
Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2012, Article ID 625798, 15 pages
doi:10.1155/2012/625798

Research Article

Aggregate Queries in Wireless Sensor Networks

Jeong-Joon Kim,1 In-Su Shin,1 Yan-Sheng Zhang,2 Dong-Oh Kim,3 and Ki-Joon Han1

1 Division of Computer Science & Engineering, Konkuk University, Seoul 143-701, Republic of Korea
2 Division of Software Engineering, Northeastern University, Shenyang 110819, China
3 Cloud Computing Research Department, Electronics and Telecommunications Research Institute,
Daejeon 305-700, Republic of Korea

Correspondence should be addressed to Ki-Joon Han, kjhan@db.konkuk.ac.kr

Received 19 February 2012; Revised 25 May 2012; Accepted 25 June 2012

Academic Editor: Jianliang Xu

Copyright © 2012 Jeong-Joon Kim et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Recently as efficient processing of aggregate queries for fetching desired data from sensors has been recognized as a crucial part,
in-network aggregate query processing techniques are studied intensively in wireless sensor networks. Existing representative in-
network aggregate query processing techniques propose routing algorithms and data structures for processing aggregate queries.
However, these aggregate query processing techniques have problems such as high energy consumption in sensor nodes, low
accuracy of query processing results, and long query processing time. In order to solve these problems and to enhance the efficiency
of aggregate query processing in wireless sensor networks, this paper proposes Bucket-based Parallel Aggregation (BPA). BPA
divides a query region into several cells according to the distribution of sensor nodes and builds a quadtree, and then processes
aggregate queries in parallel for each cell region according to routing. It sends data in duplicate by removing redundant data,
which, in turn, enhances the accuracy of query processing results. Also, BPA uses a bucket-based data structure in aggregate query
processing, and divides and conquers the bucket data structure adaptively according to the number of data in the bucket. In
addition, BPA compresses data in order to reduce the size of data in the bucket and performs data transmission filtering when each
sensor node sends data. Finally, in this paper, we prove its superiority through various experiments using sensor data.

1. Introduction

With the rapid advance of sensing technologies for capturing
various types of data such as temperature, humidity, and
pressure as well as the development of wireless commu-
nication technologies, research is being made actively for
utilizing wireless sensor network technologies in diverse
application areas including military, medicine, meteorology,
environment, transportation, home, and business [1, 2].

Generally sensor nodes do not use unicasting (use ACK)
whsen they regularly send the sensed data. Rather, they
multicast or broadcast to the sensor nodes within the scope
of the communication [3]. Also, sensor nodes basically know
the content of the query that S-node (the starting node) sent,
effective time of the query (from the reception of the query
to the transmission of the first sensed data), and the cycle of
the query (interval to transmit the sensed data).

In particular, the aggregate query process, which is to
obtain aggregate results from data collected by sensors, is
recognized as an important research area [4]. Aggregate
queries execute functions such as MAX, MIN, SUM, AVG,
COUNT, MEDIAN, and HISTOGRAM on the entire wireless
sensor network or a specific region of the network.

Conventional centered aggregate query processing tech-
niques have the problem of high energy consumption by
the sensor nodes. Thus, in order to reduce the energy
consumption of sensor nodes, aggregate query processing in
network is being studied actively, which processes aggregate
queries on sensed data in the sensor nodes and then sends
the results to the server [5–7]. Representative techniques of
aggregate query processing in network include TAG (Tiny
AGgregation) and IWQE (Itinerary-based Window Query
Execution) that focus on routing algorithm, and q-digest
(quantile digest) and SMC (Secure Median Computation)



2 International Journal of Distributed Sensor Networks

Sink node

Figure 1: Hierarchical routing structure of TAG.

Sink node

Figure 2: Itinerary routing structure of IWQE.

that focus on data structure [8–11]. TAG is an aggregate
query processing technique using hierarchical routing [8]
and IWQE is an aggregate query processing technique using
itinerary routing [11]. Although TAG, and IWQE propose
routing algorithm for efficient aggregate query processing,
they have problems such as high energy consumption by
the sensor nodes, low accuracy of query processing results,
and long query processing time. Moreover, TAG, and IWQE
have the shortcoming that they cannot consider aggregate
operations MEDIAN and HISTOGRAM.

Q-digest is an approximate aggregate query processing
technique using tree data structure for aggregate operations
MEDIAN and HISTOGRAM [10, 12], and SMC is an
approximate aggregate query processing technique using
bucket data structure for aggregate operations MEDIAN and
HISTOGRAM [9]. In this way, q-digest, and SMC suggest
data structures for efficient aggregate query processing but
they still have problems such as high energy consumption by
the sensor nodes, low accuracy of query processing results,
and long query processing time. Moreover, q-digest, and
SMC do not consider composite types of aggregate queries
(executing two or more aggregate queries at the same time).

1 2 3 4 5 6 7 8

n = 15, k = 5, σ = 8

1

4 6

2 2

g

e f

a b c d

Figure 3: Tree data structure of q-digest.

q0 q1 qi qb−1qb

Bucket boundaries

0 10 20 30 40 50

a
3

b
1

c
8

d
4

e
7

Ordered
sample

· · ·· · ·

b buckets

Figure 4: Bucket data structure of SMC.

In order to solve these problems in existing aggregate
query processing techniques and to enhance the efficiency of
aggregate query processing in wireless sensor networks, this
study proposed aggregate query processing technique BPA
(bucket-based parallel aggregation). BPA collects informa-
tion on sensor nodes within a query region, divides the query
region into multiple cells according to the distribution of
sensor nodes, builds a quad-tree using the cells, and processes
an aggregate query in parallel according to itinerary routing
for the cell coverage of the quad-tree nodes. Because BPA
processes an aggregate query in parallel, the sensor nodes
consume less energy and query processing time is short even
if the query region is wide or the number of sensor nodes is
large.

