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Surveillance is an important class of applications for wireless senor networks (WSNs), whose central task is to detect events
of interest. Existing approaches seriously suffer from blind spots and low energy efficiency. In this paper, we propose a fully
distributed algorithm GAP for energy-efficient event detection for surveillance applications. Employing the probabilistic approach,
GAP actively tunes the active probability and minimizes the energy consumption of each sensor. The unique features of GAP are
threefold. First, it provides guaranteed detectability for any event occurring in the sensing field. Second, it exposes a convenient
interface of the user to specify the desired detectability. Finally, it supports differentiated service to empower better surveillance
for critical spots. Without relying on costly time synchronization, GAP is a lightweight distributed protocol and is truly scalable
to network scale and sensor density. Theoretical analysis and comprehensive simulation experiments are conducted, which jointly
demonstrate that GAP is able to provide guaranteed detectability while significantly prolonging the system lifetime compared with
other schemes.

1. Introduction

Recent rapid advances in wireless sensor networks (WSNs)
have made it possible to develop a wide multitude of com-
pelling applications, ranging from battlefield surveillance,
habitat monitoring, and radiation prevention [1] to pol-
lution detection [2]. Surveillance, whose central task is to
detect events of interest, is an important class of applications
for WSNs. The most important performance goal for surveil-
lance applications is high detectability. Among the others,
fire detection in large-scale forest is a good example of
surveillance applications.

It is well known that tiny sensor nodes are subject to
stringent energy constraint since they are powered by small
batteries. This implies that a sensor node has only a short life-
time. It is usually impractical, if not impossible, to recharge
or replace batteries after sensor nodes are deployed to a
remote or event hostile environment. However, applications
require the network to sustain surveillance operations for a
long lifetime. It has been challenging to obtain a long-lived
network with tiny short-lived sensor nodes. To achieve high
detectability, the straightforward way is to keep all sensors
active such that an event is sure to be detected. However, it is

obvious that this scheme suffers from low energy efficiency,
especially when sensor density is high. In this paper, we focus
on energy-efficient surveillance using networked sensors.

The fundamental approach to conserving energy is to
power off sensors. Many research efforts have been made
for energy-efficient surveillance using sensor networks. In
general, they select a subset of sensor nodes to keep vigilant
for event detection and put the others in power-save mode.
In PEAS [3], a sensor probes neighbors to check if there
are active neighbors. Upon receiving acknowledgement from
an active neighbor, it goes to sleep. Network provisioning
[4] identifies a redundant sensor whose sensing coverage is
jointly covered by its active neighbors. Yan et al. [5] noted
the underestimation problem that exists in [4] and proposed
a randomized algorithm to determine an active schedule of
the sensors.

There are two major drawbacks with the existing meth-
ods. First, the algorithms’ failing to provide full coverage over
the sensing field suffers from blind spots that are not covered
by any active sensors. Events occurring in these blind spots
will not be detected, leading to serious surveillance quality
degradation. Second, the algorithms suffer from the critical
problem of unbalanced energy consumption. According to
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the existing algorithms, a set of sensors are selected to stay
active for full sensing coverage while the other sensors turn to
power-save mode. The consequence is that the selected active
sensors will be depleted earlier. If an active sensor becomes
unavailable due to power depletion or physical damage, the
area covered by this sensor will become a blind spot.

In addition to identifying the limitations of existing
approaches, we have two important observations for many
realistic surveillance applications.

(i) It is unnecessary for many applications, such as
habitat monitoring, to have perfect detectability (i.e.,
100% detectability). For example, a wild animal of
interest may cause a number of events in the field.
It is sufficient for the animal study to capture some of
the events. In practice, different applications usually
have varying requirements on detectability. It is clear
that more sensitive applications are usually in need of
higher detectability.

(ii) An event can occur at any unpredictable time at any
place within the sensing field. It is impossible to
predict the location where the next potential event
occurs.

In response to the two observations, the system design
should satisfy two important requirements for such surveil-
lance applications.

(i) The system should allow the users to customize the
desirable detectability, given different applications.

(ii) The system should guarantee that the detectability of
any event occurring in the sensing field is larger than
the requirement posed by the user.

To the best of our knowledge, no existing algorithms
can successfully satisfy the requirements mentioned above.
In this paper, we propose a novel-distributed algorithm
GAP to provide guaranteed detectability for any event in
the whole sensing field. The algorithm exposes a convenient
interference for the users to specify the desirable minimum
detectability. We devise a simple yet effective metric to realize
the design goal of providing guaranteed detectability of any
potential event. Exploiting the probabilistic approach, the
algorithm allows the sensors to be active probabilistically for
effective energy conservation. The algorithm actively min-
imizes the active probability of each sensor, which is also
adaptive to its neighborhood of sensor deployment. Energy
consumption of the sensors is finely balanced. At the same
time; however, the detectability of any event in the sensing
field is dynamically maintained.

The contributions we have made in this paper are high-
lighted as follows.

(1) We develop the fully distributed GAP algorithm that
can provide guaranteed detectability for any event.
Not relying on costly time synchronization, this algo-
rithm is lightweight and fully distributed, support-
ing truly scalability with network scale and sensor
density.

