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The problem of environmental monitoring using a wireless network of chemical sensors with a limited energy supply is considered.
Since the conventional chemical sensors in active mode consume vast amounts of energy, an optimisation problem arises in the
context of a balance between the energy consumption and the detection capabilities of such a network. A protocol based on
“dynamic sensor collaboration” is employed: in the absence of any pollutant, the majority of sensors are in the sleep (passive) mode;
a sensor is invoked (activated) by wake-up messages from its neighbors only when more information is required. The paper pro-
poses a mathematical model of a network of chemical sensors using this protocol. The model provides valuable insights into the
network behavior and near optimal capacity design (energy consumption against detection). An analytical model of the environ-
ment, using turbulent mixing to capture chaotic fluctuations, intermittency, and nonhomogeneity of the pollutant distribution, is
employed in the study. A binary model of a chemical sensor is assumed (a device with threshold detection). The outcome of the

study is a set of simple analytical tools for sensor network design, optimisation, and performance analysis.

1. Introduction

Development of wireless sensor network (WSN) for a partic-
ular operation scenario is a complex scientific and technical
problem [1, 2]. Very often this complexity resides in estab-
lishing a balance between the peak performances of the WSN
prescribed by the operational requirements (e.g., minimal
detection threshold, size of surveillance region, detection
time, rate of false negatives, etc.) and various resource cons-
trains (e.g., limited energy supply, limited number of sensors,
limited communication range, fixed detection threshold of
individual sensors, limited budget for the cost of hard-
ware, maintenance, etc.). The issue of resource constraints
becomes even more relevant for a network of chemical sen-
sors that are used for the continuous environmental moni-
toring (air and water pollution, hazardous releases, smoke,
etc.). The reason is that a modern chemical sensor is usually
equipped with a sampling unit (a fan for air and a pump
for water), which turns on when the sensor is active.

The sampling unit usually requires a significant amount of
energy to operate as well as frequent replacement of some
consumable items (i.e., cartridges, filters). This leads to the
critical requirement in the design of a WSN to reduce the
active (i.e., sampling) time of its individual sensors.

One attractive way to achieve an optimal balance between
the peak performance of the WSN and its constraints in
resources mentioned above is to exploit the idea of dynamic
sensor collaboration (DSC) [3, 4]. The DSC implies that a
sensor in the network should be invoked (or activated) only
when the network will gain information by its activation [4].
For each individual sensor, this information gain can be eva-
luated against other performance criteria of the sensor sys-
tem, such as the detection delay or detection threshold, to
find an optimal solution in the given circumstances.

While the DSC-based approach is a convenient frame-
work for the development of algorithms for optimal schedul-
ing of constrained sensing resources, the DSC-based algo-
rithms involve continuous estimation of the state of each



sensor in the network and usually require extensive computer
simulations [3, 4]. These simulations may become unpracti-
cal as the number of sensors in the network increases (e.g.,
“smart dust” sensors). Even when feasible, the simulations
can provide only the numerical values for optimal network
parameters, which are specific for an analysed scenario, but
without any analytical framework for their consistent inter-
pretation and generalisation. For instance, the scaling prop-
erties of a network (the functional relationship between the
network parameters) still remain undetermined, which pre-
vents any comprehensive optimisation study.

This motivates the development of another, perhaps less
rigorous, but certainly simpler approach to the problem of
network analysis and design. The main idea is to phenome-
nologically employ the so-called bioinspired (epidemiology,
population dynamics) or physics-inspired (percolation and
graph theory) models of DSC in the sensor network in order
to describe the dynamics of collaboration as a single entity
[5-10]. Since the theoretical framework for the bio- or
physics-inspired models is already well established, we are in
the position to make significant progress in the analytical
treatment of these models of DSC (including their optimi-
sation). From a formal point of view, the derived equations
are ones of the “mean-field” theory, meaning that instead of
working with dynamic equations for each individual sensor
we only have a small number of equations for the “averaged”
sensor state (i.e., passive, active, faulty, etc.), regardless of the
number of the sensors in the system. A reveling example of
the efficiency of this approach is the celebrated SIR model in
epidemiology [11]. For any size of population, the SIR model
describes the spread of an infection by using only three equa-
tions, corresponding to three “infectious” classes of the pop-
ulation: susceptible, infectious, and recovered.