Moreover, BPA minimizes the number of missing nodes,
which cannot participate in aggregate query processing,
among the sensor nodes of the query region, and on the
occurrence of a missing node, it sends data to the closest
node to the sensor node that started the query. Moreover, the
sensor nodes of BPA send data double, to reduce data loss
resulting from transmission errors. As it minimizes missing
nodes and sends data double after removing redundant data,
BPA can enhance the accuracy of query processing results.

BPA uses bucket-based data structure for aggregate
operations MEDIAN and HISTOGRAM. The bucket data
structure stores the minimum and maximum values of
collected data, the mean value of data in the bucket, and the



International Journal of Distributed Sensor Networks 3

MBR

R-node

Center of query region

Query region

Figure 5: Hierarchical routing structure and example of MBR
structure.

number of data in the bucket in consideration of composite
types of aggregate queries. Moreover, it compresses data
using the variable bit compression-coding technique [13]
in order to reduce the size of data in the bucket. Using
the bucket data structure and the variable bit compression
coding technique, BPA can reduce the energy consumption
of sensor nodes.

Because BPA divides and merges the bucket data struc-
ture adaptively according to the number of data in the
bucket, it can enhance the accuracy of query-processing
results even if data distribution is uneven. Moreover, BPA
performs data transmission filtering, which sets a filtering
range in each sensor node and sends data only when the
data are outside the range, and this reduces the energy
consumption of sensor nodes.

2. Related Works

2.1. TAG (Tiny AGgregation). TAG is a technique of aggre-
gate query processing in network that uses hierarchical
routing for aggregate query processing [8]. That is, TAG
establishes hierarchical routing for the entire wireless sensor
network in order to process aggregate queries in the network.
Figure 1 shows the hierarchical routing structure of TAG.

As in Figure 1, TAG establishes hierarchical routing by
defining parent-child relations among all the sensor nodes.
A child sensor node in the query region sends sensed data to
its parent sensor node, which sends intermediate aggregate
query results to its parent sensor node. At last, the sink node
returns the final results of aggregate query processing to the
server.

TAG reduces overall energy consumption by sensor
nodes through processing aggregate queries within the
wireless sensor network instead of centralized processing
[5, 11]. Thus, TAG is efficient when the query region is wide
or the number of sensor nodes is large. However, there is
high energy consumption by sensor nodes not included in
the query region, and a large amount of energy is consumed

by sensor nodes in order to maintain routing [3, 11]. In
addition, TAG has the shortcoming that aggregate operations
MEDIAN and HISTOGRAM are not considered [9, 10, 12].

2.2. IWQE (Itinerary-Based Window Query Execution).
IWQE is a technique of aggregate query processing in
network that uses itinerary routing for aggregate query
processing [11]. IWQE processes aggregate queries by estab-
lishing temporary routing for the region of interest when a
user query is given instead of establishing routing for the
entire region of wireless sensor network. Figure 2 shows the
itinerary routing structure of IWQE.

As in Figure 2, IWQE processes an aggregate query for
data sensed by sensor nodes within the query region using
itinerary routing, and the sink node returns the final result
of the query to the server.

In IWQE, there is no unnecessary energy consumption
by sensor nodes not included in the query region and no cost
of routing maintenance. Furthermore, it is efficient when
the query region is narrow or the number of sensor nodes
is small [5]. However, the accuracy of query results is low
due to the occurrence of missing nodes, and redundant data
arising from broadcasting transmission for reducing data
transmission errors impairs the accuracy of query processing
results and increases energy consumption by the sensor
nodes. Moreover, it takes a long time to process queries if the
number of sensor nodes is large or the query region is wide
[3]. Moreover, IWQE does not consider aggregate operations
MEDIAN and HISTOGRAM [9, 12].

2.3. Q-digest (Quantile-Digest). Q-digest is an approximate
aggregate query processing technique using tree data struc-
ture in order to process aggregate operations MEDIAM and
HISTOGRAM [10, 12]. The tree data structure of q-digest
has characteristics as follows. The root node has a range value
of [1, σ], and its child nodes have range values of [1, σ/2]
and [σ/2+1, σ], respectively. In addition, each node stores
the number of sensing data included in the range. Figure 3 is
the tree data structure of q-digest and an example.

As in Figure 3, it is assumed that the whole range
of sensing data is 1–8, and number of data is 15, and
compression rate k is 5. Accordingly, root node g has a range
value of (1, 8), and its child nodes e and f have range values
of (1, 4) and (5, 8), respectively. In addition, child nodes a, b,
c, and d have range values of (1, 2), (3, 4) and (5, 6) and (7,
8), respectively. Moreover, each node stores the number of
sensed data that belong to its range. In particular, each node
of q-digest compresses data in case the sum of the number of
data in the node and the number of data in its parent node
and its neighbor node is smaller than compression rate n/k.

As q-digest processes aggregate queries using tree data
structure, it reduces the amount of data transmission and,
consequently, shows high performance in aggregate oper-
ations MEDIAN and HISTOGRAM. However, the energy
consumption of sensor nodes is high due to additional
information for building the tree data structure, and data
compression lowers the accuracy of aggregate query results.
Moreover, because the range values of nodes are fixed, if
sensed data are not distributed evenly, the results of aggregate



4 International Journal of Distributed Sensor Networks

Query region

CR1CR2 CR2

CR3

CR3 CR4

CR5

CR5

CR6

CR6

CR7

CR7 CR8

CR8

CR9 CR9 CR10
CR10

CR11

CR11 CR12

CR12

Cell

QR

CR4

Center of query region

CR1

Figure 6: Example of quad-tree structure.

C3-nodeC1-node

C1-node

C2-node

C2-node

C5-node

C6-node C7-node C9-node

C9-node

C8-node

C12-node

C12-node

C4-node

C4-node

C5-node

C6-node

C7-node

C8-node
C3-node

C10-node

C10-node

C11-node

R-node
S-node
C-node

Query region

C11-node

Figure 7: Transfer process of query processing results.

query processing become less accurate [9, 14]. What is more,
q-digest does not consider composite types of aggregate
queries.

