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Suppose that n nodes with n0 acquaintances per node are randomly deployed in a two-dimensional Euclidean space with the
geographic restriction that each pair of nodes can exchange information between them directly only if the distance between them
is at most r, the acquaintanceship between nodes forms a random graph, while the physical communication links constitute a
random geometric graph. To get a fully connected and secure network, we introduce secrecy transfer which combines random
graph and random geometric graph via the propagation of acquaintanceship to produce an acquaintanceship graph Gn,n0 , a kind
of random geometric graph with each edge representing an acquaintanceship between two nodes. We find that components of
graph Gn,n0 that undergoes a phase transition from small components to a giant component when n0 is larger than a threshold,
the threshold for Gn,n0 to be a connected graph is derived. In addition, we present its implementation method and applications in
wireless sensor networks.

1. Introduction

Suppose at a classroom with n students, each of whom initial-
ly has n0 acquaintances who are randomly chosen among
them. Students can only communicate with its direct neigh-
bors. At first, students are isolated. If two adjacent students
are acquainted with each other, a link forms between them.
As time goes on, some small acquaintance groups emerge.
Two stranger students, say Alice and Bob, belonging to
different groups may be adjacent, but if there are students
in the two groups, respectively, familiar with each other,
Alice and Bob may use them as introducers to establish a
link between them. By repeating this process, students will
be increasingly interwoven by such links, creating a web
of acquaintances. We denote this construction as secrecy
transfer and the resulting network as the acquaintanceship
graph Gn,n0 . We are here interested in the question: for which
critical threshold of n0 is there likely to be a connected
acquaintanceship graph?

At first glance, the acquaintanceship graph is a kind of
social networks, such as the patterns of friendships between
individuals. Technically, the acquaintanceship graph is a
combination of random graph [1] and random geometric
graph [2]. A random geometric graph Gn,r is a graph

resulting from placing n nodes randomly in a plane and
connecting each pair of nodes if their distance is at most
the radius r, while a random graph Gn,p is a graph with n
nodes in which each edge (out of the ( n

2 ) possible edges) is
chosen independently at random with an edge probability
p. The acquaintanceship graph Gn,n0 has both properties
of random graph and random geometric graph. Initially,
n nodes are placed randomly on a plane, every node has
n0 acquaintances. In the view of acquaintanceship, it can
be considered logically as a random graph Gn,p without
geographical position restriction. If graph Gn,n0 is connected,
everyone can make the acquaintance of arbitrary nodes in
the graph. Intuitively, we think that there is a threshold
value. If n0 is larger than that value, the graph Gn,n0 may
be connected. If the communication between any pair of
acquaintances is considered secure and trusted, through the
introduction of acquaintances, any one can extend his circle
of acquaintance and eventually get secure communication
with arbitrary nodes in the graph Gn,n0 .

Random graphs and random geometric graphs have been
studied extensively, but in a separate way. Random graph and
its variations have been used as models of social structure
in, for example, epidemiology [3], while random geometric
graph is always viewed as a wireless communication network
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Figure 1: Secrecy transfer.

[4, 5], such as Ad hoc, Mesh, or sensor networks. In fact,
random graphs and random geometric graphs have different
structural properties. Any two nodes in a random graph can
be connected by a link with certain probability regardless
of their geographical position. Random key graphs have
been recently been used by Di Pietro et al. [6] to model
the random key predistribution scheme of Eschenauer and
Gligor [7]. The random key graph is a random graph
obtained as follows: n nodes, each assigned a subset of keys,
are distributed uniformly at random on a given field. An
edge is added if two nodes are within a radius r and share
at least one common key. Formally, the resulting graph,
matching a random graph with identical link probability to
a random geometric graph, can be considered as the initial
graph of the acquaintanceship graph Gn,n0 , if two nodes,
sharing one common key, are referred to as acquaintances.
Note that, unlike random key graphs, secrecy transfer is a
growth model and can be considered as a stochastic process.
We are interested in the crucial property, connectivity,
of the resulting acquaintanceship graph. In [8], we use
secrecy transfer to enhance the security performance of key
infection [9]. In fact, secrecy transfer in [8] only focuses
on key establishment between adjacent nodes who are in a
connected component; otherwise, key infection is applied to
establish a secret link key. Obviously, it is a tradeoff between
key infection and secrecy transfer discussed in this paper.
In this paper, some results are given and complemented by
simulations, especially the connectivity threshold.

Organization. First, secrecy transfer is presented in
Section 2. We derive the connectivity threshold of value n0

in Section 3. Next, in Section 4, we present the analysis of
secrecy transfer in heterogeneous networks. Section 5 gives
an implementation method of secrecy transfer. In Section 6,
some applications are given. Finally, we conclude the paper
in Section 7.

2. Secrecy Transfer

Let n nodes be distributed uniformly and independently at
random in a field [0, 1]2, each of them has n0 acquaintances.
A pair of nodes are adjacent only if the distance between
them is at most the radius r. Suppose nodes A and B are
adjacent, that is, the distance between them |A − B| < r.
Initially, A and B are connected if they are acquainted with
each other (initialization phase, see Figure 1(a)). If nodes A
and B are connected by a path, an edge A − B is added

(see Figure 1(b)). As time goes on, the graph Gn,n0 evolves
continuously, and gradually consists of some components. If
node A belongs to a component CA, and B has acquaint with
at least one of nodes in the component CA, say node C in
CA, we connect A and B by a new edge (see Figure 1(c)). For
the case where A and B belong to different component CA

and CB, if there exist two acquaintance nodes C and D in CA

and CB, respectively, we introduce an edge between A and B;
Otherwise, A and B are disconnected at present stage. If there
is no new edge is added for any pair of adjacent nodes, secrecy
transfer reaches the stable state and the algorithm terminates.
Continuing this process, we can get a acquaintanceship graph
Gn,n0 .