(2) The GAP algorithm empowers differentiated surveil-
lance in terms of detectability and detection degree,
which greatly enhances its practical applicability.

(3) We conduct both theoretical analysis and compre-
hensive simulations to validate the design and study
the performance of the GAP algorithm.

The remainder of the paper is structured as follows. In
Section 2, we discuss related work. In Section 3, we introduce
the system model and some preliminaries. In Section 4, after
detailing the GAP design, we discuss several design issues and
present algorithm analysis. To study the performance of GAP,
we conduct comprehensive experiments and discuss the
results in Section 5. In Section 6, we give some discussions
about the algorithm design. Finally, we conclude the paper
and introduce future work.

2. Related Work

In this section we review related work and discuss the
difference of our work from existing studies.

2.1. Duty Cycling in Sensor Networks. It has been the subject
of extensive research to conserve energy in WSNs through
power management or duty cycling. With duty cycling, a sen-
sor node periodically enters power-saving mode for energy
saving and wakes up for sensing and communication tasks.
Three power-saving protocols for mobile ad hoc networks
were developed in [4], which provide different tradeoffs
between energy efficiency and neighbor discovery latency.
Without relying on time synchronization, asynchronous
wakeup [6] is advantageous. However, it comes with the
cost of increased packet delivery latency. Different tradeoffs
between packet delivery latency and energy saving were stud-
ied in [7].

Low duty cycling has been recognized as an effective
technique to realize operation longevity in sensor networks.
In [8], the scheduling problem of multiple tasks in low-duty-
cycled sensor networks is studied. In [9], the energy fairness
of asynchronous duty cycling sensor networks is explored.
Our work in this paper also adopts duty cycling for every
saving but has a focus on the determination of duty cycles
for each sensor node making sure that the event detection of
any possible event is guaranteed.

2.2. Power Management of Sensor Networks. With power
management, a subset of sensor nodes are selected for sens-
ing or communication purposes. In surveillance applica-
tions, a number of algorithms were proposed to select a sub-
set of sensor nodes to stay vigilant for event detection while
the others remain in power save mode. PEAS [3] selects active
sensors by active probing. Each sensor probes its neighbor-
hood. If there is an active sensor responding its probing,
the sensor decides to sleep; otherwise, it stays active. PEAS
does not providing full sensing coverage and therefore suffers
from the blind spot problem. Network-provisioning [10]
identifies a sensor to be in sleep mode if sensing coverage of
this sensor is jointly covered by its active neighbors. Several
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efforts, for example, the one in [11], take both sensing
coverage and network connectivity into account. These
algorithms provide full sensing coverage and meanwhile
maintain network connectivity.

Tian and Georgana [4] noted the underestimation prob-
lem that exists in [4] and proposed a randomized algorithm
to determine an active schedule of each sensor. According to
this algorithm, each sensor is activated for event detection
periodically. Thus, this algorithm solves, to some extent, the
problem of unbalanced energy consumption. A probabilistic
approach has been proposed for event detection in the
context of object tracking [2], which can also mitigate the
problem of unbalanced energy consumption. However, these
algorithms cannot provide guaranteed detectability for the
sensing field.

Shih et al. [12] propose to use a small-scale sensor
network to monitor epilepsy. It is reported that 21 scalp
electrodes are needed and 18 data streams or channels are
generated. In order to save the energy consumption of the
data processing device that is battery powered and attached
to a user, they propose an automated way to construct
detectors that use fewer channels, and thus fewer electrodes.

2.3. Energy-Efficient Event Detection. As is widely known,
event detection [13] is an important class of applications of
sensor networks. Exploiting the inherent property of event
persistence, some algorithms [14, 15] try to detect events
with low duty-cycled sensor networks. In [16], a two-stage
optimization was proposed to minimize detection latency. In
the first stage, a density control algorithm is applied to select
a set of active nodes. In the second stage, an optimization
procedure is executed to schedule wakeups of the sensors,
which relies on accurate location information. A testbed of
70 sensors was deployed to detect and track the positions
of moving vehicles [17]. In this system, 5% of deployed
motes serve as sentries and nonsentries operate at a 4% duty
cycle. An improved system with a combination of duty cycle
scheduling, sentry service, and tripwire service was recently
reported in [18]. With low duty cycling, the lifetime of the
system can be significantly extended by up to 900%.

Different from these existing studies, our paper specially
considers the guarantee of event detection performance
while conserving energy consumption on sensor nodes.

2.4. Energy Harvesting in Sensor Networks. Recently, energy
harvesting techniques are becoming very promising technol-
ogy for long-term applications of sensor networks. In [19],
Gu et al. point out that it is unnecessary to conserve energy
in sensor networks with energy harvest ability, and instead
it is more important to balance energy supply and energy
consumption. They propose a middleware to control the RF
activity with the objective of minimizing communication
delay.

Zhu et al. [20] notice the leakage problem of energy
capacitors. They propose leakage-aware feedback control
techniques to match local and network-wide activity of sen-
sor nodes that obtain dynamic energy supply from environ-
ments.