2.4. SMC (Secure Median Computation). SMC is an approx-
imate aggregate query processing technique that uses bucket
data structure for aggregate operations MEDIAM and
HISTOGRAM [9]. The bucket data structure of SMC has
characteristics as follows. SMC forms b buckets to store
sensed data, and each bucket Bi has range value qi–qi+1 and
stores the number of sensed data. In particular, SMC divides
or merges buckets in which specific aggregate values are
stored and, by doing so, it enhances the accuracy of aggregate

query processing results in the next query. Figure 4 is the
bucket data structure of SMC and an example.

As in Figure 4, the bucket data structure has the entire
data range of 0–50, and consists of 5 buckets. Bucket a has
range value 0–10, b 11–20, c 21–30, d 31–40, and e 41–50,
and the buckets store the numbers of sensed data 3, 1, 8, 4
and 7, respectively.

SMC processes aggregate queries using bucket data
structure and, by doing so, it reduces the amount of data
transmission and shows high performance in aggregate oper-
ations MEDIAN and HISTOGRAM. However, the energy
consumption of sensor nodes is high due to the transmission
of fixed bucket data structure, and the accuracy of aggregate



International Journal of Distributed Sensor Networks 5

Cell

Q-node

Ideal Q-node

D-node

√
3

2
R

√
3

2
RW

W

W : itinerary routing interval

Real itinerary

Ideal itinerary

Figure 8: Example of routing process in quad-tree cells.

Missing node

Ideal Q-node

D-node

Ideal
itinerary

Real
itinerary

Real Q-node

S-node
Missing node

Figure 9: Example of missing node process.

query processing results is low due to the merger of bucket
data [14]. Moreover, SMC does not consider composite types
of aggregate queries.

3. BPA (Bucket-Based Parallel Aggregation)

3.1. Routing. BPA establishes hierarchical routing and col-
lects sensor node information in order to reduce energy
consumption by sensor nodes and query processing time.
Then, using collected sensor node information, it divides
the query region into a number of cells according to
the distribution of sensor nodes, builds a quad-tree with
the cells, and processes an aggregate query in parallel on
the cell coverage of the quad-tree through the itinerary
routing. Figure 5 shows the hierarchical routing structure
and an example of MBR structure for collecting sensor node
information.

As in Figure 5, the closest sensor node to the center of the
query region is searched for, and the node is used as R-node
(root node) of hierarchical routing to be established. Starting
from R-node, a sensor node with child nodes defines MBR

(minimum boundary rectangle) that includes itself and its
child sensor nodes, collects information on the sensor nodes
within the MBR, and sends the data to its parent sensor node.

Using the collected sensor node information, BPA divides
the query region into a number of cells and builds a quad-
tree with the cells. Figure 6 shows an example of quad-tree
structure.

As in Figure 5, the closest sensor node to the center of the
query region is searched for, and the node is used as R-node
(root node) of hierarchical routing.

As in Figure 6, query region QR is divided into CR1,
CR2, CR3 and CR4, and CR4 is again subdivided into CR5,
CR6, CR7, and CR8, and again CR8 into CR9, CR10, CR11,

and CR12. Each cell is subdivided until the number of
sensor nodes in the cell becomes smaller than the threshold
maximum number of sensor nodes in each cell.

BPA selects C-node, which is the representative sensor
node, within each quad-tree cell and processes an aggregate
query in parallel for the coverage of each cell in the quad-
tree. The result of aggregate query processing for the coverage
of each cell is transmitted recursively to the representative



6 International Journal of Distributed Sensor Networks

D-node

D-node

Q-node

D-node or D-node

Figure 10: Example of double data transmission of D-node.

Q-node
Q-node
D-node

Figure 11: Example of double data transmission of Q-node.

sensor node of the parent node cell. Figure 7 shows the
recursive process transmitting the result of aggregate query
processing to the representative sensor node of the parent
node cell.

As in Figure 7, the results of aggregate query processing
in C10-node, C11-node, and C12-node are transmitted to C8-
node, and the result of aggregate query processing in C8-
node is transmitted to C9-node. In addition, the results of
aggregate query processing in C6-node, C7-node, and C9-
node are sent to C4-node, and the result of aggregate query
processing in C4-node is sent to C5-node. Lastly, the results
of aggregate query processing in C1-node, C2-node, C3-node,
and C5-node are transmitted to R-node, and the result of
aggregate query processing in R-node is returned to S-node,
the sensor node that started the query.

BPA uses itinerary routing in order to process aggregate
queries in quad-tree cells. Figure 8 shows an example of
routing process in quad-tree cells.

As in Figure 8, Q-node, which is the query transmission
sensor (

√
3/2)R node within each cell, collects data from D-

nodes, which are data transmission sensor nodes within the
communication range, through the ideal itinerary routing,
processes an aggregate query, and sends the result to the next
Q-node. At that time, the actual routing path of Q-nodes is
the real itinerary routing and each itinerary routing interval
W is set as using sensor nodes’ communication range R.

In order to minimize the number of missing nodes not
participating in aggregate query processing in the itinerary
routing process, BPA selects the closest sensor node to Ideal
Q-node among D-nodes within the communication range of
Q-node as the next Q-node. Ideal Q-node is a virtual sensor
node that does not exist but is set for optimal routing, and
means the intersecting point between the line of the ideal
itinerary routing and the communication range of Q-node.

Sensor nodes basically know the content of the query
that S-node (the starting node) sent, effective time of the
query (from the reception of the query to the transmission
of the first sensed data), and the cycle of the query (interval
to transmit the sensed data). Therefore if it were not selected
as Q-node or D-node within the effective time of the query,
it would perceive it as a missing node.

If a missing node occurs, it is processed as follows. If a
sensor node finds itself to be a missing node because it has
not been selected as a Q-node or a D-node within a query
valid time, it sends its data to the closest sensor node to S-
node.