The analytic or “equation-based” approach often leads to
valuable insights into the performance of the proposed sen-
sor network system by providing simple analytical expres-
sions to calculate the vital network parameters, such as detec-
tion threshold, robustness, responsiveness, and stability and
their functional relationships.

In the current paper, we develop a simple model of a
wireless network of chemical sensors, where dynamic sensor
collaboration is driven by the level of concentration of a pol-
lutant (referred to as the “external challenge”) at each indi-
vidual sensor. Our approach is based on the known analogy
[10] between the information spread in a sensor network and
the epidemics propagation across a population. In this ana-
logy, the infection transmission process corresponds to mes-
sage passing among the sensors. A chain reaction in trans-
mission of an infection is called the epidemic. In the context
of a sensor network, a chain reaction will trigger the network
(as a whole) to move from the “no pollutant” state to the
“pollutant present” state, which will indicate the presence of
an external challenge.

The paper shows that the adopted epidemics or popu-
lation-inspired approach can provide a reliable description of
the dynamics of such a sensor network. The simple analytical
formulas (scaling laws) derived from the model express the
relationships between the parameters of the network (e.g.,
number of sensors, their density, sensing time, etc.), the
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network performance (probability of detection, response
time of a network), and the parameters of the external chal-
lenge (environment, pollutant). As an example of application
of the proposed framework, we performed a simple opti-
misation study. Numerical simulations are carried out and
presented in the paper in support of analytic expressions.

Although the model presented in this paper is specific to
a network of chemical sensors, the underlying analytical ap-
proach can be easily adapted to other applications and other
types of networks by a simple change of the model of envi-
ronment and sensor.

2. The Model of Environment

The external challenges are modeled by a random time series
which mimics the turbulent fluctuation of concentration at
each sensor of the network. In this approach, the fluctuations
in concentration C are modeled by the probability density
function (pdf) of C with the mean C; as a parameter (i.e., Cy
is a mean concentration of the tracer in the area) [12]:

o wz()/—l)< w C>y
ferey=a-ws@+ &t (1 %56 )
(1)

Here, the value y = 26/3 can be chosen to make it compliant
with the theory of tracer dispersion in Kolmogorov turbu-
lence (see [12]), but it may vary with the meteorological con-
ditions. The parameter w, which models the tracer intermit-
tency in the turbulent flow, can be in the range [0, 1], with
w = 1 corresponding to the nonintermittent case. In general,
it also depends on a sensor position within a chemical plume;
thus, w is in the range 0.95-0.98 near the plume centroid and
may drop to 0.3-0.5 near the plume edge. For w # 0, the pdf f
of (1) has a delta impulse in zero, meaning that the measured
concentration in the presence of intermittency can be zero
on some occasions. It can be easily shown that the pdf of (1)
integrates to unity, so it is appropriately normalized.

The measured concentration time series can be generated
by drawing random samples from the probability density
function given in (1) at each time step. The random number
generator is implemented using the inverse transform method
based on the following steps [13]:

(1) draw a sample u from the standard uniform distribu-
tion: u ~ U[0,1];

(2) compute the value of C that satisfies F(C) = u, where
F(-) is the cumulative distribution function (cdf) of
the distribution of interest;

(3) the value of C computed in the previous step is a ran-
dom sample drawn from the desired probability dis-
tribution.

The cdf F(-) needed for inverse transform sampling is
obtained by integrating the pdfin (1) and is given by

2 \cl”?
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Ficure 1: Example for concentration realisation for a plume-like
flow (a) and the selected area of the flow with higher resolution (b).

The use of this cdf in the inverse transform sampling proce-
dure generates the value of concentration

Y N1
C= Co<yw >[<lwu> _1}’ u=l-w

0, u<l-—uw,

(3)

where u is again the standard uniform distribution u ~
Ul0,1].

In order to produce spatial correlations that comply with
the well-known scaling properties of turbulent dispersion, a
special “swapping” algorithms was implement. This recursive
algorithm mimics the chaotic fluctuations occurring in the
real turbulent flows (for details, see [14]).

The proposed framework allows to implement a reason-
ably realistic model of the contaminated environment (i.e.,
to generate the concentration realisation at each sensor over
time), see Figure 1. Due to a universal nature of turbulence,
it can be used to simulate performance of WSN in detection
of either airborne and waterborne releases. The parameters y
and w are typically estimated from geophysical observation
(meteorological and organological) and will be assumed
known.

