Mean Square Error (MSE). For randomly vibrating
structures, the problem of estimating the optimal sensor
locations can be chosen to minimize the total, averaged
over all prediction points, mean square error (MSE) of the
response prediction [18]. The MSE σ2

i (r(o)
1 , . . . , r(o)

N ) gives the
uncertainty in the resulting response prediction at the ith

prediction point located at position r
(p)
i . Thus, the problem

of optimally placing the sensors in the structure for the
purpose of obtaining predictions of the response involving
the least uncertainty is formulated as a multiobjective opti-
mization of finding the optimal locations of the observation

points (r(o)
1 , . . . , r(o)

N ) which simultaneously minimize the

P objectives (σ2
1 , . . . , σ2

P). The MSE σ2(r
(p)
i ; r(o)

1 , . . . , r(o)
N ) ≡

σ2
i (r(o)

1 , . . . , r(o)
N ) of the kriging prediction at location r

(p)
i is

given by

σ2
i

(
r(o)

1 , . . . , r(o)
N

)
= E

[{
X
(
r

(p)
i ; t

)
− X∗

(
r

(p)
i ; t

)}2
]

= K
(
r

(p)
i , r

(p)
i

)
− cTi K

−1ci.

(8)

The MSE depends on the location of the observation
points (r(o)

1 , . . . , r(o)
N ) and the covariance characteristics of

the response. The simple kriging estimator X∗(r
(p)
i ; t) is

unbiased.

(7) Information Entropy (IE). In experimental design, it is
desirable to design the sensor configuration such that the
resulting measured data are most informative about the
structural model parameters selected for estimation. The
information entropy (IE) as the measure of the uncertainty
in the system parameters gives the amount of useful informa-
tion contained in the measured data. The most informative
test data are the ones that give the least uncertainty in the
parameter estimates or, equivalently, the ones that minimize
the IE. Thus, among all sensor configurations, the optimal
sensor configuration can be selected as one that minimizes
the IE [19–22]. That is

Lbest = arg min
L

H
(
L; θ0,Σ

)
, (9)

where, H(L; θ0,Σ) is given by (10) and the minimization
is constrained over the set of Np measurable DOFs. The
lower bound of the information entropy is then given by
Hmin(Lbest; θ0,Σ)

H
(
L, θ0, σ0

) = 1
2
Nθ ln(2π)− 1

2
ln
[
detQ

(
L, θ0,Σ

)]
, (10)

where θ0 ≡ θ̂(L,Σ,D) is the optimal value of the parameter
set θ that minimizes J(θ;L,D), which means the measure
of fit between the measured and the model response time
histories; Q(L; θ,Σ) is an Nθ×Nθ semipositive definite matrix
defined as NN0∇T

θ J(θ;Σ,D).

(8) Mutual Information (MI). The MI gives a measure of
how much information one sensor location, “learns” from
another [23]. If there are two sets of measurement locations,
A and B, the amount of information learned by ai about bj is
presented by the mutual information:

I
(
ai, bj

)
= log 2

⎡
⎣ PAB

(
ai, bj

)

PA(ai)PB
(
bj

)
⎤
⎦, (11)

where ai and bj are the measurements from locations A
and B, respectively; PA(ai) and PB(bj) are the individual
probability densities for A and B, and PAB(ai, bj) is the joint
probability density for A and B.

If the measurement of ai is completely independent of
the measurement of bj , I(ai, bj) becomes zero. The average
mutual information between A and B is calculated by aver-
aging over all the sensor locations, and the optimal sensor
location determined by minimizing the mutual information
between sensors.

(9) Representative Least Squares Criterion (RLSC). The RLSC
derived from the representative least square method depends
on both the characteristics and the actual loading situations
of a structure [24]. The objective of the RLSC is to
achieve the best identification of modal frequencies and
mode shapes through almost unbiased estimation of modal
coordinates. It selects sensor positions with the best subspace
approximation of the vibration responses from the linear
space spanned by the mode shapes.

Jrls =
(
q̂s − q̂OLS

)T(
q̂s − q̂OLS

)
, (12)
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where, Jrls denotes the objective function of RLSC, q̂s means
a biased estimator with only partially s components, q̂OLS

represents the ordinary least squares estimator with all n
components, respectively. The q̂s is the best estimator which
achieves the smallest Jrls among all possible combinations
including s components drawn from total n components.
The smaller the RLSC, the better the identified modal
parameters.

