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The significance of information fusion for structural health monitoring and damage detection is introduced. The three levels of
information fusion for multisensors are described. For the complex in the structural health monitoring, the distributed multisensor
information fusion is more suitable and the structure is discussed. In the damage information fusion for character level, the concept
for structural integral support vector machine damage detection matrix, damage self-information, and damage information
entropy are presented. For a complex structure, it can be divided into multiple substructures in order to simplify the difficult
for health monitoring, the data acquisition and support vector machine are established for each substructure in order to form
integral damage detection matrix. In the damage information fusion for decision level, the methods based on fuzzy set theory,
material element theory, and fuzzy neural network are proposed. The results given by a numerical example about space structure
show that all the methods are valid and effective.

1. Introduction

Civil structures are inevitable to suffer from environmental
corrosion, long-term fatigue effects, or natural disasters,
and then the damage accumulates during long service
period. Therefore, intelligent heath monitoring and damage
diagnosis for structures become an important technology to
study [1]; detecting and predicting the structural damage in
time is necessary for future engineering. Detecting structural
damage state by its dynamic characteristics, such as frequen-
cies, mode shapes, and frequency-domain transfer function,
is an important method. However, the damage detection
method based on vibration testing has respective limitation.
The research achievement based on soft computing is needed
to be introduced to the damage detection and monitoring
study.

Structural health monitoring (SHM) is defined as “the
use of in-situ, non-destructive sensing and analysis of struc-
tural characteristics, including the structural response, for
detecting changes that may indicate damage or degradation
in the structure.” One essence of a well-designed SHM system

is the ability to provide advance warning to the bridge owners
and managers when abnormality is about to occur or is
occurring. In general, an SHM system has the potential to
provide both damage detection and condition assessment
of a structure. A typical SHM system includes three major
components: a sensor system, a data processing system
(including data acquisition, transmission, and storage), and
a health evaluation system (including diagnostic algorithms
and information management).

Housner summarized types of sensors used for structural
control applications in civil engineering which was similar
to SHM in nature [1]. Typically kinematic quantities (e.g.,
strain, displacement, and acceleration) and environmental
quantities (e.g., temperature, humidity, wind, etc.) are the
two categories of quantities that are critical to any SHM
system. The most common types of sensors used in SHM
applications include displacement sensors, strain sensors,
vibrating wire sensors, accelerometers, force sensors, and
temperature sensors. Numerous research projects and tech-
nical reviews have shown that conventional sensors are easily
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affected by changes in external factors such as temperature,
humidity, cable length, magnetic, or electric fields, and so
forth. These factors make it difficult to obtain stable and
reliable readings on a long-term basis. These problems are
gradually overcome as more advanced sensing technology is
developed.

Structural health monitoring (SHM) is a multidisci-
plinary and integrated technology; hence it is difficult to
resolve many practical problems for large and complex struc-
tures merely based on vibration testing. Improving the finite
element updating technology for health monitoring and
state evaluation, combing modern signal analysis technology
and soft computing theory, mining structural characteristic
data deeply, and realizing the real time, online dynamic
monitoring, and control, is the developmental direction for
SHM.

The health monitoring, damage detection, and decision
problem are very complex for large and complex engineering
structure, which need multiclass and multiple sensors to
collect different signals simultaneously; thus, a multisensor
system is established. Information fusion or data fusion
is one of the key technologies of the multisensor system.
Information fusion is the merging of information from
disparate sources with differing conceptual, contextual, and
typographical representations, and it involves the combina-
tion of information into a new set of information towards
reducing uncertainty. The main objective of employing
fusion is to produce a fused result that provides the
most detailed and reliable information possible [2]. Fusing
multiple information sources together also produces a more
efficient representation of the data. Generally, Information
fusion aims to take full advantage of different time and space,
multisensor information resources, automatically analyze,
integrate, control, and use the information under certain
criteria to get the consistent describe of the measured object,
in order to complete the necessary task on decision-making
and estimated.

Information fusion can be performed at three different
processing levels which are data level fusion, feature-level
fusion, and decision-level fusion according to the stage at
which the fusion takes place.

Data level fusion, which is a low level fusion, is the
registration and combination of the raw data from multiple-
source data into a single data. Feature level information
fusion is the extraction, registration, association, and com-
prehensive analysis on the data which reflect the system
characterization, increasing the dimensions to describe the
structural status or characteristics before features are merged
together; hence, the knowledge about the system status is
more accurate or complete. Decision-level fusion combines
the results from multiple algorithms to yield a final precise or
definite decision according to the prior diagnosis knowledge,
the diagnosis sample database and the intelligent decision-
making system. In conclusion, the flow chart of the informa-
tion fusion levels of SHM system is shown in Figure 1.