Figure 9 shows an example of Missing node process.
As shown in Figure 9, a missing node calculates the

distance using the location information of S-node and the
sensor nodes within the communication scope and selects
the nearest sensor node from S-node.

D-nodes and Q-nodes in BPA perform double data
transmission among sensor nodes in order to reduce errors in
the results of aggregate query processing caused by network
transmission errors. Figure 10 shows an example of double
data transmission process by a D-node in BPA.

As in Figure 10, a D-node sends sensed data to the Q-
node and its neighbor D′-node, which is another D-node.
That is, the D-node sends data to both the Q-node and D′-
node, which is one of its neighbor sensor nodes, includes
the Q-node within its communication range, and satisfies the
right-hand rule. Then, D′-node sends data from the D-node
and data sensed by itself to the Q-node.

Figure 11 shows an example of double data transmission
process by a Q-node in BPA.

As in Figure 11, a Q-node sends data collected from D-
node to the next Q-node and its neighbor Q′-node. That is,
the Q-node sends data to both the next Q-node and Q′-node,
which is one of its neighbor sensor nodes, includes the next
Q-node within its communication range, and is the closest to
the next Q-node. Then, Q′-node sends data from the Q-node
and data sensed by itself to the next Q-node.

In BPA, when a sensor node sends data, it adds its ID and
sends the data double, and the sensor node that has received



International Journal of Distributed Sensor Networks 7

ID

Bucket number:

Date range: BLMin · · ·
· · ·
· · ·

BLMax

MinValue, MaxValue

ii + 1 i + 2 n

BLMin: minimum range of bucket list

BLMax : maximum range of bucket list

BMax : maximumn size of bucket = initial size of bucket

BLMin + (BMax∗ i) BLMin + (BMax∗ (i + 1)) BLMin + (BMax∗ (i + 2))

AValuei, Counti Avaluei+1, Counti+1 Avaluei+2, Counti+2 Avaluen, Countn

Figure 12: Bucket data structure of Q-node.

30

4.1

35

1 2 2 6 5 1

4

4

1 2 2 3 3 5 1

Data range: 0 10 20 50 60

Bucket number: 1 2 3 5 6

Data range: 0 10 20 30 32.5 50 60
QID i Flag

1 4.1 0

Bucket number: 1 2 3 4.1.1 4.1.2 4.2 5 6

BMaxC: 5
BMin: 2

40

Bucket update
information

4.2

35 40

Figure 13: Example of bucket division.

1 2 2

2

22

4

4

41 2 3

3

10 20 30 50 60

Bucket number: 1 2 3 5 6

0

0

10 20 30

32.5

50 60
QID i Flag

1 1

Bucket number: 1 2 3 4.1

4.1.2

4.2 5 6

BMaxC: 5

4.1.1

35 40

4.2

35 40Data range: 0

Data range: 0

4.1.1
BMax: 10

Bucket update
information

Figure 14: Example of bucket merge.

Data range: 0 10 20 30 40

h 5, 31 5.25, 2 11.5, 2 31, 1

1 2 4Bucket number:

TSC: 10

QD: currently sensed data of Q-node
QPD: previously sensed data of Q-node
QSD: send data of Q-node
QPSD: previously sent data of Q-node

DD: currently sensed data of D-node
DSD: send data of D-node
DPSD: previously sent data of D-node

Q-node
D-node

j

c

g

i

f

b

a

d
e

h

DPSDb(5.5)

DDb(5.9)
DPSDa(13)

DDa(11)

DDd(5.5) DPSDd(5)
DPSDe(31)

DDe(31.3)

QDh(12)

QPDh(11)
QPSDh(5, 31, 5.25, 2, 12, 2, 31, 1)

QSDh(5, 31, 5.25, 2, 11.5, 2, 31, 1)

DSDa(11)

TF: 10 (−10 ∼ +10)

Figure 15: Example (1) of data transmission filtering.



8 International Journal of Distributed Sensor Networks

Data range: 0 10 20 30 40

1 2 4Bucket number:
j

c

g

i

f

b

a

d
e

h

5 6

50 60

DDc(36.5)

DSDc(36.5)
QSDi(5, 53.5, 5.25, 2, 12, 2, 33.75, 2, 41, 1, 52.25, 2)

Sending only changed bucket information

DSDf(41)

DDf(41)

DPSDf(39)

QPSDh(5, 31, 5.25, 2,12, 2, 31, 1)

QPSDi(5, 53, 5.25, 2, 12, 2, 35, 3, 52, 2)

i 5, 53.5 5.25, 2 12, 2 33.75, 2 41, 1 52.25, 2

DDg(51.5)
DPSDg(51)

QDi(53.5)

QPDi(53)

DPSDc(35)

TSC: 10

QD: currently sensed data of Q-node
QPD: previously sensed data of Q-node
QSD: send data of Q-node
QPSD: previously sent data of Q-node

DD: currently sensed data of D-node
DSD: send data of D-node
DPSD: previously sent data of D-node

Q-node
D-node

TF: 10 (−10 ∼ +10)

Figure 16: Example (2) of data transmission filtering.

TAG
IWQE
BPA

A
cc

u
ra

cy
 o

f 
re

su
lt

s 
(%

)

Number of sensor nodes

100
99
98
97
96
95
94
93
92
91
90

20000 40000 60000 80000 100000

Accuracy of results according to the number of sensor nodes

(a)

TAG
IWQE
BPA

Number of sensor nodes

20000 40000 60000 80000 100000

200000
180000
160000
140000
120000
100000

80000
60000
40000
20000

0

E
n

er
gy

 c
on

su
m

pt
io

n
 (

J)

Energy consumption according to the number of sensor nodes

(b)

TAG
IWQE
BPA

Number of sensor nodes

20000 40000 60000 80000 100000

Q
u

er
y 

pr
oc

es
si

n
g 

ti
m

e 
(s

)

200
180
160
140
120
100

80
60
40
20

0

Query processing time according to the number of sensor nodes

(c)

Figure 17: AVG aggregation according to the number of sensor nodes.