As depicted in Figure 2, 100 nodes are randomly dis-
tributed over a 100 × 100 m2 field, n0 = 4, and the radius
r = 20 m. At first, two adjacent nodes connect with the
probability p = n0/n = 0.04, and we get the initial
acquaintanceship graph Gn,n0 , as illustrated in Figure 2(a).
After repeating secrecy transfer process on the graph Gn,n0 , it
gradually evolves into the graph shown in Figure 2(g), which
approximates to the underly random geometric graph Gn,r .

One of our goals is to design a security mechanism to
enable any two adjacent nodes to establish a pairwise key
after they are deployed in a field. More specifically, suppose
that every node in the network has been preloaded before
its deployment with n0 secret keys, each of which is shared
with one of its acquaintances. Let nodes A and B be two
adjacent nodes, |A − B| < r. If nodes A and B happen to
be acquaintances, they share a key KAB which can be used
to protect their communication link. If A and B are not
acquaintances, but are connected by a path (Figure 1(b)),
A can generate a new key KAB and send it to B along
the path. As more secure edges are added to the graph
Gn,n0 , larger components emerge. Suppose node A belongs
to a component CA, (as plotted in Figure 1(c)) if node B
acquaints with a node C ∈ CA, which means that nodes
B and C have a shared key KBC . In this case, node A
randomly generates a key KAB and sends it along a path in the
component CA to node C. Node C encrypts KAB with the key
KBC , that is, {KAB}KBC

and sends the result back to A. Node A,
then, sends {KAB}KBC

to B via the unsecure channel. Finally,
node B can get key KAB, for it has the key KBC . In another
case, where nodes A and B belong to different components
CA and CB, but node C ∈ CA acquaints with node D ∈ CB,
as shown in Figure 1(d). Node A first sends a key KAB to node
C. Node C encrypts KAB with key KCD which is shared with
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Figure 2: An example of secrecy transfer process, with n = 100 nodes randomly distributed over a 100× 100 m2 field, n0 = 4, and r = 20 m.

node D and sends {KAB}KCD
to node D via nodes A and B.

For node D has KCD, it can decrypt the message {KAB}KCD
to

obtain KAB.
Given a randomly deployed network with n nodes, we

can view it as a random geometric graph Gn,r with each
edge representing a possible communication link. Without
the protection of a secret key, an adversary can eavesdrop
conversations between nodes. If each node has several trusted
nodes initially, the trust relationship can be considered as
a random graph Gn,p with each edge connecting a pair of
nodes which have shared a secret key. However, random
graph does not consider the transmission radius of nodes,
but simply assumes any two nodes have the same probability
p to establish a connection. When the distance between
two nodes is larger than the transmission radius r, they
cannot communicate directly. Roughly speaking,Gn,p reflects
the logical trust relationship between nodes, while Gn,r

depicts the physical communication structure of nodes in the
network. Secrecy transfer constructs a graph Gn,n0 from Gn,r

and Gn,p (where p = n0/n) and turns it to a secure random
geometric graph by adding secure edges to it.

The construction of secrecy transfer above reveals that,
the graph Gn,n0 is robust against eavesdrop attack, for each
edge is added via the existing trustiness between nodes.
If cryptographic attacks are considered impractical, the
adversary cannot break {KAB}KCD

to get the key KAB, for the
key KCD shared between C and D is loaded initially.

3. Connectivity Threshold

The component structure of the graph Gn,n0 changes gradu-
ally as secrecy transfer is applied. As illustrated in Figure 2(a),
after the initialization phase, the greatest component of Gn,n0

is tree of small order. Gradually, a giant component emerges,
swallowing the whole network, provided the underly random
geometric graph Gn,r is connected and n0 is large enough.

Suppose two adjacent components, CA and CB, have,
respectively, m1 and m2 vertices, nodes A in CA and B in CB
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are adjacent. We first estimate the probability Pm1,m2 that two
adjacent components CA and CB may get connected to form
a larger component.

Let random variable X be the total number of nodes
with whom nodes in component CA are familiar, Xi be a
bernoulli random variable, where Xi = 1 when the circle
of acquaintances of node i includes at least one node in the
component CA, Xi = 0 otherwise. Therefore,

X = X1 + X2 + · · · + Xn. (1)

If component CA consists of m1 nodes, we have the
probability of Xi = 1,

P(Xi = 1) = 1− (1− P)m1 , (2)

where P = n0/n.
Thus, the expectation of random variable Xi is E(Xi) =

1− (1− P)m1 .
For X1, X2, . . . , Xn are mutually independent, the expec-

tation of X is

E(X) =
n∑

i=1

E(Xi) = n
[
1− (1− P)m1

]
, (3)

which means that, for a component of order m1, the circle
of acquaintances of this component may consist of n[1 −
(1 − P)m1 ] nodes on average. Let a = n[1 − (1 − P)m1 ],
the probability Pm1,m2 that there is at least one common
acquaintance between components CA and CB is

Pm1,m2 = 1−
(

1− a−m1

n−m1

)m2

. (4)

For example, one may see that, for a network n = 10, 000,
m1 = 200, and m2 = 1, the probability Pm1,m2 tends to 1
when P > 0.02. This provides intuition that, a component of
order 200 is attractive and will swallow nodes nearby to form
a larger component, a kind of “rich get richer” phenomenon.
For two components of order m1 = m2 = 50, the probability
Pm1,m2 approximates 1 if P > 0.002. In general, the larger
the components are, the more likely they are to be mixed
together.