The structure of the multisensor information fusion
system can be divided into two types: centralized structure
and distributed structure according to the method for infor-
mation collection, fusion, and decision. In the centralized

fusion system, the original monitoring data from multisensor
is transferred to the fusion center without analysis, and
then the data is analyzed by the center and makes a final
decision by data combination, filter, and feature extraction
according to certain criteria and algorithms. However, in the
distributed fusion system, the local decision is made by the
decision points from a group of sensors if the performance
and precision is ensured. Then the monitor is composed of
multisensor and local decision points simultaneously. The
various local decisions are transferred to fusion center to
make the final decision. The model of distributed parallel
structure for fusion system is shown as Figure 2. For the
distributed fusion technology, the information from each
sensor must be analyzed preliminary and make a local
decision, and the final decision is made at a higher level, so
the amount of transmission data is less and the requirements
of the transmission network is relaxed and the processing
speed of the fusion center is higher for the distributed
multisensor information fusion system. For SHM system,
the sensors layout and wiring is complex, the amount of
data is large, thus the centralized fusion system is not
suitable. Hence, the distributed multisensor information
fusion structure is adopted and mainly studied in this paper.

In many cases, the sources of structural health informa-
tion are sensors or other devices that allow for perception or
measurement of changing environment [3–5]. The current
technology and method on multisensor information fusion
is numerous, but the information fusion algorithms in SHM
can be classified into three different groups. First, fusion
based on probabilistic models, second, fusion based on least-
squares techniques, and, third, intelligent fusion.

The probabilistic model methods are Bayesian reasoning,
evidence theory, robust statistics, and recursive operators
[6–9]. There has been a substantial amount of research
work conducted in the area of decision fusion, most of
which is built around Bayes theory. The basic strategy is
that if the prior probabilities and conditional probabilities
are determined in advance, then the posteriori probabilities
(and hence optimal decisions) can be estimated using Bayes
formula. A Bayesian network is used to combine probabilistic
reasoning with time-dependent parameters. As an extension
to Bayes theory, the Depmster-Shafer evidence theory uses
belief and plausibility functions to quantify evidence and
uncertainty. Dempster-Shafer evidence theory models how
the uncertainty of a given hypothesis or discourse diminishes
as pieces of evidence accumulate during the reasoning
process. One important aspect of this theory is that reasoning
or decision making can be carried out with incomplete or
conflicting pieces of evidence.

The least-squares techniques are Kalman filtering, opti-
mal theory, regularization, and uncertainty ellipsoids. The
method that is the most widely used or data fusion in
engineering applications is the Kalman filters [10]. This filter
is often used to combine all measurement data (e.g., for
fusing data from different sensors) to get an optimal estimate
in a statistical sense, if the system can be described with a
linear model and both the system error and the sensor error
can be modeled as Gaussian noise, then the Kalman filter
will provide a unique statistically optimal estimate for the
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Figure 1: Flow chart of information fusion levels of SHM system.
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Figure 2: Model of distributed fusion structure.

fused data. This means that under certain conditions the
Kalman filter is able to find the best estimates based on the
“correctness” of each individual measurement.

The intelligent fusion methods are fuzzy logic, neural
networks and genetic algorithms. D-S evidence theory is
efficient method processing uncertain information in data
fusion, but the combination result may be unacceptable if
the evidences highly conflict with each other. In the presented
work, a modified combination rule of D-S theory is proposed
to solve the problem of evidences with confliction, which is
related evidence focus to the amount of useful information
of evidences. Furzy logic provides a new tool to solve the
uncertain problem and describe the fuzzy characteristics
of target. Especially, fuzzy logic is fit for describing and
processing the uncertain information from multiple sensors
[11]. An artificial neural network (ANN) is a massively
parallel distributed processor that can be used to model
highly complex and nonlinear stochastic problems. The
ANN is formed of smaller units called neurons and is trained
through a learning process, while interneuron connection
strengths, known as synaptic weights, are used to store the
knowledge. So part of data fusion could be realized by neural
networks when the multiple data is inputted [12–14].

In recent years, the methods such as the fuzzy logic
system, artificial neural networks, and other soft computing
methods develop rapidly, which provides a solid theoretical
basis for information intelligence fusion. In this paper,
the support vector machine method, the fuzzy sets, the
artificial neural network and the matter-element theory are
introduced and used, combined with some of the concepts
of information theory, and multilevel information fusion for
the structural damage diagnosis is studied.