The geometrical complexity of the turbulent flow can be
incorporated in the theoretical framework (2) by assuming
a temporal and spatial variability of the mean concentration
filed Cp = Cy(r,t). This way we can simulate various mor-
phologies of the flow (jet, wake, boundary layer, compart-
ment flow, etc.) as well as various scenarios of hazardous

release (plume, puff), for details see [13, 15]. For the sake of
simplicity in the current paper, we consider only case Cy =
const. This assumption corresponds to the approximation
when the size of WSN is less than the width of hazardous
plume (see Figure 1), or to an important practical case of
a “highly distributed” source of pollutant (traffic, extended
industrial site, or urban area [16]).

3. The Model of a Chemical Sensor

We adopt a simple binary (or “threshold”) model of a sensor,
with the sensor reading V' given by

1, C=Cs4,
V= (4)
0, C<Cs.

We emphasize that threshold C is an internal characteristic
of the sensor, unrelated to Cy in (1). This threshold is another
important parameter of our model. A chemical sensor with
bar readings, which includes many subsequent levels for con-
centration thresholds mapped into a discrete sensor output,
is an evident generalisation of (4).

Using (3) and (4), it is straightforward to derive the pro-
bability of detection for an individual sensor embedded in
the environment characterised by (2)

p=1-F(Cs | Co). (5)

This aggregated parameter links the characteristics of a spe-
cific sensor Cy, the parameter of the external challenge Cy,
and the environment (F(+),y, w).

4. Modeling and Analysis of
Network Performance

Our focus is a wireless network of chemical sensors with
dynamic collaboration. We assume that N identical sensors
(i.e., with the same detection threshold C, and sampling
time 7, ) are uniformly distributed over the surveillance do-
main of area S with density p = N/S.

We will model the following network protocol for dyna-
mic collaboration. Each sensor can be only in one of the two
states: active or passive. The sensor can be activated only by a
message it receives from another sensor. Once activated, the
sensor remains in the active state during an interval of time
Ty; then it returns to the passive (sleep) state. While being in
the active state, the sensor senses the environment, and if the
chemical tracer is detected (binary detection), it broadcasts a
(single) message. If a sensor receives an activation message
while it is in the active state, it will ignore this message.
The broadcast capability of the sensor is characterized by its
communication range r4, which is another important para-
meter of the model. The described protocol assumes that
certain sensors of the network are permanently active. The
number of permanently active sensors in the network is fixed,
but the actual permanently active sensors vary over time
in order to equally distribute the energy consumption of
individual sensors.



The WSN following this protocol can be considered as a
system of agents, interacting with each other (by means of
message exchange) and with the stochastic environment (by
means of sampling and probing). The interactions can
change the state of agents (active and passive). From this per-
spective, this WSN is similar to the epidemic SIS (susceptible-
infected-susceptible) model [11], in which an individual can
be in only two states (susceptible or infected), and the change
of state is a result of interaction (mixing) between the indi-
viduals (which corresponds to the exchange of messages in
our case). Thus, a dynamic (population) model for our sys-
tem [11] is as follows:

dN, N,

Fra aNyN_ — o (6)
d& = _“N+N_ + &, (7)
dt Ty

where N;, N_ denote the number of active and passive sen-
sors, respectively. The nonlinear terms on the RHS of (6) and
(7) are responsible for the interaction between individuals
(i.e., sensors), with the parameter « being a measure of this
interaction. The population size (i.e., the number of sensors)
is conserved, that is, Ny + N_ = N = const.

The next step is to express « in terms of the parameters
of our system by invoking physics-based arguments used in
population dynamics [11]. It is well known that parameter o
in (6) describes the intensity (contact rate) of social interac-
tion between individuals in the community, so we can pro-
pose (see [11,17])

mp
a o< (8)
Nt~
where m is the number of contacts made by an “infected”
sensor during the infectious period 74 (i.e., the number of
sensors receiving a message from an alerting sensor). In our
case, we have m = mr2p. Then using N = Sp, we can write

ps )

where G is a constant calibration factor, being of order unity
(it must be estimated during the network calibration); p was
defined by (5). In order to simplify notation, from now on,
we will assume that G is absorbed in the definition of r.