In a random graph Gn,N with n vertices and N edges, if
N ∼ cn with c ≥ 1/2, the greatest component has (with
probability tending to 1 for n → +∞) approximately n2/3

vertices [10]. As a special case, when n = 10, 000, n2/3 ≈ 464,
such large component in graph Gn,n0 will swallow the whole
network with high probability.

Next, we investigate the relationship between the connec-
tivity property of graph Gn,n0 and value n0. To determine the
value n0 which will guarantee the connectivity of graph Gn,n0 ,
we employ a well-known algorithm to generate random
graphs Gn,p with a given degree distribution [11]. Each graph
generated has n nodes and n0 = np links per node. The
algorithm may lead to a multigraph, either by connecting a
node to itself or by connecting two nodes together more than
once. However, as n increases, these events become rare and
their number becomes statistically insignificant.

We first generate a random graph with n nodes and n0

links per node, then deploy the nodes into a square region
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Figure 3: Size of the maximum and second components in graph
Gn,n0 for n = 500, r = 35 m.

to obtain a random topology. For n = 500, r = 35 m,
and n0 varying, we repeat our simulations 50 times to yield
an acceptable confidence of results. For each simulation,
we measure empirical values for the maximum component
and the second component for each trial, averaged over 50
random topologies. In Figure 3, an interesting phenomenon
observed is a “phase transition” as n0 increases. There is a
critical value of n0, above which the graph will almost surely
be connected. The maximum component grows rapidly from
a component of small size to a giant component when
n0 > 10. On the contrary, the size of the second component
decreases as n0 > 10.

Within this context, we want to know, under what
conditions is the graph Gn,n0 be connected? How can we
choose n0 such that the graph Gn,n0 constructed by secrecy
transfer will be connected with high probability? The answer
to this question is crucial in determining the number of
acquaintances that an arbitrary node should have initially.

3.1. Lower Bound of Connectivity Threshold. To get a fully
connected graph Gn,n0 , two conditions must be satisfied.
First, the graph Gn,r must be connected, which means that,
given the value n and a deployment region, the value r should
be large enough to guarantee a connected random geometric
graph Gn,r . Assume n nodes are uniformly deployed in a
unit square [0, 1]2, the well-known connectivity threshold

rc =
√

(log n±O(1))/πn [5]. Second, the value n0 must be
large enough to get the random graph Gn,p fully connected.
Consider an arbitrary pair of adjacent nodes A and B in
graph Gn,n0 which have not established secret key between
them. ForGn,p is connected, there is at least one path in graph
Gn,p, say PAB = Ax0x1 · · · xkB between nodes A and B. Given
any adjacent nodes in path PAB, say xi and xi+1, there must
exist a path P′ = xi y1y2 · · · ytxi+1 from xi to xi+1 in graph
Gn,r , for graph Gn,r is connected.
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For a random graph Gn,p, when p is zero, the graph
does not have any edge, whereas when p is one, the graph
is fully connected. Bollobás showed that, for monotone
properties, there exists a value of p such that the property
moves from “nonexistent” to “certainly true” in a very large
random graph [1]. The function defining p is called the
threshold function of a property. Given a desired probability
Pc for graph connectivity, the threshold function p of Gn,p is
defined by

Pc = lim
n→∞Pr

[
Gn,p is connected

]
= ee

−c
, (5)

where p = ln(n)/n + c/n and c is any real constant.
Therefore, given n we can find p for which the resulting

graphGn,p is connected with desired probability Pc. Thus, the
lower bound of connectivity threshold of n0 is

n0 = p × (n− 1) = n− 1
n

[ln(n)− ln(− ln(Pc))]. (6)

3.2. Analysis Results of Connectivity Threshold. Notice that
when n0 is below the lower bound of connectivity threshold
mentioned above, the graph Gn,p is not connected with high
probability, and hence the graph Gn,n0 also is not connected
with high probability. However, a greater n0 above the lower
bound cannot guarantee a connected graph Gn,n0 when n′ is
small, where n′ is the average number of neighbors of a node.
For a tighter bound of n0, correlated with n, n′, is not known
yet, we only present some analysis results of n0 below.

After the initialization phase of secrecy transfer, we get
a random graph. Erdös and Rényi showed that for random
graphs, a giant component exists if the average degree of
node 〈k〉 > 1[10] . If 〈k〉 < 1 only small components exist,
and the size of the largest component is proportional to
lnn (n is the number of nodes in the graph). Exactly at the
threshold, 〈k〉 = 1, a component whose size is proportional
to n2/3 emerges. In the sequel, when n = 10, 000, n′ = 10, and
n0 = 200, after the initialization phase of secrecy transfer, the
average degree of nodes in the graph Gn,n0 , 〈k〉 = n′(n0/n) =
10 × (200/10000) = 0.2. In this occasion, the initial graph
Gn,n0 only consists of small components, such as trees of small
size. As the simulation results of initialization phase shown
in Figure 2(a), the graph Gn,n0 only contains small isolated
trees. Our goal is to determine how many such components
exist, and the probability that they will be connected to form
a giant component.