(10) Visualization of Mode Shape. Structural engineer must
first visualize the mode shape vectors identified from modal
experiments to have a first impression of the overall motion
of the structure under consideration, as discussed by Carne
and Dohmann [12]. This criterion has no concrete mathe-
matical formulations not like the other criteria. It depends
on the structure, and usually the points in the frame corner
or middle are picked. As suggested by Pickrel [25], the
number of sensors required to visualize the mode shapes
is at least five times the number of mode shapes in order
to provide a crude visual depiction of the shapes and
avoid spatial aliasing. But modern structures composed of
new materials can present unexpected modes, or complex
couplings between substructures. Thus, it is not possible to
design the best sensor set using this criteria prior to test
because it would involve the vibratory behavior that should
be already perfectly known.

4. Development of Sensor Placement Method

The aforementioned analyses have shown that the gen-
eral sensor selection problems addressing diagnosability, or
observability, reliability, and detectability are NP complete
and are therefore computationally intractable. These types of
issues require efficient searching solutions in order to gen-
erate acceptable results in reasonable time. Many methods
have been developed for general optimized solution searches.
These approaches range from applying the constraints on
the objective function (evaluation criteria) to streamline
the optimization process to applying the advanced artificial
analysis techniques such as the genetic algorithms and
simulated annealing algorithms. The point of this section
is not to review each search solution but to identify the
variety of algorithms available. Especially, the computational
intelligent algorithms are reviewed in details due to their
unique advantages for the OSP problem.

4.1. Deterministic Optimization Methods. A number of
unconstrained (Newton methods) and constrained (linear
and nonlinear programming) deterministic optimization
methods can be used for the optimal sensor location. This
includes countless methods based on the availability of
gradients and Hessians. Simple deterministic techniques are
sufficient for the local search, and the constrained optimiza-
tion has a great degree of complexity [26]. For the structures
with simple and regular shapes (like beam, plates, etc.), the
optimal layout of the sensors can be obtained directly by the
constrained deterministic optimization methods such as the
recursive quadratic programming method, since their mode

shapes and frequencies can be accurately described using
the analytical expression. As aforementioned, in most of the
practical problems, only discrete sites are available. The opti-
mal selection of locations becomes an integer programming
problem which is usually much more difficult and costly to
solve than a continuous optimization problem. In this case,
the discrete variables problem can be converted as continu-
ous variables sometimes and then solved by the deterministic
optimization methods, too. For example, Sepulveda et al.
[27, 28] presented a control-augmented structural synthesis
methodology in which the actuator and sensor placement is
treated in terms of (0, 1) variables. The combinatorial aspects
of the mixed (0, 1)-continuous variable design optimization
problem are made tractable by combining approximation
concepts with the branch and bound techniques. Sunar and
Rao [29] solved the thermopiezoelectric sensor placement
problem for the cantilever beamlike structures well by
using the quasistatic thermopiezoelectricity equations. The
advantages of the continuous optimization techniques are
maturer compared with other methods, but these techniques
need to use the gradient of the objective function. Thus, they
are easy to fall into local optimum.

4.2. Sequential Sensor Placement Method. The sequential
sensor placement (SSP) algorithm is a relative systematic
and computationally efficient approach for obtaining a good
sensor configuration although it cannot be guaranteed to be
the optimal one [30]. The basic steps of the SSP algorithm
for a fixed number of N0 sensors are: the positions of N0

sensors are computed sequentially by placing one sensor
at a time in the structure at a position that results in the
highest reduction in the objective function. Specifically, the
position of the first sensor is chosen as one that gives the
highest reduction in the objective function for one sensor.
Given the optimal position of the first sensor, the position
of the second sensor is chosen as one that gives the highest
reduction in the objective function computed for two sensors
with the position of the first sensor fixed at the optimal
one already computed in the first step. Continuing in a
similar fashion, given the positions of (i − 1) sensors in
the structure computed in the previous (i − 1) steps, the
position of the next ith sensor is obtained as one that
gives the highest reduction in the objective function for i
sensors with the positions of the first (i − 1) sensors fixed
at the optimal ones already obtained in the previous (i − 1)
steps. This procedure is continued up to N0 sensors. The
aforementioned algorithm is termed the forward sequential
sensor placement (FSSP) algorithm. The SSP approach can
also be used in an inverse order, starting with Nd sensors
placed at all DOFs of the structure and removing successively
one sensor at a time from the position that results in the
smallest increase in the objective function. This algorithm is
termed as the backward sequential sensor placement (BSSP).