It is worth noting that by introducing nondimensional
variables n, = N./N, n_ = N_/N, and 7 = t/74, the system
(6)-(7) can be rewritten in a compact nondimensional form

dny
dr

with only one nondimensional parameter

= Ronin_ —ny, n_=1-n,, (10)

Ry = a1y N. (11)

The parameter Ry is well known in epidemiology where it has
the meaning of a basic reproductive number [11].

The system (6)-(7) combined with the condition N, +
N_ = N can be reduced to one equation for y = N,

d
d% :ay(N—y)—Tl:y(b—ay% (12)

*
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where

1 (R -1
Te  Te

b=aN - (13)
By simple change of variables z = ay/b, this equation can be
reduced to the standard logistic equation

% =bz(1 - z), (14)

which has the well-known solution

z(t) =

20
(1 —zo) exp(=bt) +2z’

(15)

where zg = z(0).

We can see thatif b < 0, thenz — Oast — oo for
any zo, so any individual sensor activation in the network will
“die out,” that is, the network will not be able to detect the
external challenge. The same is valid for b = 0 when z =
zp = const (no response to external challenges). Only if the
condition b > 0 is satisfied, then z — 1ast — oo (indepen-
dently of zj). In this case, after a certain transition interval,
the network will reach a new steady state with

N. _ 11

N+_ _ _ L
=1-6, 0, e_aT*N_RO'

N N

(16)

A fraction of active sensors N, at this new state is a mea-
sure of the network (positive) response to the event of chem-
ical contamination. From (15), it is clear that the time scale
for the network to reach the new state can be estimated from
the condition e % < 1, so

O
“b Ry -1

(17)

This equation provides the relationship between the scale of
activation time and parameter Ry. One can see that this scale
decreases as R increases.

From (14), (17), it follows that an “epidemic threshold”
for the sensor network is simply a7« N > 1 or in terms of the
“basic reproductive number” (11),

2
Ry = at«N = pNﬂ—;* > 1. (18)

Observe that sensor sampling time 7, has disappeared from
the expression for Ry. This means that it is possible to create
an information epidemic (i.e., detect a chemical pollutant)
for any value of 74, provided this time is long enough
for a sensor to detect the chemical tracer. But according
to (17), the responsiveness of the whole network to the
external challenges (i.e., the time constant of detection) is,
indeed, strongly dependent on the sensor sampling time 7 =
T*/(R() — 1).

The expressions (16), (17), and (18) are the main analyti-
cal results of the paper. For a given level of external challenges
(i.e., Cp) and meteorological conditions (i.e., y, w), these
expressions provide a simple yet rigorous way to estimate
how a change in the network and sensor parameters (i.e.,
N, Cy, 74) will affect the network performance (i.e., Ny, 7).
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We can also see that for a given external challenge the net-
work of chemical sensors will respond in the most effective
way when its parameters are selected in the combination
which meets the criterion for “information epidemic” (18).

The final analytical expressions enable us to maximize the
network information gain and optimize other parameters.
For example, from (16), we can readily infer the important
scaling properties of the network performance:

N N
N 2 N N N " p

For instance, if we double the communication range of an
individual sensor r4, the fraction of inactive sensors in the
network will drop four times. Likewise, if we need to reach a
specified fraction of active sensors (1 — N_/N) to be able to
reliably detect a given level of pollutant concentration, these
formulas describe all possible ways of changing the para-
meters of the model in order to achieve this goal.

5. Information Gain of Collaboration

We have explained earlier that the concept of DSC is impor-
tant for a network with limited energy/material resources.
But the question remains will a network with DSC be inferior
(in terms of detection performance) in comparison with a
benchmark network where all sensors operate independently
of each other and only report their (positive) detections of
chemical pollution to the central processor for decision
making? Clearly, such a benchmark network would be very
expensive to run (all sensors would have to be active all the
time), but could provide excellent detection performance.

In this section, we show that, under a certain condition,
the network with DSC can provide superior detection per-
formance compared to the benchmark network. Let us
assume that we have §N sensors continuously operating (0 <
6 =< 1). For a benchmark network, on average, we have pdN
sensors detecting pollutant. For the network with DSC, the
same quantity can be estimated as p(1—0)N (as we have seen
the saturation level of N, does not depend on initial condi-
tions). From here, we can then deduce that the network with
DSC will provide more information (for detection of chem-
ical pollution) than the benchmark network if the follow-
ing condition is satisfied:

1

0= P <(1-9), (20)

which is eventually reduced to the condition of “epidemic
threshold” (18) for the small value of §.