Let the graph Gn,n0 in the initialization phase contains
components C1,C2, . . . ,Ci, such that the size of component
Ci is |Ci| = λi, and λ1 ≥ λ2 ≥ · · · ≥ λi ≥ 2. For two
components Ci and Cj of order λi and λj , if they are adjacent,
the probability that they will be connected through secrecy
transfer is

Pλ1,λ2 = 1−
(

1− a− λ1

n− λ1

)λ2

, (7)

where a = n[1− (1− P)λ1 ], P = n0/n.
When secrecy transfer is applied, the graph Gn,n0 will

evolve continuously. A larger component is more attractive

and will swallow nodes nearby to form a larger component
with high probability. Popularity is attractive. If a component
can absorb nodes nearby by secrecy transfer, it is termed
as expandable. Next we estimate the asymptotic probability
Pexpandable that at least one component in C1,C2, . . . ,Ci is
expandable. At first we estimate the number of neighbors n′λ
of a component of size λ.

Suppose n nodes distributed uniformly and indepen-
dently at random in a unit area S, that is, S = 1. Let a
component C of size |C| = λ lie inside a circle of radius R, n′λ
neighbors of the component C lie outside the circle and be
at distance at most r from nodes in the component. Let S′ be
a subarea in the deployment area S, S′ � S. The probability
that a node is placed within area S′ is P = S′/S = S′. Then,
the probability P(x) that of t nodes are placed in the area S′

is

P(x = t) =
(
n
t

)
Pt(1− P)n−t . (8)

When n � 1 and S′ � S, we can approximate it with a
Poisson distribution,

P(x = t) ≈ e−nP · (np)t
t!

= e−nS′(nS′)t

t!
, (9)

and the average number of nodes within area S′ is

t = nS′. (10)

In the initial graph Gn,n0 , any component of size λ is small
(λ � n), and the area S′ it occupied is also small, that is,
S′ � S = 1. Therefore, we have approximately

λ = nπR2, n′ = nπr2. (11)

Thus,

n′λ = n
[

(R + r)2π − r2π
]
= n′ + 2

√
λn′. (12)

Therefore, the probability Pλ that a component of size λ
is expandable is

Pλ = 1− (1− Pλ,1
)n′λ , (13)

where Pλ,1 = (a− λ)/(n− λ), a = n[1− (1− P)λ], P = n0/n.
For a set of components C1,C2, . . . ,Ci, |Ci| = λi, the

probability Pexpandable can be calculated as

Pexpandable

= 1− (1− Pλ1

)(
1− Pλ2

) · · · (1− Pλi
)

= 1− (1− Pλ1,1
)n′λ1

(
1− Pλ2,1

)n′λ2 · · · (1− Pλi ,1
)n′λi

≈ 1− exp
{
−
(
n′λ1

Pλ1,1 + n′λ2
Pλ2,1 + . . . + n′λiPλi ,1

)}
.

(14)

Note that for two sets of components C =
{C1,C2, . . . ,Ci} (|Ci| = λi) and C′ = {C′1,C′2, . . . ,C′i}
(|C′i| = λ′i ), if λ1 ≥ λ′1, λ2 ≥ λ′2,. . . λi ≥ λ′i , then

n′λ1
≥ n′λ′1 , . . . ,n′λi

≥ n′λ′i ,

Pλ1,1 ≥ Pλ′1,1, . . . ,Pλi ,1 ≥ Pλ′i ,1.
(15)
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Therefore, the probability Pexpandable that at least one
component in set C is expandable is greater than that in set
C′.

Given parameters n, n′, and n0, after the initialization
phase of secrecy transfer, the graph Gn,n0 may contain
some components C1,C2, . . . ,Ci. The expandable probability
of this component set Pexpandable → 1, implies that at
least one component in C1,C2, . . . ,Ci is expandable and
will grow larger with high probability. Let a component
C1 be expandable and become a larger component C′1 by
swallowing nodes nearby. For |C′1| > |C1|, the expandable
probability P′expandable of components C′1,C2, . . . ,Ci is greater
than the expandable probability Pexpandable of components
C1,C2, . . . ,Ci, that is,

P′expandable > Pexpandable −→ 1. (16)

Thus, if the expandable probability Pexpandable of the
initial graph approximates 1, it will become even greater
almost surely, and the graph Gn,n0 will eventually evolve
into a connected graph with high probability if both Gn,p

and Gn,r are connected graphs. However, small expandable
probability of the initial graph Gn,n0 cannot guarantee a
connected graph with high probability and secrecy transfer
will terminate with isolated components.

However, exact results of the critical threshold n0 are not
known yet, we only present some analysis results below.

In an Erdös-Rényi random graph Gn,N with n nodes and
N links [10], if N ∼ l · n(k−2)/(k−1) where l > 0, then the
number of trees of order k contained in Gn,N has in the limit
for n → +∞ a Poisson distribution with mean value

−
λ= (2l)k−1kk−2

k!
. (17)

Among these trees, the probability Pexpandable that at least
one tree of order k is expandable is

Pexpandable = 1− (1− Pk)
−
λ, (18)

where Pk is the probability that a tree of order k is

expandable, Pk = 1 − (1− Pk,1)n
′
k , n′k = n′ + 2

√
kn′, Pk,1 =

(a−k)/(n−k), a = n[1−(1− n0/n)k], and
−
λ= (2l)k−1kk−2/k!.

For the graphGn,n0 after the initialization phase of secrecy
transfer, the number of links in Gn,n0 is

N = 1
2
n · n′P = 1

2
n · n′ n0

n
= 1

2
n′n0 ∼ l · n(k−2)/(k−1), (19)

which yields the result

k ∼ 1 +
lnn

ln(2ln/n′n0)
. (20)

Using the above considerations, we can estimate the
expandable probability Pexpandable of the components (trees)
of order k.