2. Feature-Level Fusion for
Damage Information Based on
Soft Computing Method

2.1. Damage Diagnosis Matrix. Traditional modal analysis
technique for structural damage identification is often diffı-
cult to obtain satisfactory results for large complex struc-
tures. The intelligent methods such as support vector
machine (SVM) can effectively improve the accuracy of
structural damage identification [15]. The original structure
can be divided into multiple substructures, and then the
detail damage can be identified using support vector machine
(SVM) for each substructure [16]. If the number of the
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components in the substructure is still large, the feature-
level fusion for damage information can be carried out by
the making full use of the multiple sensors placed on the
substructure.

For example, a space structure is divided into multiple
substructures according to the specific forms, then the signals
from each substructure are collected and the support vector
machine is trained and established. Thus, an integrated
damage diagnosis matrix having n substructures and sensors
based SVM is as follows:

SDM =

⎡
⎢⎢⎢⎢⎣

S11 S12 . . . S1n

S21 S22 . . . S21
...

...
. . .

...
Sn1 Sn2 . . . Snn

⎤
⎥⎥⎥⎥⎦

, (1)

where the elements Si j on the ith row and the jth column
mean the analysis result from the SVM for the j sensor in
the i monitoring region, reflecting the diagnosis information
on damage degree and location for structural components.
When the signals from the sensors in each substructure are
used only to diagnose the damage in its own region, the
SDM has the simplest form as a diagonal matrix. In this case,
there is no effective fusion for each signal. The corresponding
nondiagonal elements will increase in the SDM if the signals
from the sensors in different regions are fused and combined.
Limited to the number of sensors, the SDM with information
fusion function cannot be full matrix or symmetric matrix.

2.2. Self-Information and Damage Information Entropy.
Information is any kind of event that affects the state of a
dynamic system. Conceptually, information is the message
(utterance or expression) being conveyed. For structural
health monitoring, the information refers to the changes in
health status under the influence of the external environ-
ment.

In information theory, entropy is a measure of the uncer-
tainty associated with a random variable, which quantifies
the expected value of the information contained in a message
[17]. Equivalently, the Shannon entropy is a measure of
the average information content one is missing when one
does not know the value of the random variable. Shannon’s
entropy represents an absolute limit on the best possible
lossless compression of any communication, under certain
constraints: treating messages to be encoded as a sequence of
independent and identically distributed random variables.

Named after Boltzmann’s H-theorem, Shannon denoted
the entropy H of a random variable X and probability
unction p(X) as

H(X) = −
∫
p(x) log p(x)dx, (2)

The possible damage status in large structure is random and
various, only when the signals collected by the sensors are
analyzed by the health monitoring system, the uncertainty
about the structural damage is eliminated and the damage
information is obtained. In this paper, a concept of structural
damage self-information and damage information entropy is

presented based on the Shannon information theory. In the
damage prediction set, if the event number is x, the damage
self-information of the component is defined as

I(x) = − log p(x) = − log

⎛
⎝ 1
m

m∑

l=1

Sl(x)

⎞
⎠, (3)

where the p(x) is the predict-damage probability for the
component x, Sl(x) is the predict value for the component
x in the integrated damage diagnosis matrix SDM, if damage
occurs, the value is 1, otherwise the value is 0, and m is the
number of sensors which participate in predicting damage
for component x.

The damage information entropy for component x is
defined as the weighted average value of the self-information:

H(Xi) = CEp(x)[I(x)] = − 1
m

m∑

l=1

cl p(x) log p(x), (4)

where C is the weight coefficient, the discrete value cl can
be obtained from 0 to 1 according to the location of the
sensors and monitoring accuracy, and m is the number
of sensors which participate in predicting damage for
component x. The damage self-information represents the
damage uncertainty for the corresponding component, and
the damage probability is larger and the total information
demand is lower if the self-information value is smaller. The
damage information entropy is weighted average uncertainty
from information source. The information fusion based
on the intelligent damage diagnosis matrix can reduce the
damage information entropy, and identify the location and
degree of structural damage.