The value of the parameter § can be also estimated based
on the following arguments. Let us assume that our aim is to
detect a level concentration Cy associated with a hazardous
release within the time T (the constraint on time is driven
by the requirement to mitigate the toxic effect of the release).
Then, we can write a simple condition for the information
“epidemic” in the WSN to occur during time T,

OpNT .

Tx

1, (21)

where p is given by (5), thatis, p = 1 - F(Cy | Cp). Evidently,
for information epidemic to be observable, the number of
continuously active sensors should be less than the number
of sensors activated due to the hazardous release. Thus, from
(20), we can write the following “consistency” condition for
the minimum value of §:

Ty 1

Omin ~ = (1 - )> 22

pNT = ate N (22)
or by rewriting it in terms of Ry, see (16),
Ty 1

Omin ® —— < (1_7)' 23

It can be seen that with other conditions being equal, the
fraction of “stand-by” sensors dmin can be made however
small (since Ry > 1). It implies that only a small fraction
of WSN will be active most of the time and is a clear demon-
stration of the energy consumption gain associated with the
“epidemic” protocol.

Another important criteria for epidemic protocol can be
derived by comparison of amplitude of “detectable events”
for the same number of sensors in the network with DSC with
the system of N-independent sensors. For the network with
DSC, itis (1 — 8)N (since we use N, to retrieve information
about the environment), and for the system of the same inde-
pendent sensors, it is still pN (since Ny is simply equal to N).
Then instead of (20), we can write

0<(1-p). (24)

Under this condition, more detectable events will occur in
the presence of chemical pollution by the described network
with DSC (activation messages) then in a network of stand
alone sensors (signals of positive detection). This leads to the
interesting threshold condition on the number of sensors in
the network

S 1
>———. 25
nri p(1-p) 23
The last term in RHS (p(1 — p))_1 has an obvious minimum
4 corresponding to p = 1/2, so finally, we arrive at the simple

universal condition

N>N =28, (26)
%

This condition reads that if the number of sensors in the sys-
tem is greater than N, then networking with DSC can pro-
vide an information gain over the benchmark network.
Under this condition, the network with DSC is not only desi-
rable from the aspect of energy conservation, but also pro-
vides better detection performance through the information
gain.

The condition p = 1/2 minimizing RHS of (25) can be
considered as a criterion for an “optimal” sensor for a given
network with DSC and for a given concentration of pollutant
to be detected. Namely, from the equation F(Cy | Cp) = 1/2
and using (2), we can write

c. :C0<y;2>|:<21w)1/(1y) _1]. a7
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FIGURE 2: Results of numerical simulations: the fraction of active
sensors in the network over time for the different communication
range 7y: 4—ry = 40m, B—r, = 30m, V—r, = 27m, and
o—r, =20m; Cy/Cy = 1.03, N, (t = 0) = 10. The dashed red line
corresponds to the analytical predictions (15). It is clearly seen that
in the case r,, = 20 m, the information epidemic in WSN dies off.

Given environmental parameters (y, w) and given the level of
concentration to be detected (Cy), formula (27) also specifies
a simple condition on detection threshold for an individual
sensor to maximize an information gain by being networked.

6. Numerical Simulations

In support of analytical derivations presented above, a net-
work of chemical sensors operating according to the adopted
protocol for dynamic collaboration was implemented in
MATLAB. A comprehensive report with numerical simula-
tions result will be published elsewhere; here, we present only
some illustrative examples.

For consistency, a 1000 m X 1000 m surveillance region
populated by N = 400 sensors with a uniformly random
placement was assumed in all tests. In each run, chemical
pollution with concentration Cy = 150 is applied, and the
simulation starts when a single randomly selected sensor
(which has detected the presence of chemical contamination
in its vicinity) starts broadcasting. Due to this random
initiation and the fact that the probability of detection of
individual sensors is less than unity (p < 1), each run
of the computer program results in a slightly different
outcome. Figures 2 and 3 show the average evolution of
the ratio N,/N in the network over time. The curves were
obtained by using the following parameters: w = 0.98, y =
26/3. Figure 2 demonstrates the changes in dynamics of the
WOSN for different values of communication range ry, and
Figure 3 depicts the similar plots for changes of the detection
threshold of individual sensor Cs. For all plots in Figures 2
and 3, the initial number of active sensors is Ny (¢t = 0) = 10.