As known, to start the SSP algorithm, the initial set of
DOFs should be selected to cover the structure and areas
of special interest. Carne and Dohmann [12] used intuition
to determine the initial measurement set of DOFs based
on experience and requirements of structural topology for
the visualization of mode shapes. The original algorithm
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(called MinMAC) proposed by Carne and Dohrmann can be
regarded as a FSSP algorithm. However, Li et al. [31] found
that the maximum off-diagonal term was not monotonically
decreasing with the number of sensors. The reason for such
increasing contradiction is that a newly included or excluded
sensor may conflict with other previously selected sensors, or
even with the original intuition set. Mathematically speaking,
the row vector determined at this newly included sensor posi-
tion has strong linear relationship with the previous whole
sensor set. To alleviate the contra-decreasing, they devel-
oped a forward-backward combinational MinMAC algo-
rithm called the extended MinMAC algorithm. The mainly
difference resides in the stopping criteria. The extended
MinMAC algorithm computes further to obtain a sensor
set consisting a certain number of sensors larger than the
required one(s) where the original MinMAC stops. Yi et al.
[32] suggested selecting the initial sensor assignment by the
QR-factorization of the structural mode shape matrix. The
underlying idea is to find the most linear independent rows
of the modal matrix to minimize the off-diagonal terms of
the MAC matrix. Papadimitriou [22] evaluated the accuracy
of the sensor configurations provided by the SSP algorithms
by comparing the corresponding information entropy values
with those computed by genetic algorithms (GAs). He found
that the BSSP and FSSP methods for predicting the maxi-
mum information entropy values depended on the number
of sensors and observable modes. The performance of the
two methods give approximately the same predictions for
the minimum information entropy and the combined results
provided by the SSP methods are in all cases better than
ones provided by the GAs. In addition, the application of the
SSP methods for 1 and Nd sensors may provide predictions
of the upper and lower bounds of the information entropy
for sensor configurations involving any number of sensors
ranging from 1 to Nd; while the GAs provide predictions for
an optimal configuration involving a fixed number of sensors
only.

4.3. Combinatorial Optimization Method. Conventional gra-
dient-based local optimization methods are unable to handle
efficiently the multiple local optima and may present difficul-
ties in estimating the global minimum. They lack reliability
in dealing with the optimization problem since convergence
to the global minimum is not guaranteed. In the recent years,
combinatorial optimization methods based on the biological
and physical analogue have been extensively used for the
optimization of OSP problems due to its many advantages
over the classical optimization techniques such as it is a
blind search method and highly parallel. There are many
interesting approaches to tackle such problems, but one of
the most powerful heuristics is based on the GAs.

(1) Genetic Algorithms. The GAs try to imitate natural evo-
lution by assigning a fitness value to each candidate solution
of the problem and by applying the principle of survival of
the fittest [33]. Their basic components are the represen-
tation of candidate solutions to the problem in a “genetic”
form, the creation of an initial, usually random population

of solutions, the establishment of a fitness function that
rates each solution in the population, the application of
genetic operators of crossover and mutation to produce new
individuals from existing ones and finally the tuning of the
algorithm parameters like population size and probabilities
of performing the prementioned genetic operators [34].

In the original GA, the minimization variables must be
encoded into bit strings (i.e., chromosomes with “0” and
“1”). Therefore, the variables are discretized and the range
of the discretization corresponds to some power of 2 (e.g.,
1024). For the OSP problem, the optimization variables
are the sensor locations, which could be either the spatial
coordinate or the node index number. The mapping between
the physical minimization variables and the chromosomes
is the big difficulty in the application of GAs in addressing
the OSP. The traditional coding method is the simple one
dimension binary coding method which is very simple and
intuitionistic [35, 36]. However, the number of sensors will
be changed in the crossover and mutation, which is impracti-
cal and must be avoided [37]. In addition, the binary coding
method requires increased string length and computational
time especially in the large-scale structures where possible
combination sensors are large. Roy and Chakraborty [38]
and Chow et al. [39] suggested using the integer coding
method to get over the problem. Huang et al. [40] proposed
a kind of dual-structure coding approach to overcome the
problem. In this coding method, the individual chromosome
is composed of two rows, the upper row denotes the append
code and the lower row represents the variable code. The
crossover and mutation only operate on upper append code
and the lower variable value of offspring is fixed which
means the number of sensors could be unchanged. Different
genetic operators, such as force mutation [41], filter operator
[42], partially matched crossover (PMX) [43], have also been
used in order to overcome these faults although the process
of these particular genetic operators are complex and the
computational efficiency is relatively low. Kang and Xu [44]
adopted the partheno-genetic operators to sensor placement
which only changed the order of the chromosome but never
changed the sensor numbers. This is quite suitable to the OSP
because the sensor number should be invariable during the
optimization process. Considering the number of the DOF
is enormous in the large-scale structures, the requirement
for the large storage space is increased to save the optimal
solutions, Liu et al. [45] presented a decimal two-dimension
array coding approach instead of binary coding method
to code the solutions. Numerical results showed that the
dissipative storage space of the decimal two-dimension array
coding method was minimal among them compared to the
binary coding methods.