3. Decision-Level Fusion for
Damage Information Based on Fuzzy Set

3.1. Damage Information Fusion Model Based on Fuzzy Set.
In many practical cases, the structural damage is a fuzzy and
vague state because there are no obvious and clear grading
marks in the actual health status. Thus, it is more scientific
and objective for structural damage according to fuzzy set
theory by introducing the concept of fuzzy subset and fuzzy
membership. In classical set theory, the membership of
elements in a set is assessed in binary terms according to a
bivalent condition—an element either belongs or does not
belong to the set. By contrast, fuzzy set theory permits the
gradual assessment of the membership of elements in a set;
this is described with the aid of a membership function
valued in the real unit interval [0, 1]. Fuzzy sets generalize
classical sets, since the indicator functions of classical sets
are special cases of the membership functions of fuzzy sets,
if the latter only take values 0 or 1. The fuzzy decision
fusion method is realize the integration fusion by using fuzzy
transform principle and maximum membership principle
and considering the various factors relevant to the evaluation
objects. In the fusion process, the factors constitute the factor
set as U = {U1,U2, . . . ,Um} according to different extent,
and the decision is expressed as the decision set as V =
{V1,V2, . . . ,Vn}.
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First, the sing factor decision is made for the single factor
ui (i = 1, 2, . . . ,m) in the factor set U, then the membership
degree ri j in the decision degree vj ( j = 1, 2, . . . ,n) is
determined according to ui. Thus, the sing factor decision set
for the factor ui is obtained as ri = {ri1, ri2, . . . , rin}, which is
the fuzzy subset of the decision set. Hence, considering all the
m factors, the general fuzzy decision matrix is constructed as

R =

⎧⎪⎪⎨
⎪⎪⎩

r1
...
rm

⎫⎪⎪⎬
⎪⎪⎭
=

⎡
⎢⎢⎣
r11 . . . r1n
...

. . .
...

rm1 . . . rmn

⎤
⎥⎥⎦ (5)

R is the fuzzy relationship between factor domain and
decision domain, and ri j is the membership degree. Multi-
factor decision should consider the weighted grade for each
factor in the fusion process, and the fuzzy subset A =
{a1, a2, . . . , am} is the weighted set in factor domain U, where
ai (a ≤ ai ≤ 1) is the weight value of the single factor ui in
the total decision. When A and R is determined, the fusion
is carried out by fuzzy transformation B = A ◦ R, and B is
equivalent fuzzy subset in the evaluation set V, the element
bj ( j = 1, 2, . . . ,n) is the fusion result for grade vj , and ◦ is
the fuzzy synthesis operator.

3.2. Damage Information Fusion Based on Fuzzy Set. Consid-
ering the various damage factors of the key components, the
damage decision in the structural health monitoring should
use one or multilevel fuzzy fusion. According to the precision
and accuracy of all kinds of sensor, the factor fuzzy vector can
be determined by the expert experience or analytic hierarchy
process, and the membership function is Gaussian model.

Taking a space structure as an example, the change of
deflection and the change of strain, predicts damage values
by SVM and modal curvature rate is the main parameters
accurately reflect the structural damage information and
these are easy to collect. Therefore, these parameters of the
key components are monitored. The structural health status
is divided into 4 grades: intact, minor damage, moderate
damage, and severe damage. The evaluation and grade index
are shown in Table 1.

After the fuzzy damage subset is determined, the mem-
bership value for the specific damage status in each damage
grade can be calculated. In order to meet the requirements
of project design, the quantitative description of damage
degree is needed. To highlight the dominance hierarchy,
the comprehensive damage index for decision making is
suggested as

GFD =
∑4

i=1 b
k
i Dai∑4

i=1 b
k
i

, (6)

where bi is the membership value of the i-level damage and
Dai is the median value in the i-level damage. K is the
comprehensive adjustment index, and it is recommended
that k is taken as 2.

4. Decision-Level Fusion for
Damage Information Based on
Matter-Element Model

The matter-element analysis theory was put forward by
Cai Wen to solve the incompatible problems in the 1980s
[18]. The theoretical system had been established from
the initial matter-element analysis to extension engineering
theory. The basic content of matter-element analysis is as
follows. Firstly, define the class intervals of each evaluation
indicator. Then, calculate the single index correlation degree
to determine the damage status by single indicator. Finally,
the comprehensive damage grades of all indicators are gained
by model integration. Therefore, the evaluation results of
matter-element analysis are more reasonable and accurate
than other methods.

A given thing is named N, whose characteristic C is
valued X. The orderly ternary group R = (N ,C,X) is the
basic element for describing things, which is named matter-
element for short. One thing has a number of characteristics.
If thing N has n characteristics C1,C2, . . . ,Cn and the
corresponding values are X1,X2, . . . ,Xn, the matter-element
can be expressed as the following:

R =

⎡
⎢⎢⎢⎢⎣

N C1 X1

C2 X2
...

...
Cn Xn

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

R1

R2
...
Rn

⎤
⎥⎥⎥⎥⎦
. (7)

If the thing has m levels with N01,N02, . . . ,N0m, the
matter-element R0 j is

R0 j =
(
N0 j ,Ci,X0 ji

)
=

⎡
⎢⎢⎢⎢⎣

N0 j C1 X0 j1

C2 X0 j2
...

...
Cn X0 jn

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N0 j C1

〈
a0 j1, b0 j1

〉

C2

〈
a0 j2, b0 j2

〉

...
...