Overall, we found that the simulation output is much
more sensitive to the changes of communication range
than to the threshold of an individual sensor (see range
of parameters depicted in Figures 2 and 3). In all cases,
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FiGURE 3: Results of numerical simulations: the fraction of active
sensors in the network over time for the different threshold of
individual sensor C,: B—C,/Cy, = 1.05, V—C,/Cy, = 1.02, and
o—C,/Cy = 1.00; r, = 40m, N, (t = 0) = 10. The dashed red line
corresponds to the analytical predictions (15). It is clearly seen that
in the case C./Cy = 1.00, the information epidemic in WSN dies
off.

we observed the transition of N; from the initial steady
state (where N, is very small indicating the absence of the
pollutant) to the new steady state (high value of N.), so
information “epidemic” in the network of chemical sensors
does occur. By direct substitution into (18), it was also
validated that in all cases presented in Figures 2 and 3 the
condition for an information “epidemic” was satisfied. In
general, the saturation value of N, derived from these plots
was in an agreement with theoretical prediction (16), but the
estimated standard deviation of Ny (not shown in Figure 2)
could be very high (up to 30%) for some combination of
parameters. The relative standard deviation (normalized by
mean value N, ) usually gradually decreased over time and
quite rapidly decays with the increase of communication
range ry. The occasional high variability of the output of
the sensor network is undesirable and motivates further
analysis. We also used the data from the plots in Figures 2
and 3 to calibrate our model. The calibration was performed
by extracting the steady-sate (or saturation) values of N,
from the plots and by adjusting the “free” constant G in the
analytical expressions (16) to achieve the best match between
the analytical predictions and simulations. The value G = 0.7
seems to provide an optimal agreement with the presented
simulations.

In order to validate our simple model for parameter «,
we performed the following study. For each simulation, we
derived the value of a, from (16) and then compared it with
the value of & calculated from the theoretical expression
(9) using the calibration value G =~ 0.7. The results of
this study are presented in Figure 4. The red dashed line
corresponds to the perfect agreement between the theory and
simulations. Considering the high variability of N, and a
rather simple model for «, the agreement between the theory
and simulations is acceptable.
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FIGURE 4: Simulation and theoretical predictions of parameter a: a;
is the theoretical value (9), a; is the results of simulations. The red
dashed line corresponds to the perfect agreement.

To validate further the alignment between the computer
simulations and the proposed mathematical model, we nu-
merically estimated some scaling properties of the network
system (i.e., (9), (19)). Firstly, we derived the scaling prop-
erties from computer simulations and then compared them
to the theoretical predictions. In general, we found that all
trends of the derived scaling do agree with theoretical expres-
sions in (19), but the quantitative agreement may signifi-
cantly vary from case to case. As an illustration, in Figure 5,
we present the plot of dependency of « against p in log-log
scale. The extracted exponent corresponds to « oc p?, where
q = 1.27, while the theoretical value according to (8) isq = 1.
This indicates that while our analytical model is very simple
and fast to compute, for higher accuracy it may need further
refinements as discussed below.

The results of numerical simulations presented above
serve to verify that the “information epidemic” does occur in
the wireless network of chemical senors. This also implies
that the proposed theoretical framework may lead to a gain
in the energy consumption that may result in the significant
advantages in operational deployment of such systems. More
detailed analysis of the optimal values of parameters satis-
fying threshold conditions (18), (23), and (26) and lead to
the optimal performance of WSN will be reported in separate
publications.