It should be noticed that, due to the nature of the GA’s
method, the number of iterations required for a guaranteed
convergence is usually dependent on the size of the pop-
ulation and the searching space being used [46, 47]. For
a given population size, the larger the searching space, the
more the number of iterations needed to reach a converged
solution with confidence. In other words, the higher confi-
dence usually requires the number of iterations large enough,
or multiple runs of the GAs process [48]. Thus, another
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drawback of GAs is that it may spend much time when
meeting a relative large size of the searching space which
is constrained by the number of nodes on the FEM mesh
excluding the constrained nodes and the vibration nodes
of the selected modes. Some attempts have been made to
overcome this fault. For example, Javadi et al. [49] presented
a hybrid intelligent GA which was based on a combination of
neural network and GA. Hwang and He [50] used simulated
annealing and adaptive mechanism to insure the solution
quality and to improve the convergence speed. In order
to improve the convergence speed and avoid premature
convergence, some improved GAs also been adopted to
sensor placement problems, such as the generalized genetic
algorithms (GGA) [51, 52] which were based on some
famous modern biological theories such as the genetic theory
by Morgan, the punctuated equilibrium theory by Eldridge
and Gould, and the general system theory by Bertalanffy,
so it is superior in biologics to the classical GA, the
elite genetic algorithms (EGA) [53], the virus evolutionary
genetic algorithm (VEGA) [54], the coevolutionary genetic
algorithm (CGA) [55], and the multiobjective genetic algo-
rithm (MGA) [56].

(2) Simulated Annealing Algorithm. Simulated annealing
(SA) is an optimization procedure analogue to the physical
process in thermodynamics, specifically to the way that
liquids freeze and crystallize, or metals cool and anneal [57].
While the SA is a general purpose optimization procedure,
its actual implementation in the OSP issue is defined by the
evaluation function, perturbation operator, constraints, and
parameter settings [58]. The perturbation operator works on
each decision variable. In each iteration of the algorithm each
variable is randomly selected for perturbation. The operator
then uses direction cosines for obtaining a random direction.
Spatial constraints prevent solutions from leaving sensor
regions. The parameters in the SA algorithm determine its
performance both in speed and solution quality. Generally
the better performance is obtained with highly random
initial search, which means high temperature, followed by
slow cooling.

Chattopadhyay and Seeley [59] developed a multiob-
jective optimization procedure based on a SA technique to
include both discrete and continuous design variables for the
design of intelligent structures. A numerical example using a
cantilever box beam was carried out and the results demon-
strated the SA could reduce computational effort when com-
pared with the previous nonlinear programming technique.
Chiu and Lin [60] defined the sensor placement issue as a
min-max mathematical optimization model provided that
either discrimination, or distance error, was the objective
under cost and coverage constraints. Numerical experimen-
tal results showed that the SA algorithm could find the OSP
under the minimum cost limitation and outperform the
brute force approach no matter in the case of smaller or
large sensor fields. The SA algorithm has a strong ability for
finding the local optimal result, thus, it can be introduced
into other method to avoid the problem of local minima.
For example, Wang et al. [61] proposed a distributed particle

swarm optimization and simulated annealing for the energy-
efficient coverage in wireless sensor networks; Hwang and He
[50] used the simulated annealing and adaptive mechanism
to insure the solution quality and to improve the convergence
speed of GA; Gou and Cui [62] developed a mathematical
model of minimizing total energy for the sensor/actuator
placement of simple beam active control based on the GA
and SA algorithms. Experimental results showed that the
hybrid algorithm had high efficiency and global convergence
for the sensor/actuator placement problem.