Cn

〈
a0 jn, b0 jn

〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(8)

where N0 j is the jth elevation level ( j = 1, 2, . . . ,m); ci is the
ith evaluation indicator; X0 ji is the jth-level value range of
ci, that is, the classical domain. The range of X0 ji is interval
〈a0 ji, b0 ji〉, which can be recorded as X0 ji = 〈a0 ji, b0 ji〉, i =
1, 2, . . . ,n.

According to the classical domain, the section domain
(Rp) is

Rp =
(
P,Ci,Xpi

)
=

⎡
⎢⎢⎢⎢⎣

P C1 Xp1

C2 Xp2
...

...
Cn Xpn

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P C1

〈
ap1, bp1

〉

C2

〈
ap2, bp2

〉

...
...

Cn

〈
apn, bpn

〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(9)
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Table 1: Grade index for structural damage state.

Parameter N1 (intact) N2 (minor damage) N3 (moderate damage) N4 (severe damage)

Change of deflection (mm) a1-a2 a2-a3 a3-a4 a4-a5

Change of strain (ε) b1-b2 b2-b3 b3-b4 b4-b5

Predict damage values by SVM c1-c2 c2-c3 c3-c4 c4-c5

Modal curvature rate d1-d2 d2-d3 d3-d4 d4-d5

where P is the whole evaluation levels, and the Xpi is the value
range of Ci. All that is the P section domain, which can be
recorded as Xpi = 〈api, bpi〉, i = 1, 2, . . . ,n. Obviously, X0 ji

belongs to Xpi.
The matter-element of evaluation object can be expressed

as:

R0 = (P0,Ci,Vi) =

⎡
⎢⎢⎢⎢⎣

P0 C1 V1

C2 V2
...

...
Cn Vn

⎤
⎥⎥⎥⎥⎦
. (10)

The equation is called evaluation matter-element of P0.
Vi is the specific value of indictor Ci of the evaluation object.

The correlation degree (Kj(vi)) between evaluation index
and evaluation level is calculated based the classical domain
and section domain:

Kj(vi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ρ
(
vi,X0 ji

)
∣∣∣X0 ji

∣∣∣
,

(
vi ∈ X0 ji

)

ρ
(
vi,X0 ji

)

ρ
(
vi,Xpi

)
− ρ
(
vi,X0 ji

) ,
(
vi /∈ X0 ji

)
,

(11)

where ρ(vi,X0 ji) = |vi − 0.5(a0 ji + b0 ji)| − 0.5(b0 ji −
a0 ji); |X0 ji| = |a0 ji − b0 ji, |, (i = 1, 2, . . . ,n; j =
1, 2, . . . ,m), ρ(vi,Xpi) = |vi − 0.5(api + bpi)| − 0.5(bpi −
api). ρ(vi,X0 ji), ρ(vi,Xpi) are, respectively, the distances
between vi and classical domain X0 ji and section domain
Xpi. In fact, correlation degreeKj(vi) expresses the ownership
between index and the level j, which equals to the subjection
degree in fuzzy sets of Fuzzy theory. The value range of
subjection degree in fuzzy math is the closed interval [0, 1],
but the one of correlation degree is the entire range of real
axis. If Kj(vi) = maxKj(vi), j ∈ (1, 2, . . . ,m), the evaluation
indicator vi belongs to level j.

The correlation degree (Kj(P0)) of evaluation object and
its corresponding grade can be calculated by

Kj(P0) =
n∑

i=1

aiKj(vi), (12)

where ai is the weight of the corresponding index ci, and
Σai = 1. Kj(P0) is the combined value of the correlation
degree when considering the importance of indexes, and it
expresses the correlation degree between evaluation object P0

and its corresponding grade j. If Kj(P0) = maxKj(P0), j ∈
(1, 2, . . . ,m),P0 belongs to level j.

The value of the correlation degree in the real axis
expresses the subjection degree between the evaluated object
and a certain grade. The logic value of the correlation degree
in matter-element model is in the real axis (−∞, +∞) rather
than the closed interval [0, 1] in Fuzzy Math. Thus, it has
more abundant connotation than that in Fuzzy Math and
it can reveal more variant information. If Kj(P0) > 0, the
evaluation object is in line with the requirements of a certain
grade standard, and the degree of the accordance increases
with its value. If −1 < Kj(P0) < 0, the evaluation object is
not in line with the requirements of a certain grade standard,
but it has the condition to transform into that grade, and its
greater value makes it easier to transform. If Kj(P0) < −1,
the evaluation object is not in line with the requirements of a
certain grade standard, but it does not have the condition to
transform into that grade, and its smaller value indicates the
bigger gap between evaluated object and evaluation criteria.