We see that, for n = 10, 000, n′ = 10, and n0 = 100, the
probability Pexpandable ≈ 0.6991; for n0 = 200, the probability
Pexpandable ≈ 1. This indicates that, in this occasion, for

n0 ≥ 200, the graph Gn,n0 will eventually evolve into a
connected graph by secrecy transfer with high probability.
However, for n0 < 100, the graph Gn,n0 may be fragmented
and contains no giant component of order n. Furthermore,
the critical threshold of n0 is rather sensitive to n′. For
n = 100, 000, n′ = 30, and n0 = 200, the probability
Pexpandable ≈ 0.9337. If we reduce n′ to 5, then Pexpandable ≈
0.5391. This is because the decline in n′ will result in the
decline in the number of neighbors of a component, so does
the expandable probability.

On the other hand, the probability P0 that secrecy
transfer cannot take place after the initialization phase is

P0 =
[(

1− n0

n

)n′]n

=
(

1− n0

n

)n·n′
≈ e−n0·n′ , (21)

which is only dependent on n0 and n′. Less n0 or n′, higher
the probability P0.

4. Heterogeneous Network

Consider graph Gn,r of n nodes with n0 acquaintances per
node randomly selected among the nodes in the graph, we
are also interested in the number of rounds needed for
secrecy transfer to reach a stable state. It is shown in Section 3
that a necessary condition for graph Gn,n0 to be connected is
that graphs Gn,p and Gn,r must be fully connected. However,
the speed of the convergence of secrecy transfer depends
on the values of n0, r for given n. To gain insight, we first
consider the value r and perform a simulation-based study
of it. Employing a uniform random generator, we position
n = 500 nodes in a square planar region of 500 × 500 m2,
following our deployment from Section 3. For each random
topology, we estimate the speed of the convergence of secrecy
transfer as the number of rounds that it needs to perform to
reach its stable state. At each round, each pair of adjacent
nodes in the graph Gn,n0 employ secrecy transfer to try to get
connected. If there is no new edge is added in this round,
secrecy transfer reaches its stable state and terminates. We
observe from Figure 4 that, as the value r increases, the stable
state is reached with a faster speed, and for value n0, the
number of rounds reaches its peak when n0 approximates to
its connectivity threshold.

Conventionally, a wireless network consists of some
nodes as supernodes with greater communication radius
than normal nodes. The use of these supernodes lead to
important characteristics of complex networks [12]: a small
average shortest path length between all nodes, and a high-
cluster coefficient, which help us saving network resources,
avoiding excessive communication, and reducing the time
to data delivery. Figure 5 depicts plots of secrecy transfer
with n = 500 nodes deployed over a 500 × 500 m2 field,
n0 = 20, and r = 35 m, among them there are 25 supernodes
(squares in the figures) with a larger communication radius
R = 150 m and only bidirectional links are considered.

From the simulation results illustrated in Figure 6, we
conclude that, compared to the homogeneous network case,
for a heterogeneous network with supernodes, as the radius
R of supernodes grows, the value of n0 required to maintain
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connectivity of graph Gn,n0 decreases, the speed of the
convergence of secrecy transfer accelerates. Hierarchically,
supernodes can form a higher layer, while normal nodes
constitute a lower layer of the network. An implication of a
heterogeneous network is that it has better performance with
regard to improving energy, power and topology control,
scalability, and fault-tolerance and routing efficiency.

One of the most important properties of a network is
the degree distribution, or the fraction P(k) of nodes having
k connections (degree k). Although the degree distribution
alone is not enough to characterize the network, it has great
influence on the network’s structure and behavior. A well-
known result for Erdös-Rényi random graph is that the
degree distribution is Poissonian, P(k) = e−λλk/k!, where
λ = 〈k〉 is the average degree. For many real networks,
such as the Internet, WWW, citations of scientific articles,
airline networks, and many more, they often exhibit a scale-
free degree distribution, P(k) = Ck−γ, k = m, . . . ,K , where
C ≈ (γ − 1)mγ−1 is a normalization faction, and m and K
are the lower and upper cutoffs for the degree of a node,
respectively. A scale-free network with 2 < γ < 3 and N
nodes have diameter d ∼ ln ln N and can be considered
as “ultra small-world” network. In fact, the diameter of
network is relevant in many fields regarding communication
and computer networks, such as routing, searching, and
transport of information. All these processes become more
efficient when the diameter is smaller.

Intuitively, compared to homogeneous networks, a het-
erogeneous network with supernodes has a degree distribu-
tion different from Poisson distribution. Next, we discuss
the degree distribution of heterogeneous networks. Let
n nodes and s supernodes be distributed uniformly and
independently at random in a square of area 1, [0, 1]2, the
communication radii of nodes and supernodes are r and R

(r < R), respectively, and only bidirectional links are taken
into considerations.

For a heterogeneous network, there are two degree
distributions, one for each type of nodes. For normal nodes
with radii r, the degree distribution Pn(k) is Poissonian,

Pn(k) = e−λnλn
k

k!
, where λn = 〈k〉 = π(n + s)r2, (22)

whereas the degree distribution of supernodes is

Ps(k) = e−λsλs
k

k!
, where λs = 〈k〉 = π

(
nr2 + sR2). (23)

Therefore, the degree distribution P2−h(k) of the hetero-
geneous network is

P2−h(k) = n

n + s
Pn(k) +

s

n + s
Ps(k). (24)

From the degree distribution P2−h(k) derived above,
we depict and compare it with two different networks. In
Figure 7(a) we show the degree distribution of a heteroge-
neous network with n = 9, 000, s = 1, 000, r = 0.01, and
R = 0.1. In Figure 7(b), we compare P2−h(k) with power law
P(k) = k−2 and Poisson distribution P(k) = λke−λ/k!, where
λ = (n + s)πr2. As the figures shown, the degree distribution
of a heterogeneous network with two peaks is different from
a Poisson distribution and right-skewed to a power law. The
results imply that the behavior of a heterogeneous network
has some characteristics of scale-free network, such as small
diameter.