(3) Particle Swarm Optimization Algorithm. Particle swarm
optimization (PSO) is a population based stochastic search
technique introduced by Eberhart and Kennedy in 1995
[63], inspired by the social behavior of bird flocking or fish
schooling. It works in the same way as the GAs and other evo-
lutionary algorithms. The PSO algorithm is initialized with a
population of random candidate solutions, conceptualized as
particles. Each particle is assigned to a randomized velocity
and is iteratively moved through the problem space. It is
attracted towards the location of the best fitness achieved so
far by the particle itself and by the location of the best fitness
achieved so far across the whole population (global version of
the algorithm). The PSO algorithm has better performance
than early intelligent algorithms on calculation speed and
memory occupation, and has less parameter and is easier to
realize [64, 65].

Many researchers have worked on improving its per-
formance in various ways and developed many interesting
methods for the OSP problems. For example, the computa-
tional time required to evaluate the objective function, cou-
pled with the dimensionality problem renders the standard
PSO impractical for real-time planning of large-sized sensor
configurations. Even for configurations of manageable size,
the PSO algorithm takes too long to converge. Ngatchou et
al. [66] proposed a kind of modified PSO algorithm called
Sequential-PSO (S-PSO) that shortened the computational
run-time and yielded better convergence performance. The
S-PSO iteratively optimizes the objective function over
randomly selected subspaces of the parameter search space
instead of the entire parameter space at once as in the stan-
dard PSO. This approach is advantageous since fewer parti-
cles are needed to solve the lower-dimension subproblems.
Zhang and Vachtsevanos [67] combined the PSO algorithm
with a heuristic search algorithm to develop a methodology
for deciding the type, number, and location of sensors
required to monitor accurately and robustly fault indications
or signatures in a critical military or industrial system. In this
method, the number of sensors at each location is rounded
to integer numbers since the PSO method is originally
designed for continuous variables optimization. Inspired
by the binary PSO, Rapaić et al. [68] presented a novel
modification of the PSO algorithm, called the discrete PSO
(DSPO) to the OSP problem. Several examples demonstrated
that the DSPO could be used to solve any combinatorial
and integer programming problem. Rao and Anandakumar
[69] put forward to a hybrid PSO algorithm by combining
a self-configurable PSO with the Nelder-Mead algorithm for
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arriving at an optimal number as well as locations of sensors
on civil engineering structures for the structural system
identification and health monitoring. Numerical studies
indicated that the proposed hybrid PSO algorithm generated
sensor configurations superior to the conventional iterative
information-based approaches which had been popularly
used for large structures. Further, the proposed hybrid PSO
algorithm exhibits superior convergence characteristics when
compared to other PSO counterparts.

(4) Monkey Algorithm. The monkey algorithm (MA) was
firstly designed by Zhao and Tang [70] from the inspiration
of mountain-climbing processes of monkeys. It assumes that
there are many mountains in a given field (i.e., in the feasible
space of the optimization problem), and in order to find
the highest mountaintop (i.e., find the maximal value of
the objective function), monkeys need to climb up from
their respective positions. The algorithm mainly consists of
climb process, watch-jump process, and somersault process
in which the climb process is employed to search the local
optimal solution, the watch-jump process to look for other
points whose objective values exceed those of the current
solutions so as to accelerate the monkeys’ search courses, and
the somersault process to make the monkeys transfer to new
search domains rapidly.

To implement the MA in the OSP problem, it is necessary
to make some changes since this algorithm is originally
designed to solve global numerical optimization problems
with continuous variables. Yi et al. [71] adopted the integer
coding method to represent the solution and employed the
hamming distance operator and the stochastic perturbation
mechanism to improve the local and global search capabili-
ties of the MA. A computational case of a high rise building
was implemented to demonstrate the effectiveness of the
improved MA. Results showed that the modifications in the
MA could improve the convergence of the algorithm and the
algorithm was effective in solving the OSP problem.

(5) Ant Colony Optimization Algorithm. The ant colony
optimization (ACO) algorithm uses a colony of artificial ants
that behave as cooperative agents in a mathematic space were
they are allowed to search and reinforce pathways (solutions)
in order to find the optimal ones [72]. The problem is
represented by the graph and the ants walk on the graph to
construct solutions. The solution is given by a path in the
graph. After the initialization of the pheromone trails, ants
construct feasible solutions, starting from random nodes,
then the pheromone trails are updated. At each step ants
compute a set of feasible movements and select the best one
to carry out the rest of the tour.