Compared with the analysis with fuzzy decision-making
methods, the thinking, concept of the matter-element
method, is the same. However, the matter-element analysis
theory for structural damage information fusion concept is
clear, and the selection of the correlation function is more
flexibility.

5. Decision-Level Fusion Based on Fuzzy Neural
Network Damage Information

A fuzzy neural network (FNN) is a learning machine that
finds the parameters of fuzzy sets, by exploiting approxi-
mation techniques from neural networks. The FNN model
makes use of two artificial intelligent (AI) techniques: fuzzy
logic and artificial neural network (ANN). Both neural
networks and fuzzy systems have some characteristics in
common. They can be used for solving a problem if
there does not exist any mathematical model of the given
problem. Neural networks can only work if the problem
is expressed by a sufficient amount of observed examples.
These observations are used to train the black box. On the
one hand no prior knowledge about the problem needs to be
given. On the other hand, however, it is not straightforward
to extract comprehensible rules from the neural network’s
structure. On the contrary, a fuzzy system demands linguistic
rules instead of learning examples as prior knowledge.
Furthermore the input and output variables have to be
described linguistically. If the knowledge is incomplete,
wrong or contradictory, then the fuzzy system must be
modified. Since there is not any formal approach for it, the
modification is performed in a heuristic way. This is usually
very time consuming and error-prone.
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Compared to a common neural network, connection
weights and propagation and activation functions of fuzzy
neural networks differ a lot. The integrated system, called
FNN, will possess the advantages of both ANN system
and fuzzy system. On the neural side, more and more
transparency is pursued and obtained either by restructuring
an ANN to improve its performance or by a possible
interpretation of the weight matrix following the learning
stage. On the fuzzy side, the development of methods
allowing automatic tuning of the parameters with the data
collected from real-life examples decrease the subjectivity
of the fuzzy system. Thus, ANN system can improve its
transparency, making it closer to fuzzy logic system, while
fuzzy logic system can self-adapt, making it closer to ANN
system.

In this paper, a typical five-layer FNN structure is chosen
for the markup estimation. It consists of an input layer
with identified input factors, a fuzzy layer with membership
functions, a rule layer with the collected rules for markup
estimation, a back propagation (BP) hidden layer and an
output layer with one node which is the estimated markup
percentage. The function and calculation process of each
layer is discussed below:

(1) layer 1 reads real number input variables Xi (i =
1, 2, . . . ,n), the evaluated value of each identified
influencing factor for markup estimation,

(2) layer 2 fuzzifies Xi according to the membership
functions. Every input value Xi has m membership
degree μAj

i
(Xi) ( j = 1, 2, . . . ,m), which represent the

characteristic of the influencing factor:

μAj
i
(Xi) = f

(
a
j
i , b

j
i

)
, (13)

where μAj
i

is the membership degree of Xi, f (a
j
i , b

j
i )

is the membership function, a
j
i and b

j
i are the

parameters of the membership function,

(3) layer 3 calculates μj , the active degree of the jth
rule according to the relevant fuzzy inference rules
collected for markup estimation:

μj = μAj
i
(X1)μAj

i
(X2) . . .μAj

i
(Xn), (14)

(4) layer 4 is a hidden layer using normal BP rules in
ANN, the mapping between the fuzzy input and the
fuzzy output is established, and

(5) layer 5 defuzzifies the final output M of such a neural
fuzzy system with centroid defuzzification equation
as follows:

M =
∑M

j=1 μjwj∑M
j=1 μj

, (15)

where wj is the markup percentage from the jth rule, M is the
final estimated markup percentage.

The parameters that need to be tuned are μAj
i
(Xi) of the

input membership functions and the real numbers wj from

the consequent part of the inference rules. Assume that Md is
the desired output of the FNN system. The objective function
to be minimized is defined by

E = 1
2

(M −Md)2, (16)

where E is the mean square error between the actual output
and the desired output, M is the actual output and Md is the
desired output.

The back propagation (BP) learning rule, which is
usually used in ANN training process, is adopted as a
training method of the FNN system. The parameter learning
algorithm for the above fuzzy logic rules are derived and
shown below:

∂E

∂a
j
i

= μj(X)
∑M

j=1 μj(X)
(M −Md)

wj −M

μAj
i
(Xi)

∂μAj
i
(Xi)

∂a
j
i

, (17)

∂E

∂b
j
i

= μj(X)
∑M

j=1 μj(X)
(M −Md)

wj −M

μAj
i
(Xi)

∂μAj
i
(Xi)

∂b
j
i

, (18)

∂E

∂Wj
= μj(X)
∑M

j=1 μj(X)
(M −Md). (19)

Based on above equations, the parameters a
j
i , b

j
i , and wj

could be adjusted in the following seven steps [16].