International Journal of Distributed Sensor Networks 9

TAG
IWQE
BPA

A
cc

u
ra

cy
 o

f 
re

su
lt

s 
(%

)

Number of sensor nodes

100

99

98

97

96

95

94

93

92

91

90
20000 40000 60000 80000 100000

Accuracy of results according to the number of sensor nodes

(a)

200000

180000

160000

140000

120000

100000

80000

60000

40000

20000

0

E
n

er
gy

 c
on

su
m

pt
io

n
 (

J)

Energy consumption according to the number of sensor nodes

TAG
IWQE
BPA

Number of sensor nodes

20000 40000 60000 80000 100000

(b)

Figure 18: MEDIAN aggregation according to the number of sensor nodes.

the data solves the data redundancy problem by removing
data with a redundant ID.

3.2. Data Structure. BPA uses bucket-based data structure
and the variable bit compression coding technique in order
to reduce energy consumption by sensor nodes in processing
aggregate queries such as MEDIAN and HISTOGRAM.

The data store structure of D-node consists of ID, which
is the ID of the sensor node, and Value, which is sensed
data. In addition, the data store structure of Q-node contains
ID indicating the ID of the sensor node, MinValue and
MaxValue indicating the minimum and maximum values of
collected data, A Valuei indicating the average value of data in
the bucket, and Counti indicating the number of data in the
bucket. Figure 12 shows the bucket data structure of Q-node.

As in Figure 12, the whole bucket list has size BLSize
(BLMax − BLMin), and the initial size of each bucket is
BMax, which is the maximum size of a bucket. In addition,
the bucket list stores information on individual buckets such
as A Valuei, which is the mean value of data in bucket i, and
Counti, which is the number of data in bucket i. A Valuei is
obtained by

AValuei =
∑Counti

k=1 Valueki
Counti

. (1)

In (1), A Valuei is the mean of data included in bucket i,
Counti the number of data in bucket i, and the Valueki data
in bucket i.

BPA uses the variable bit compression coding technique
[13] for data compression. That is, BPA compresses Value in
D-nodes and MinValue, MaxValue and A Value in Q-nodes,

which occupy the largest part of data in D-nodes and Q-
nodes, and stores the compressed data in order to reduce the
size of data in sensor node data transmission.

Moreover, BPA divides and merges bucket data structure
adaptively according to the number of data in the bucket in
order to enhance the accuracy of query processing results.

Figures 13 and 14 show an example of bucket division
and bucket merger when bucket list size BLSize is 60
(MinValue = 0, MaxValue = 60), maximum bucket size
BMax is 10, minimum bucket size BMin is 2, and maximum
number of data in the bucket BMaxC is 5.

As in Figure 13, when the number of data in bucket
4.1 exceeds the maximum number of data in the bucket
(BMaxC = 5), it is divided into buckets 4.1.1 and 4.1.2, but
because minimum bucket size BMin is 2, buckets 4.1.1 and
4.1.2 are not divided any longer.

As in Figure 14, because the sum of the data counts of two
buckets 4.1.1 and 4.1.2 is less than the maximum number of
data in the bucket (BMaxC = 5) and maximum bucket size
BMax is 10, the two buckets merge into bucket 4.1.

In order to reduce the energy consumption of sensor
nodes, BPA sets a filtering range for each sensor node and
sends data only when the data are outside the filtering range.

D-nodes are allocated filtering range DF. As in (2), DF
of a D-node is calculated using TF (total filtering range) and
TSC (the number of sensor nodes in the query region). The
D-node sends data only when the data are outside DF:

DF = TF
TSC

. (2)

Q-nodes are allocated initial filtering range IQF and reset
filtering range QF in aggregate query processing. In addition,
Q-nodes send data only when the sum of bucket lists is
outside filtering range QF.



10 International Journal of Distributed Sensor Networks

Number of sensor nodes

20000 40000 60000 80000 100000

4000000

3500000

3000000

2500000

2000000

1500000

1000000

500000

0

E
n

er
gy

 c
on

su
m

pt
io

n
 (

J)

Energy consumption according to the number of sensor nodes

TAG-q-digest
TAG-SMC
IWQE-q-digest

IWQE-SMC
BPA

(a)

Number of sensor nodes

20000 40000 60000 80000 100000

2000

1800

1600

1400

1200

1000

800

600

400

200

0

Q
u

er
y 

pr
oc

es
si

n
g 

ti
m

e 
(s

)

Query processing time according to the number of sensor nodes

TAG-q-digest
TAG-SMC
IWQE-q-digest

IWQE-SMC
BPA

(b)

200
180
160
140
120
100

80
60
40
20

0

Q
u

er
y 

pr
oc

es
si

n
g 

ti
m

e 
(s

)

Query processing time according to the number of continuous queries

200 400 600 800

Number of continuous queries

1000

TAG
IWQE
BPA

(c)

Figure 19: AVG aggregation according to the number of continuous Queries.

As in (3), IQF of a Q-node is calculated using TF (total
filtering range) and TSC (the number of sensor nodes in the
query region)

IQF = TF
TSC

. (3)

In aggregate query processing, a Q-node resets QF using IQF
of the Q-node, DF of D-nodes, DSC (the number of D-nodes
that have sent data to the Q-node within its communication
range), and QF′ of the previous Q-node. If there is a previous
Q-node and it has sent data, the Q-node resets QF with the
sum of IQF of the Q-node, DFs of D-nodes that have sent
data, and QF′ of the previous Q-node. This can be expressed
as

QF = IQF + (DF×DSC) + QF′. (4)

In case there is a previous Q-node but the previous Q-node
has not sent data or in case there is no previous Q-node, QF
of the Q-node is reset with the sum of IQF of the Q-node and
DFs of D-nodes that have sent data. This can be expressed as
in (5)

QF = IQF + (DF×DSC). (5)

Sensor nodes basically know the content of the query that
S-node (the starting node) sent, effective time of the query
(from the reception of the query to the transmission of
the first sensed data), and the cycle of the query (interval
to transmit the sensed data). Therefore, if data were not
transmitted within the cycle of the query even when there
existed Q-node or when there is no previous Q-node, it
would deal with the query by setting QF according to (5).