Now consider the placement of nodes with more types.
Suppose that the network contains t types of nodes, denoted
as T1,T2, . . . ,Tt. For nodes of type Ti, the number of nodes
|Ti| in it and node’s communication radius ri satisfy the
conditions,

r1 < r2 < · · · < rt,

|T1| > |T2| > · · · > |Tt|.
(25)

For simplicity, let n denote the total number of nodes in
the network, and

|T1| = n

2
, |T2| = n

22
, . . . , |Tt| = n

2t
. (26)

It is clear that when n → +∞ and t → +∞,

|T1| + |T2| + · · · + |Tt| = n ·
t∑

i=1

1
2i
−→ n. (27)

Recall that the degree of each type of nodes has a Poisson
distribution with different mean value. To derive the degree
distribution Pt−h(k) of the network, we first determine the
degree distribution Pi(k) of nodes of type Ti,

Pi(k) = e−λiλki
k!

, (i = 1, . . . , t), (28)



8 International Journal of Distributed Sensor Networks

0
50

100
150
200
250
300
350
400
450
500

0 100 200 300 400 500

(a) Initialization phase

0
50

100
150
200
250
300
350
400
450
500

0 100 200 300 400 500

(b)

0
50

100
150
200
250
300
350
400
450
500

0 100 200 300 400 500

(c)

0
50

100
150
200
250
300
350
400
450
500

0 100 200 300 400 500

(d)

0
50

100
150
200
250
300
350
400
450
500

0 100 200 300 400 500

(e)

0
50

100
150
200
250
300
350
400
450
500

0 100 200 300 400 500

(f) stable state

Figure 5: Secrecy transfer process in a heterogeneous network, n = 500, s = 25, r = 35 m, and R = 150 m.
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λ1 = πr2
1n,

λ2 = π
r2

1 + r2
2

2
n,

λ3 = π
2r2
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4
n,
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4

8
n,

λ5 = π
8r2
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5

16
n,

· · · · · · .

(29)

Therefore, the degree distribution of the heterogeneous
network with t types of nodes is

Pt−h(k) = 1
2
P1(k) +

1
4
P2(k) + · · · +

1
2t
Pt(k)

= 1
k!

(
1
2
e−λ1λk1 +

1
4
e−λ2λk2 + · · · +

1
2t
e−λt λkt

)
.

(30)

For Pt−h(k) is complicated, we present some numerical
results on it. Figure 8 shows the degree distribution Pt−h(k)
for r1 = 0.01, r2 = 0.03, r3 = 0.05, r4 = 0.07, r5 = 0.09,
r6 = 0.11, r7 = 0.13, and r8 = 0.2. As expected, the degree
distribution of the heterogeneous network approaches power
law P(k) ∝ k−2. This implies that heterogeneous network
maintains some statistical properties of a scale-free network.

Therefore, it is plausible that the convergence speed of
secrecy transfer in a heterogeneous network is faster than that
in a homogeneous network.

5. Implementation of Secrecy Transfer

In this section, we elaborate the implementation method
of secrecy transfer. The method contains three phases: the
initialization phase, the secrecy transfer phase, and the
update phase. To implement secrecy transfer efficiently, we
use Bloom Filter [13] for membership queries.

Bloom Filter. A Bloom Filter is a popular data structure used
for membership queries. It represents a set S = [s1, . . . , sn]
using k independent hash functions h1, . . . ,hk and a string of
m bits, each of which is initially set to 0. For each s ∈ S, we
hash it with all the k hash functions and obtain their values
hi(s) (1 ≤ i ≤ k). The bits corresponding to these values
are then set to 1 in the string. To determine whether an item
s′ is in S, bits hi(s′) are checked. If all these bits are 1s, s′ is
considered to be in S.

Since multiple hash values may map to the same bit,
Bloom Filter may yield false positives. That is, an element is
not in S but its bits hi(s) are collectively marked by elements
in S. If the hash is uniformly random over m values, the
probability that a bit is 0 after all the n elements are hashed
and their bits marked is (1 − 1/m)kn ≈ e−kn/m. Therefore,
the probability for a false positive is (1 − (1 − 1/m)kn)k ≈
(1 − e−kn/m)k. The right hand side is minimized when k =
(m/n) ln 2 in which case it becomes (1/2)k = (0.6185)m/n.
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Figure 6: The maximum component and rounds of secrecy transfer in heterogeneous networks.

5.1. Initialization Phase. We first generate a random graph
with n nodes and n0 links per node. For each link a
secret key is assigned to it. Each node stores the ID of
its neighbors and the corresponding secret key between
them. For instance, if node i has n0 neighbors i1, . . . , in0 , it
constructs an acquaintanceship set

Ai =
{(
i1,Ki,i1

)
, . . . ,

(
in0 ,Ki,in0

)}
, (31)

where Ki,i1 is the assigned secret key between node i and its
neighbor i1.

After that nodes are deployed randomly over a field.