Step 1. The fuzzy logic rules for markup estimation are
collected and the input factors and the parameters of the
membership functions are identified.

Step 2. The input-output training data (X1, . . . ,Xn,Md) are
input and the membership degree of each input variable is
calculated according to the defined membership functions.

Step 3. Fuzzy reasoning is performed for the input data
(X1, . . . ,Xn). The membership value of μj of each inference
rule and the output of fuzzy reasoning Y are then calculated.

Step 4. Tuning of the real number wj of the consequent part
is performed by using (19).

Step 5. The fuzzy reasoning conducted in Step 3 is repeated.

Step 6. Tuning of the parameters a
j
i and b

j
i is done by

substituting the tuned real number wj obtained in Step 4, the
output M, the membership value μj , and output data Md into
(17) and (18).

Step 7. The objective function (or the inference error) (16)
is calculated, and Step 3 through Step 6 are repeated until its
change ΔE = E(t) − E(t − 1) is less than a desired threshold
value.

6. Simulation Example

The damage detection and damage data fusion of a single-
layer spherical lattice dome is studied in order to validate the
information fusion methods in this paper. The diameter of
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Table 2: Grade index for element 105 damage state.

Parameter N1 (intact) N2 (minor damage) N3 (moderate damage) N4 (severe damage)

Change of deflection (mm) 0–3 3–8 8–15 15–30

Change of strain (ε) 0–0.001 0.001–0.003 0.003–0.008 0.008–0.02

Predict damage values by SVM 0–0.05 0.05–0.1 0.1–0.5 0.5–1

Modal curvature rate 0–0.1 0.1–0.25 0.25–0.6 0.6–1

the lamella dome is 30 meters, and the height is 15 meters.
The material is seamless steel pipe. The external diameter of
the circumferential pipes is 0.18 meter and the thickness is
0.005 meter. The external diameter of the radial pipes and the
oblique pipes is 0.2 meter, and the thickness is 0.006 meter.
The supports are all fixed hinges. The dead load is 200 Kg/m2.
The dome is divided into four regions by its symmetry,
which is showed in Figure 3. Five vertical acceleration sensors
adapting signal amplifier at the terminal are located at the top
center and the middle joints in each region, and the locations
are showed by hollow circles in Figure 3.

The four regions are considered independent, but the
sensor in each region has the sensibility to the damage not
only in its own region but also to the regions, and the total
support vector machines damage diagnosis matrix SDM has
the following form:

SDM =

⎡
⎢⎢⎢⎣

S11 S12 S13 S14

0 S22 0 0
0 0 S33 0
0 0 0 S44

⎤
⎥⎥⎥⎦. (20)

The finite element program ANSYS is used for structural
damage simulation under ambient vibration. The vibration
is simulated by discrete white noise in three orthogonal
directions, and the acceleration amplitude at the supports
is 2 × 10−3 m/s2. The sampling interval is 0.05 second
and the duration is 200 seconds. The elements’ damages
are simulated by the descendent of Young’s modulus in
some key elements and the damage ratios is 50%, the
model is simulated under five group of ambient vibration
waves, respectively. The damage element number is 29,
105, 126, 32, and 91, as shown in Figure 3. Wavelet packet
decomposition is applied to the structural response signals
under ambient vibration, and feature vectors are obtained
by feature extraction method with energy-damage state in
[16]. Four group of feature vectors are used for training
and classification as the inputs of the tighten support vector
machine. For each Si j in SDM, the SVM method is used
to a single-layer dome for damage diagnosis. The structural
damage location and degree can be detected and classified.
For example, when the element 105 damaged, the diagnosis
matrix SDM is as follows:

SDM =

⎡
⎢⎢⎢⎣

0.5 0.5 0 0.5
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎦. (21)
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Figure 3: The of layout graph of the spherical lattice shell and the
numbering and zones.
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Figure 4: Membership grade of the change of deflection.

Therefore, the predicted damage probability of element
105 is p(x) = 0.75, the damage self-information is 0.125,
and the damage entropy is 0.031. The damage in element
105 is likely to be 50%. Hence, it is clear that the damage
self-information and entropy can accurately indicate the
damage information in element 105. The similar results can
be obtained for other damaged element. Considering the
mechanical properties and usage of element 105, the grade
index about damage state is listed in Table 2.
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Table 3: Normal output of FNN for different damage grade.