International Journal of Distributed Sensor Networks 11
A

cc
u

ra
cy

 o
f 

re
su

lt
s 

(%
)

100

99

98

97

96

95

94

93

92

91

90
200 400 600 800

Number of continuous queries

1000

TAG
IWQE
BPA

Accuracy of results according to the number of continuous queries

(a)

200 400 600 800

Number of continuous queries

1000

TAG
IWQE
BPA

200000

180000

160000

140000

120000

100000

80000

60000

40000

20000

0

Energy consumption according to the number of continuous queries

E
n

er
gy

 c
on

su
m

pt
io

n
 (

J)
(b)

Figure 20: MEDIAN aggregation according to the number of continuous queries.

Figures 15 and 16 show an example of data transmission
filtering by sensor nodes.

As in Figure 15, because DF of D-nodes is 1, D-node b, d,
and e do not send data. However, D-node a sends DSDa(15),
to Q-node h because its sensing data are outside filtering
range DFa. In addition, because Q-node h does not have a
previous Q-node, QFh is (1 + (1 × 1) = 2) by (5). In Q-node
h, the sum of bucket list QPSDh is 65.5 and the sum of bucket
list QSDh is 68.5, which are outside filtering range QFh, so Q-
node h sends QSDh(5,21,5.25,2,13.5,2,31,1) to Q-node i.

As in Figure 16, because DF of D-nodes is 1, D-node g
does not send data, but D-node c and f send DSDc (36.5)
and DSDf (37), respectively, to Q-node i because their sensing
data are outside filtering ranges DFc and DFf , respectively. In
addition, because if there is a previous Q-node the previous
Q-node sends data, QFi of Q-node i is (1 + (1 × 2) + 2 =
5) by (4). In Q-node i, the sum of bucket list QPSDi is 243.5
and the sum of bucket list QSDi is 245.9, which are within
filtering range QFi, so Q-node i does not send data to Q-node
j.

3.3. Algorithm. The BPA algorithm consists of processes for
generating itinerary routing, sending an aggregate query
through the generated itinerary routing, and returning the
results of the aggregate query. Algorithm 1 shows the whole
of the BPA algorithm.

As in Algorithm 1, the BPA algorithm first selects R-node,
the closest sensor node to the center of the query region,
builds hierarchical routing based on R-node, and collects
sensor node information. Then, it forms a quad-tree using
the collected sensor node information, and creates itinerary
routing by selecting representative sensor node C-node from
each cell of the quad-tree.

In addition, the BPA algorithm processes an aggregate
query through the itinerary routing, starting from each C-
node. That is, a Q-node sends an aggregate query through

itinerary routing, and D-nodes return the results of the
aggregate query. At that time, the Q-node and D-nodes
determine whether data have been filtered or not, and if
not filtered, they compress only changed bucket information
and send it to the next node. In aggregate query processing,
missing nodes, which are neither a Q-node nor a D-node,
send query results to the closest node to S-node, the sensor
node that started the query.

4. Performance Evaluation

4.1. Performance Evaluation Environment. The hardware
specifications of the system used in performance evaluation
were Intel Core 2.4 GHz CPU, 2 GB RAM, and 300 GB HDD,
and its operating system was Windows XP. In addition,
MFC (Microsoft Foundation Class Library) was used in
simulation, and 13 parameters as in Table 1 were set in
performance evaluation.

Particularly for BPA, TAG-q-digest, TAG-SMC, IWQE-
q-digest, and IWQE-SMC, we optimized the data structure
of BPA, q-digest, and SMC in evaluating the performance of
MEDIAN query processing in order to maintain the accuracy
of query processing results over 95%.

4.2. Results of Performance Evaluation. Figure 17 presents the
results of performance evaluation in AVG query processing
for BPA, TAG, and IWQE, showing the accuracy of results,
energy consumption, and query processing time according
to the number of sensor nodes.

As in Figure 17, BPA showed 29% higher performance
than IWQE and 18% higher than TAG in terms of the
accuracy of query processing results. In terms of energy
consumption, BPA showed 59% higher performance than
TAG, and 37% higher than IWQE. Also in terms of query
processing time, BPA showed 57% higher performance than
IWQE and 28% higher than TAG.



12 International Journal of Distributed Sensor Networks
E

n
er

gy
 c

on
su

m
pt

io
n

 (
J)

4000000

3500000

3000000

2500000

2000000

1500000

1000000

500000

0
200 400 600 800

Number of continuous queries

1000

TAG-q-digest
TAG-SMC
IWQE-q-digest

IWQE-SMC
BPA

Energy consumption
according to the number of continuous queries

(a)

2000

1800

1600

1400

1200

1000

800

600

400

200

0

Q
u

er
y 

pr
oc

es
si

n
g 

ti
m

e 
(s

)

200 400 600 800

Number of continuous queries

1000

TAG-q-digest
TAG-SMC
IWQE-q-digest

IWQE-SMC
BPA

Query processing time
according to the number of continuous queries

(b)

330 ∗ 330 660 ∗ 660 990 ∗ 990 1320 ∗ 13201650 ∗ 1650

Size of query region (m2)

TAG
IWQE
BPA

200
180
160
140
120
100
800

60
40
20

0

Q
u

er
y 

pr
oc

es
si

n
g 

ti
m

e 
(s

)

Query processing time according to the size query region

(c)

Figure 21: AVG aggregation according to the size of query region.

Figure 18 presents the results of performance evaluation
in MEDIAN query processing for BPA, TAG-q-digest, TAG-
SMC, IWQE-q-digest, and IWQE-SMC, showing energy
consumption and query processing time according to the
number of sensor nodes.