7. Refinements of the Model

The disagreement described above is due to the implicit
assumption of “homogeneous mixing” which we made in
equations (6)-(7). The homogeneous mixing manifests itself
in the bilinear form of the interaction terms on the RHS
of (6)-(7). This bilinearity means that the number of new
“infected” sensors is proportional to the product of the num-
ber which is currently “infected” and the number which is
currently “susceptible.” Effectively it means that all passive
sensors are equally likely to be activated. This assumption

1.2

08} »
0.6 ’*i
0.4 -7

0.2 _ow

-0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
p

FIGURE 5: Parameter « as a function of p extracted from numerical
simulations in log-log scale. The dashed line corresponds to the
power-law fit &« oc pi, g = 1.27, and theoretical prediction
corresponds to g = 1, see (8).

holds only if the majority of activated (“infected”) sensors are
far away from each other (i.e., at the distances > ry). At
some stage of the sensor “epidemic,” this assumption can be
violated, because the secondary “infected” sensors will be
at the shorter distances from the “infectious” parents (see
Figure 6). The broadcasted messages in overlapping areas
become duplicated and the rate of new “infections” will be no
longer proportional to the number of their parents. The frac-
tion of “infected” sensors in the overlapping areas will
depend on the new equilibrium state of the sensor system
(i.e., N;/N ast — o) and may not be small for some scena-
rios. To overcome this restriction, we again invoke an ap-
proach successfully implemented in epidemiology (see [17]).
Instead of (6)-(7), we now write

dNe _ oy Ne AN
dt Ty

N,
—— = —aN/N_+ —,
dt N+ Ty

(28)

where a new parameter 0 < v < 1 depends on the packing
density of “infected” sensors (or on the ratio N;/N). For a
“sparse” network configuration, we have v =~ 1 (no overlap-
ping areas), and for an extremely “dense” network, v = 0
(all sensors are located around the same point), see Figure 6.
In general, v can be used as a fitting parameter of the model
[8] or estimated based on the mathematical theory of
packing. For a specific network configuration, a value v = 1/2
was derived in [7] based on some simplified assumptions.
By employing new parameter v, we can significantly improve
agreement between analytical model and simulation at the
initial stage of information epidemic, since here we can
assume that N_ = N = const, so dN,/dt cc N?. An example
of improved fitting is presented in Figure 7.

Similarly to the epidemiological models (see [11]), incor-
poration of the spatial inhomogeneity can be achieved by
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FiGure 6: Examples of dense (a) and sparse (b) wireless sensor net-
works.

adding the appropriate diffusion terms on the LHS of (6) and
(7):

ON: DAN, = aN,N_ — &,
ot Ty (29)
oON_

—— — DAN_ = —aN,N_ + &,
ot Ty
where D is diffusivity in the sensor system which can be esti-
mated as D ~ r2/7, and A is the Laplace operator. At the
same time, the inhomogeneity of pollutant distribution can
be easily incorporated in a(r) with nonuniform Cy(r) (see
(2), (5), (8)).

An important property of the system (29) is the existence
of analytical solutions in the form of traveling waves, prop-
agating with the velocity vp ~ +/aD [11]. In our case, these
waves correspond to the switching fronts between active and
passive sensors. If pollutant is advected by the wind flow with
a characteristic velocity vy, then a simple synchronisation
condition vy > v, or a > v27,/r2 provides an important
criteria for network optimisation.

Another interesting extension of the proposed model is
the introduction of the concept of a faulty sensor, a sensor
which is no longer available for sensing and networking. This
state of a sensor would correspond to the removed popula-
tion segment in the epidemiological framework and can be
attributed to any kind of faults (flat battery, software mal-
function, hardware defects, etc.). As in the celebrated SIR
epidemiological model [11], a new state results in the third
equation for Ny in the system (6)-(7) with a new temporal
parameter—an average operational time (the lifespan) of a
sensor. The total number of sensors will be still conserved:
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FiGure 7: Effect of parameter v in the model (28) on the simulation
data fit: dashed line: v = 1, solid line: v = 0.7.

N = N; + N_ + Ny = const. This model provides a more
realistic representation of an operational sensor systems and
allows us to estimate such important parameters as the ope-
rational lifetime of the network and the reliability of the net-
work.

8. Conclusions

We developed a “bioinspired” model of a network of chem-
ical sensors with dynamic collaboration for the purpose of
energy conservation and information gain. The proposed
model leverages on the existing theoretical discoveries from
epidemiology resulting in a simple analytical model for the
analysis of network dynamics. The analytical model enabled
us to formulate analytically the conditions for the net-
work performance. Thus, we found an optimal configuration
which, within the underlying assumptions, yields a balance
between the number of sensors, detected concentration, the
sampling time, and the communication range. The findings
are partly supported by numerical simulations. Further
work is required to address the model refinements and
generalisations.
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