Parameter N1 (intact) N2 (minor damage) N3 (moderate damage) N4 (severe damage)

Fuzzy normal output 0–0.1 0.1–0.3 0.3–0.6 0.6–1

Consider the importance and calculation accuracy of
the grade index about damage state in the factor domain,
the weight value matrix of the change of deflection, the
change of strain, predict damage values by SVM and
modal curvature rate is A = [0.2, 0.25, 0.4, 0.15]. The real
simulation result of element 105 is [9.17 mm, 0.0018, 0.5,
0.38]. Damage information fusion based on fuzzy set is
carried out for element 105, the membership function is
established according to the method previously described
and specified index in Table 2. For example, the membership
function of the change of deflection is shown in Figure 4.

The fuzzy relation matrix is calculated according to
(5) and combined with the weight value matrix, the fuzzy
damage vector is

B = A ◦ R = [0.2, 0.25, 0.4, 0.15]

×

⎡
⎢⎢⎢⎣

0.002 0.225 0.735 0.112
0.110 0.967 0.209 0.057

0 0 0.5 0.5
0 0 0.955 0.191

⎤
⎥⎥⎥⎦

= [0.028, 0.246, 0.549, 0.265].

(22)

It can be seen from the fuzzy damage vector B that
the maximum membership value belongs to the moderate
damage, so the medium damage is judged to occur, which
is consistent with the actual situation. According to (6), the
comprehensive damage index for decision making is 0.541,
thus the damage state of element 105 is accurately quantified.

According to Table 2, the grade index range for element
in various damage degrees is the domain of classical matter-
element:

R01 =

⎡
⎢⎢⎢⎣

intact change of deflection 〈0, 3〉
change of strain 〈0, 0.001〉

SVM value 〈0, 0.05〉
model curvature rate 〈0, 0.1〉

⎤
⎥⎥⎥⎦ · · ·R05

=

⎡
⎢⎢⎢⎣

severe damage change of deflection 〈15, 30〉
change of strain 〈0.008, 0.02〉

SVM value 〈0.5, 1〉
model curvature rate 〈0.6, 1〉

⎤
⎥⎥⎥⎦.

(23)

Referring to Table 2, the correlation degree is calculated
according to (11) and (12), and the results are shown in
Figure 5. The value for moderate damage is the maximum,
so the element is judges as a medium damage, and the
conclusion is as same as the final result from fuzzy fusion
decision.

Damage simulation is carried out for element 105, and 2
of training samples are simulated for each damage grade in
Table 1, and the normal output of FNN for different damage
grades is listed in Table 3. A four inputs and one output fuzzy

1 2 3 4
−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05
0

D
am

ag
e 

re
la

ti
on

al
 d

eg
re

es
 o

f 
el

em
en

t

Severe damageIntact Minor damage Moderate damage

Figure 5: Damage relational degrees of element by matter-element
method.

neural network is established based on the training samples,
in which there are four Gaussian membership functions
for each input, the network topology of the FNN model is
shown in Figure 6. All the 80 samples are input to the neural
network is trained to generate the fuzzy neural network. On
the other hand, another new 30 test samples, which include
the actual damage vector [9.17, 0.0018, 0.5, 0.38], are used
as the input to verify the accuracy. The Root-mean-square
error during training and test is shown in Figure 7 and the
membership grade of deflection variation after training by
FNN is shown as Figure 8. The output curve is shown as
Figure 9, and the output is 0.520, belong to the medium
damage range. It shows that fuzzy neural network also apply
to structural damage information fusion and has certain
reasoning prediction function.

7. Conclusion

Structural health monitoring is a multidisciplinary and
integrated technology, especially applied in complex civil
engineering. For a SHM system, various types and large
number sensors are used, since the damage and status change
is hard to be detected only by one type of sensor and few
method, the damage information fusion is a critical need for
SHM system. The damage information fusion includes data
level fusion, feature-level fusion and decision-level fusion.
The data level fusion is solved by the statistic method,
signal filter technology and other preliminary method. For
feature-level fusion, the integrated damage diagnosis matrix
is presented and the concept of damage self-information and
damage information entropy is defined, and the information
for different sensors belong to the same type is integrated
to detect the damage degree for one target or component.
For decision-level fusion, three methods based on fuzzy set
theory, matter-element theory and fuzzy neural network,
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Figure 6: The network topology of the FNN model.
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Figure 7: Root-mean-square error during training and test.
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Figure 8: Membership grade of deflection variation after training
by FNN.
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Figure 9: Output curve of FNN.

respectively, is presented. All the method can obtain a final
result by the different information from various types of
sensors. A single-layer spherical lattice dome is studied in
order to validate the information fusion methods in this
paper. The result shows that all the information fusion
methods have high accuracy and feasibility.
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