As in Figure 18, BPA showed 101% higher performance
than TAG-q-digest, 88% higher than TAG-SMC, 66% higher
than IWQE-q-digest, and 55% higher than IWQE-SMC in
terms of energy consumption. In terms of query processing
time as well, BPA showed 93% higher performance than
IWQE-q-digest, 87% higher than IWQE-SMC, 66% higher
than TAG-q-digest, and 59% higher than TAG-SMC.

Figure 19 presents the results of performance evaluation
in AVG query processing for BPA, TAG, and IWQE, showing
the accuracy of results, energy consumption, and query
processing time according to the number of continuous
queries.

As in Figure 19, BPA showed 28% higher performance
than IWQE and 18% higher than TAG in terms of the
accuracy of query processing results. In terms of energy
consumption, BPA showed 66% higher performance than
TAG, and 42% higher than IWQE. Also in terms of query
processing time, BPA showed 56% higher performance than
IWQE and 26% higher than TAG.



International Journal of Distributed Sensor Networks 13

Accuracy of results according to the size of query region

A
cc

u
ra

cy
 o

f 
re

su
lt

s 
(%

)

100

99

98

97

96

95

94

93

92

91

90
330 ∗ 330 660 ∗ 660 990 ∗ 990 1320 ∗ 1320 1650 ∗ 1650

Size of query region (m2)

TAG
IWQE
BPA

(a)

330 ∗ 330 660 ∗ 660 990 ∗ 990 1320 ∗ 13201650 ∗ 1650

Size of query region (m2)

TAG
IWQE
BPA

200000

180000

160000

140000

120000

100000

E
n

er
gy

 c
on

su
m

pt
io

n
 (

J)

Energy consumption according to the size of query region

80000

60000

40000

20000

0

(b)

Figure 22: MEDIAN aggregation according to the size of query region.

Function BPA Process(QUERY q, SENSOR NODE nodelist[ ])
Input q: Query Information, nodelist[ ]: Information of Sensor Nodes
Output BUCKET LIST bkl: Information of bucket List
(1) SENSOR NODE rnode = RNode Search(q, nodelist)
(2) HROUTE hr = HRoute Build(rnode, nodelist)
(3) HR SENSOR NODE INFO sni = SensorInfo Collection(hr,MBR())
(4) QT NODE qn = QT Build(sni, nodelist)
(5) IROUTE ir = QT CNode Itinerary(qn, nodelist)
(6) if(QNodeIs() || DNodeIs())
(7) {
(8) QNode Query Send(q, ir)
(9) If(!QNode Filtering())
(10) {
(11) Bucket Build(Bucket Update())
(12) Compress Value()
(13) BUCKET LIST bkl = QNode Duplicate Result Send(ir)
(14) return bkl;
(15) }
(16) If(!DNode Filtering())
(17) {
(18) Bucket Build(Bucket Update())
(19) Compress Value()
(20) BUCKET LIST bkl = DNode Duplicate Result Send(ir)
(21) return bkl;
(22) }
(23) }
(24) else
(25) {
(26) MissingNode Send Result()
(27) }

Algorithm 1: Algorithm of BPA.



14 International Journal of Distributed Sensor Networks

Table 1: Parameters for performance evaluation.

Parameters Value

Sensor network size 1,650 ∗ 1,650 m2

Communication range of sensor node Within 30 m

Total transfer count of sensor node 10,000,000

Total amount of energy of sensor node 10,000 J

Energy consumption during data transmission 1 mJ

Size during data transmission 30 Byte

Time during data transmission 0.12 ms

Error rate during data transmission (10% ex) once every 10 times

Sensing range of sensor node Temp (70◦C ex) 70◦C (−10◦C ∼ +60◦C)

Deviation range of sensing data Temp (0.5◦C ex) 0.5◦C (−0.5◦C ∼ +0.5◦C)

Number of sensor nodes 2 million, 4 million, 6 million, 8 million, 10 million

Number of continuous queries 200, 400, 600, 800, 1,000

Size of query region 330 ∗ 330 m2, 660 ∗ 660 m2, 990 ∗ 990 m2, 1,320 ∗ 1,320 m2, 1,650 ∗ 1,650 m2

Figure 20 presents the results of performance evaluation
in MEDIAN query processing for BPA, TAG-q-digest, TAG-
SMC, IWQE-q-digest, and IWQE-SMC, showing energy
consumption and query processing time according to the
number of continuous queries.

As in Figure 20, BPA showed 104% higher performance
than TAG-q-digest, 93% higher than TAG-SMC, 71% higher
than IWQE-q-digest, and 59% higher than IWQE-SMC in
terms of energy consumption. In terms of query processing
time as well, BPA showed 90% higher performance than
IWQE-q-digest, 80% higher than IWQE-SMC, 64% higher
than TAG-q-digest, and 56% higher than TAG-SMC.

Figure 21 presents the results of performance evaluation
in AVG query processing for BPA, TAG, and IWQE, showing
the accuracy of results, energy consumption, and query
processing time according to the size of query region.

As in Figure 21, BPA showed 28% higher performance
than IWQE and 18% higher than TAG in terms of the
accuracy of query processing results. In terms of energy
consumption, BPA showed 45% higher performance than
TAG, and 31% higher than IWQE. Also in terms of query
processing time, BPA showed 75% higher performance than
IWQE and 23% higher than TAG.

Figure 22 presents the results of performance evaluation
in MEDIAN query processing for BPA, TAG-q-digest, TAG-
SMC, IWQE-q-digest, and IWQE-SMC, showing energy
consumption and query processing time according to the size
of query region.

As in Figure 22, BPA showed 94% higher performance
than TAG-q-digest, 84% higher than TAG-SMC, 68% higher
than IWQE-q-digest, and 56% higher than IWQE-SMC in
terms of energy consumption. In terms of query processing
time as well, BPA showed 100% higher performance than
IWQE-q-digest, 90% higher than IWQE-SMC, 66% higher
than TAG-q-digest, and 54% higher than TAG-SMC.