Having established that the ACO algorithm properly
worked on the TSP problem, some modification was
required before it could be applied to the OSP problem.
The first important difference is that one is looking for an
optimum subset of the candidate sensor locations and this
means that a tour does not visit all locations. The second
major difference is that the ants are truly blind. The sensor
distributions can only be evaluated when all the members of
the tour are known, and there is no analog of visibility [73].

5. Comparisons of Different Sensor
Placement Methods

Due to the existence of a wide number of optimum criteria
and method, it is necessary to produce several sensor arrays
using different formulations, and to compare the obtained
configurations according to some performance indicators.
Their difference and consistency are essential to the basis of
theoretical considerations and to the development of other
effective sensor placement methods. This is not a marginal
question in the OSP, especially if a large number of candidate
positions have to be examined. On the one hand, it will
give some guidance in engineering applications; on the other
hand, it can increase the confidence in the OSP methodology.

Meo and Zumpano [74] analyzed the difference between
several criteria for the optimal sensor positioning on the
Nottingham Bridge. Li et al. [31] carried out the comparison
of nine sensor placement methods on a ladder structure.
Marano et al. [75] performed comparisons among six
different optimum criteria with reference to two examples
of broadcasting antennas. A most significant and commonly
cited OSP approaches called effective independence (EfI)
method was developed by Kammer in 1991 [76–78]. The EfI
method tends to maximize the trace and determinant and
minimize the condition number of the Fisher information
matrix corresponding to the target modal partitions. Li et al.
[79, 80] found this strategy had some connections with other
well-developed method, such as the modal kinetic energy
(MKE) method [81], QR decomposition (QRD) method
[82], and MinMAC method [12].

(1) Connection between EfI and MKE. For the case of identity
equivalent mass matrix: the EfI requires iteration computa-
tions, but the MKE does not. In the following iterations of
EfI, it redistributes the MKE into the retaining DOFs and
recomputed their MKE index for the reduced system using
the reorthonormalized mode shapes. Thus, the EfI is an
iterated version of MKE with the reorthonormalized mode
shapes.

For the case of nonidentity equivalent mass matrix: the
MKE assigns more weights for the DOFs with the large
mass concentration by left multiplying the EfI indices at
the first iteration with the mass matrix. When the mass
is only slight unevenly distributed throughout the whole
structure, which is common in engineering practice, the
relative sequence of the MKE indices will agree with that of
the EfI very well. In this sense, the MKE can be regarded as
a weighted EfI without iterations for structures with general
mass distributions.

(2) Relationship between EfI and QRD. The QRD method
selects sensor positions according to their row norms and lin-
ear independency in the row space, whereas the EfI computes
the QR decomposition in the column space of the modal
matrix. Both the EfI and QRD give similar results when the
required number of sensors equals to the number of modes.
When more sensors are needed, they will give different sensor
combinations. Moreover, the difference between the EfI and
QRD results from the reorthogonalization of the column
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space or the row space of the original full modal matrix
during the EfI or QRD computation, respectively.

(3) Connection between EfI and MinMAC. The EfI method
is equivalent to the MinMAC algorithm in the global
sense, but there are minor differences between them. The
MinMAC algorithm tries to minimize its maximum off-
diagonal terms by tracking every off-diagonal terms of the
MAC matrix, while the EfI method minimizes all the off-
diagonal terms in the sense of the whole MAC matrix.
Namely, the minimization of the off-diagonal terms by the
iterative EfI method in the norm sense could not always leads
to the decreasing of the maximum off-diagonal terms defined
to be minimized by the MinMAC algorithm. Secondly, the
EfI method includes an implicit step of reorthonormalization
during its iterations. This implicit reorthonormalization
step results in small deviation from the directions of the
reduced mode shapes, while the MinMAC algorithm sticks
stubbornly to the directions of the reduced mode shapes.

6. Summary

The development and implementation of a large-scale SHM
system using the rational number of sensors and positioning
them appropriately on a structure may provide direct and full
information for structural inspection and maintenance, and
would most benefit structural owners with regard to asset
management. The OSP problem is still a challenge at present,
and needs well-coordinated interdisciplinary researches for
full adaptation of innovative technologies developed in
other disciplines to applications in the civil engineering
community. Future methods are likely to be specific to the
SHM methodology employed and should be developed
alongside them. Wherever possible, successful numerical
simulation should be followed by experimental study. When
performing the sensor placement optimization for the SHM,
it is beneficial to extend the experimental study to cover
the results of the SHM, especially where comparisons can
be made between the placement algorithms and exhaustive
search results.
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