5.2. Secrecy Transfer Phase. Suppose two adjacent compo-
nents, CA and CB, have, respectively, m1 and m2 nodes, nodes
A ∈ CA and B ∈ CB are adjacent. For component CA, a
component head (at first after initialization phase, each node
is a component head of its own since all nodes are isolated.
After several rounds of secrecy transfer process, some large
components emerge. To reduce the communication cost, a
node is selected to be a component head according to its
centrality in the component. To simply the procedure, the
node with the highest degree is chosen to be the component
head) is selected. He stores all the ID of nodes belonging to
the component CA in a component member set

CMCA =
{
a1, . . . , am1

}
, (32)

where ai ∈ CA.
Each node stores a Bloom Filter BFCA which contains all

the nodes in the acquaintance circle of CA. That is, the nodes
in CA and the acquaintances of node i for all i ∈ CA. If an
adjacent node k is added to CA, the Bloom Filter BFk of node
k is inserted into BFCA , that is, a new Bloom Filter BFC′A for

the new component C′A = CA + k is created, that is, BFC′A =
BFCA + BFk.

If two components CA and CB get connected and melt
into a larger component CAB, a new Bloom Filter of compo-
nent CAB, BFCAB = BFCA +BFCB , is created and stored in nodes
of CAB. To further improve the performance, not all nodes
in CA or CB need to update its BFCA or BFCB to BFCAB , only
nodes whose neighbors are not all connected to them need to
store the updated Bloom Filter BFCAB of the new component
CAB. As depicted in Figure 9, CA and CB melt into a larger
component CAB, an isolated node E is adjacent to nodes A,
B, F, and G. After CA and CB get connected, only nodes A, B,
F, and G in CAB have unconnected neighbor. Therefore, they
need to store the new BFCAB and will broadcast it later.

Next, we give an overview of the operations of secrecy
transfer. In general, the operation of secrecy transfer is
initiated by a new created component. Let CA be a new
component that has “swallowed” node H , nodes A and F
have already updated their BFCA (to insert the ID of node
H into it), and let CB be an adjacent component of CA. After
that, nodes A and F broadcast BFCA to their adjacent nodes
B and E. On receiving the BFCA from component CA, node
B sends a query message containing BFCA to the component
head of CB, say node I , where the component member set of
CB, CMCB = {b1, . . . , bm2}, is stored. The component head
I then determines whether the nodes in set CMCB are in the
Bloom Filter BFCA . If a node, say D ∈ CMCB , is found in the
Bloom Filter BFCA , node I answers node B by sending D to it.
Node B then tells A that there is a node D ∈ CB belonging to
the acquaintance circle of component CA. After that, nodes
A broadcasts a query message with the ID of node D in
component CA. Each node in CA verifies whether node D
belongs to its acquaintanceship set. As illustrated in Figure 9,
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if the acquaintanceship set of node C ∈ CA contains node
D, that is, AC = {. . . , (D,KCD), . . .}, the node C transmits
a response message (C, D) to node A. After obtaining the
acquaintance node pair (C, D) from C, node A knows that
nodes C ∈ CA and D ∈ CB are acquaint with each other (they
have a shared key KCD). Now nodes A and B can establish a
secret key KAB as mentioned in Section 2.

CA CBH

C

F

E

A
KAB

KAB B

G

I

D

{KAB}KCD

Figure 9: Secrecy transfer phase.

5.3. Updated Phase. After the secret key KAB between nodes
A and B is established, two components become a larger
component CAB, we then should update the acquaintance
circle of CAB for nodes who have unconnected neighbors. A
new component head is also need to be selected according to
the degree distribution of nodes in CAB. As to the network
in Figure 9, if node I is the new component head of CAB, the
component member set is updated to be

CMAB = CMCA + CMCB =
{
a1, . . . , am1 , b1, . . . , bm2

}
. (33)

Finally, if nodes have updated their Bloom Filter BFCAB , they
broadcast the new BFCAB to their neighbors to find chances
for new links. Recursively, this procedure is applied until
there is no node has updated its Bloom Filter.
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5.4. Security Analysis. As discussed in Section 2, secrecy
transfer is robust against eavesdrop attack, for each edge
is added via the existing trustiness between nodes. In this
subsection, we study the resilience of secrecy transfer against
the node compromise attack. Let nc denote the number of
nodes that have been captured. Suppose the compromised
nodes are independently and random distributed among the
entire deployment region.

Theoretically, as depicted in Figure 9, if any node in the
paths A− F −C and D− I − B is compromised, the key KAB

between nodes A and B is not secure. Suppose that the length
of two paths are l1 and l2, respectively. It is easy to estimate the
probability that a new established key KAB is compromised as
the following:

P
{
KAB is compromised

} = 1−
(

l1+l2
n−nc

)

(
l1+l2
n

) , (34)

where n is the number of node in the network.
Unfortunately, even if all nodes in two paths are not

compromised, the key KAB may be unsecure. For instance,
let a path from A to C be A − H1 − H2 − H3 − H4 − C, and
all nodes in the path have not been compromised. Node A
sends KAB to H1 by sending {KAB}KAH1

, H1 then transmits
{KAB}KH1H2

to node H2 until KAB reaches the last node C.
If KAH1 ,KH1H2 , . . . ,KH4C are not compromised, KAB is still
secure after it is transmitted across the path. However, if
a key, such as KH1H2 , is compromised, an adversary may
eavesdrop on the communication flows between nodes H1

and H2 to obtain {KAB}KH1H2
, thus KAB is leaked.