4.3. Analysis of Performance Evaluation. When performance
in AVG query processing was evaluated according to the
number of sensor nodes, the number of continuous queries,

and the size of query region, BPA showed higher perfor-
mance than TAG, and IWQE in terms of the accuracy of
processing results, energy consumption, and query process-
ing time. This is probably because BPA solves the problem
in TAG that data of sensor nodes not included in the query
region are transmitted, resolves the shortcoming of IWQE
by reducing the number of missing nodes happening in the
routing process, and processes an aggregate query in parallel
by dividing the query region.

Moreover, when performance in MEDIAN query pro-
cessing was evaluated according to the number of sensor
nodes, the number of continuous queries, and the size of
query region, BPA showed higher performance than TAG-q-
digest, TAG-SMC, IWQE-q-digest, and IWQE-SMC in terms
of energy consumption and query processing time. This is
probably because BPA does not use a data structure with a
fixed range as in q-digest, and SMC but updates the data
structure adaptively, sends only changed bucket information
instead of sending all aggregate data each time, and performs
compressing and filtering for data to be transmitted.

Particularly in AVG and MEDIAN query processing,
BPA showed even higher performance than the existing
techniques when the number of sensor nodes and the
number of continuous queries were large and when the size
of query region was large.

5. Conclusions

This study proposed BPA, a bucket-based parallel aggregate
query processing technique for more efficient aggregate
query processing in wireless sensor networks. In order to
reduce the energy consumption of sensor nodes and query
processing time, BPA builds a query region into a quad-
tree and processes an aggregate query in parallel through the
itinerary routing over the cell coverage of quad-tree nodes.
In addition, it minimizes the occurrence of missing nodes
for higher accuracy of query processing results and reduces
data loss from transmission errors through the double data
transmission by sensor nodes.



International Journal of Distributed Sensor Networks 15

BPA also uses bucket-based data structure and the
variable bit compression coding technique in order to reduce
energy consumption by sensor nodes in processing aggregate
queries MEDIAN and HISTOGRAM. Particularly for higher
accuracy of query processing results, it divides and merges
the bucket data structure adaptively according to the number
of data in the bucket. What is more, data are transmitted
only when they are outside the filtering range, and this
reduces the energy consumption of sensor nodes. Lastly,
we proved the superiority of BPA proposed as an aggregate
query processing technique through various experiments
using sensor data.

Acknowledgments

This work was supported by 00046658 Business for Coop-
erative R&D between Industry, Academy, and Research
Institute funded by Korea Small and Medium Business
Administration in 2011.

References

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“A survey on sensor networks,” IEEE Communications Maga-
zine, vol. 40, no. 8, pp. 102–105, 2002.

[2] D. Culler, D. Estrin, and M. Srivastava, “Overview of sensor
networks,” Computer, vol. 37, no. 8, pp. 41–49, 2004.

[3] S. Motegi, K. Yoshihara, and H. Horiuchi, “DAG based in-
network aggregation for sensor network monitoring,” in Pro-
ceedings of the 2006 International Symposium on Applications
and the Internet (SAINT ’06), pp. 292–299, January 2006.

[4] H. Cheng, L. Qin, and J. Xiaohua, “Heuristic algorithms for
real-time data aggregation in wireless sensor networks,” in
Proceedings of the International Wireless Communications and
Mobile Computing Conference (IWCMC ’06), pp. 1123–1128,
July 2006.

[5] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi, “In-network
aggregation techniques for wireless sensor networks: a survey,”
IEEE Wireless Communications, vol. 14, no. 2, pp. 70–87, 2007.

[6] C. C. Hung and W. C. Peng, “Optimizing in-network aggregate
queries in wireless sensor networks for energy saving,” Data
and Knowledge Engineering, vol. 70, no. 7, pp. 617–641, 2011.

[7] D. Wang, J. Xu, F. Wang, and J. Liu, “Mobile filter: exploring
filter migration for error-bounded continuous sensor data
collection,” IEEE Transactions on Vehicular Technology, vol. 59,
no. 8, pp. 4093–4104, 2010.

[8] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TAG:
a tiny aggregation service for Ad-hoc sensor networks,” in
Proceedings of the Symposium on Operating System Design and
Implementation, pp. 131–146, 2002.

[9] S. Roy, M. Conti, S. Setia, and S. Jajodia, “Secure median
computation in wireless sensor networks,” Ad Hoc Networks,
vol. 7, no. 8, pp. 1448–1462, 2009.

[10] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri,
“Medians and beyond: new aggregation techniques for sensor
networks,” in Proceedings of the 2nd International Conference
on Embedded Networked Sensor Systems (SenSys ’04), pp. 239–
249, November 2004.

[11] Y. Xu, W. Lee, J. Xu, and G. Mitchell, “Processing window
queries in wireless sensor networks,” in Proceedings of the IEEE
International Conference on Data Engineering, pp. 270–280,
2006.

[12] D. Pendarakis, N. Shrivastava, L. Zhen, and R. Ambrosio,
“Information aggregation and optimized actuation in sensor
networks: enabling smart electrical grids,” in Proceedings of the
26th IEEE International Conference on Computer Communica-
tions (IEEE INFOCOM ’07), pp. 2386–2390, May 2007.

[13] J. J. Kim, H. K. Kang, D. S. Hong, and K. J. Han, “An efficient
compression technique for a multi-dimensional index in main
memory,” in Proceedings of the International Conference on
Visual Information Systems (VISUAL ’07), pp. 336–346, 2007.

[14] J. Considine, F. Li, G. Kollios, and J. Byers, “Approximate
aggregation techniques for sensor databases,” in Proceedings of
the 20th International Conference on Data Engineering (ICDE
’04), pp. 449–460, April 2004.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