In general, if there are compromised nodes in the
network, any key established by secrecy transfer between
two neighbors H1 and H2 may be unsecure unless nodes
H1 and H2 are acquaint with each other initially. For any
pair of acquaintance nodes, the secret key between them is
preloaded before the network is deployed and is considered
unbreakable (unless the node is compromised). As to any
key established by secrecy transfer, compromised nodes may
degrade its security since lots of nodes are involved in the
process of the negotiation of a new link key.

In order to set up a more secure channel between nodes
A and C, it is reasonable to use the acquaintanceship set of
nodes. Suppose in a path A − H1 − H2 − H3 − H4 − C, (A,
H3), (H1, H3), and (H1, C) are three pair of acquaintances.
To send a secret key KAB to C, node A can send {KAB}KAH3

to
H3, H3 then sends {KAB}KH1H3

to H1. At last, node C can get
{KAB}KH1C

from H1. The advantage of this method is that all
communications are encrypted with predistributed keys. If
nodes A, C, H1, and H3 are not compromised, the key KAB is
secure after the transmission. However, such a secure logical
path in a set of nodes may not exist. For a path of l nodes,
their initial acquaintanceship can be viewed as a random
graph Ĝn,p, where n = l and p = n0/n. If Ĝn,p is connected, a
logical path exists.

If an adversary is not present at the network before
secrecy transfer has completed, or it takes more time than
a secure interval to compromise nodes, the communication
links established by secrecy transfer are secure; otherwise,
undetected malicious nodes may degrade the security of

secrecy transfer and jeopardize the network. In [14], authors
investigated the potentially disastrous threat of node com-
promise spreading (via communication and preestablished
mutual trust) in wireless sensor networks and proposed an
epidemiological model to investigate the probability of a
breakout. This model can be adapted to analyze the spread of
malicious behavior of compromised nodes in the process of
secrecy transfer. But how to design efficient countermeasures
is still unknown.

5.5. Storage Overhead. A node, say i, needs to store

(1) an acquaintanceship set

Ai =
{(
i1,Ki,i1

)
,
(
i2,Ki,i2

)
, . . . ,

(
in0 ,Ki,in0

)}
, (35)

where i1, i2, . . . , in0 are the acquaintances of node i,
Ki,i1 ,Ki,i2 , . . . ,Ki,in0

are the corresponding secret keys
with each acquaintance, respectively.

(2) n′ secret keys established with its neighbors,

(3) a Bloom Filter BFCA (i ∈ CA).

For a component head j ( j ∈ CA), in addition to the
secret values a normal node stores, it also stores a component
member set

CMCA = {a1, . . . , am}, (36)

where a1, . . . , am are the members of component CA, m is the
cardinality of the component.

6. Applications of Secrecy Transfer

The need for untethered distributed communications and
computing continues to drive advances in mobile commu-
nications and wireless networking. To serve this purpose,
wireless sensor networks have been envisioned to consist of
groups of lightweight sensor nodes that may be randomly
and densely deployed to observe data within a physical region
of interest [15].

In many applications, such as target tracking, battle-
field surveillance, and intruder detection, sensor networks
are often deployed in hostile environments. To protect
the sensitive data, secret keys should be established to
achieve data confidentially, integrity, and authentication
between communicating parties [16–19]. The first practical
key predistribution scheme for sensor network is random
key predistribution scheme introduced by Eschenauer and
Gligor [7]. Its operation can be briefly described as follows.
A random pool S of keys is selected from the key space.
Each sensor node receives a random subset of m keys
(key ring) from the key pool before deployment. Any two
nodes able to find one common key within their respective
subsets can use that key as their shared secret to initiate
communication. Moreover, the network can be viewed as a
random graph Gn,p, each edge added if two adjacent nodes
can find one common key within their key rings. A major
advantage of this scheme is the exclusion of base stations
in key management, but a fixed number of compromised
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sensors causes a fraction of the remaining network to become
insecure. Successive sensor captures enable the adversary to
reveal network key pool and use them to attack other sensors.
In addition, the storage overhead is still high for lightweight
sensor nodes. As mentioned previously, secrecy transfer
can turn a random graph to a secure random geometric
graph. If secrecy transfer is applied with the random key
predistribution scheme, the storage overhead of nodes is
lower and it can achieve better resilience against node capture
attack.

In [20], an asymmetric key predistribution scheme AKPS
for sensor networks was proposed. Each nodes only store two
secret values initially, a large amount of storage is shifted to
keying material servers (KMS). Since AKPS needs to provide
public keying material for any pair of nodes, a KMS should
store ( n

2 ) public keying material for a network of n nodes.
Roughly speaking, AKPS is not viable for arbitrary large
network. We find that, if secrecy transfer is used, a KMS does
not need to be preloaded with ( n

2 ) public keying material.
Specially, suppose n∗ out of ( n

2 ) public keying material are
randomly picked, the initial probability that two arbitrary
sensors can establish a secret key is p = n∗/( n

2 ) = 2n∗/n(n−
1), which means that, any nodes has n0 = n×p = 2n∗/(n−1)
“acquaintances” on average. As before, if n0 is larger than
the connectivity threshold, we can repeat the construction
process of secrecy transfer to get a connected graph Gn,n0

which will guarantee that any pair of adjacent nodes can
establish secret keys.

7. Conclusion

This work presented a secrecy transfer algorithm which is
directly based on the idea that networks form primarily
by people introducing pairs of their acquaintances to one
another. The resulting network, showing both properties of
random graph and random geometric graph, cannot only
model the introduction process in social networks, but also
be used to protect the network.
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