In [21], a system called eShare is described to support
energy sharing among multiple-embedded sensor devices.
They design energy routers for energy storage and routing
devices. Energy access and network protocols are also
designed. To improve sharing efficiency subject to energy
leakage, an energy charging and discharging mechanism is
devised.

The preliminary result of this research has previously
been reported in [15] and in this paper we consolidate the
research with investigation on design issues, algorithm anal-
ysis, and discussions.

3. System Model and Preliminaries

In this section, we first describe the system model and
formally state the problem. Second, we define the necessary
notations and make several simplifying assumptions. Third,
we devise a metric that helps realize the effective guarantee
of required detectability for any event. Finally, we analyze the
detectability of the nonadaptive scheme in which sensors stay
active blindly, and reveal the necessity of adaptive control on
sensor active probability.

3.1. System Model and Problem Statement. We consider the
sensors are deployed in a square field F with side length L
according to a 2-dimensional Poisson process with rate n/L2.
Under this deployment, the number of sensors in any given
region of area A is Poisson distributed with rate nA/L2. The
number of sensors in disjoint regions is independent. Usu-
ally, a random uniform distribution of points over a region
can be approximated by a 2-dimensional Poisson process.
Note that the actual number of nodes deployed in the field
needs not to be n. A random uniform deployment can be
approximated by a 2-dimensional Poisson deployment when
the number of deployed sensors is sufficiently large.

The power consumption of a sensor node lies in three
major units: processor, sensing device, and radio transceiver.
Ideally, each unit has separate power control [10]. The
duty cycle of the transceiver is subject to the control of
communication protocols. Therefore, we assume it is given
and concentrate on the study of duty cycling of the sensing
device. The transceiver does not necessarily has the same
duty cycle as the sensing device. The consequent advantage
is the increased flexibility for our protocol to work with
different communication protocols. It is important to note
that a sensor node can actually be attached with multiple-
sensing devices of different types. For simplification; how-
ever, we assume that a sensor node is equipped with a single-
sensing device throughout the analysis and the protocol
design. Nevertheless, the protocol can be easily extended to
support the situation where a sensor node has multiple-
sensing devices. Later, we call a sensor node just a sensor for
short if it is not confused with the sensing device.

It should be noted that such an power model assumes
that all the units can be independently controlled. In
some cases, however, a sensor node may not be able to
independently control the power consumption of each unit.
In such cases, a sensor node has only one unit and has a single
duty cycle. Our power model is general and covers such cases.
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The objectives of the system design are twofold. First,
users should be enabled to specify the lowest detectability
(denoted by υ0) for any event in the sensing field. The system
needs to ensure that the detectability of such a random
event is greater than the required detectability. Second, event
detection of the sensors should be energy-efficient such that
the system can continue to be functional for a very long
lifetime.

To accomplish these objectives, we have identified the key
issues in the system design as follows.

(1) The system needs an effective way to realize the goal
of providing guaranteed detectability for any possible
event.

(2) The algorithm should minimize the active probability
of every sensor, thus minimizing the energy con-
sumption of the sensor.

(3) The power consumption of the sensors should be
balanced such that as few blind spots as possible are
introduced.

3.2. Notations and Assumptions. In the rest of this paper, we
adopt the notations in Table 1 and make the following
assumptions.

(i) Binary Detection Model. Each sensor has a detection
range. An event is reliably detected by an active
sensor if it resides in the range of an active sensor.
More sophisticated models suggest that the detection
probability is related to the distance between the
sensor and the event. We assume that the detection
range in our binary detection model is selected such
that an event can be detected with high probability
if its distance to the sensor is less than the detection
range.

(ii) Location Awareness. Each sensor has the knowledge of
its location. A good number of power-efficient algo-
rithms have been proposed for practical localization
in large-scale WSNs [22].

(iii) High Density. There are sufficient sensors deployed in
the sensing field such that any point in the sensing
field is covered by at least one sensor.

In the protocol design, we assume that the sensor
network is deployed in a two-dimensional plane. However,
the proposed protocol can be extended to a three-dimension
space without much difficulty.

3.3. Realizing Detectability Guarantee. To realize the goal of
providing guaranteed detectability for any event, we devise
a simple but effective metric: point coverage. Its precise
definition is given as follows.

Definition 1. For a point p within the sensing field, the point
coverage of p, denoted by σ(p), is defined as the probability
that p is covered by at least one sensor at any time.

The point coverage of p is dependant on the number of
covering sensors and the active probabilities of these sensors.

Table 1: Notations employed in this paper.

Notation Description

F The sensing field

n The sensor deployment rate

r The detection range

υ(e) The detectability of physical event e

υ0 The lowest detectability requirement

σ(p) The point coverage of point p

σ0 The necessary point coverage

ω(Q) The active probability of sensor Q

ω(Q, p) The needed active probability of sensor Q for point p

t(e) The life of physical event e

p(e) The point at which event e occurs

t0
The minimum time detecting and processing an
event

S(p) The set of sensors covering point p

U(Q)
The set of grid points within the detection vicinity of
sensor Q

Let ω(Q) denote by the probability that sensor Q is active at
any time. It is apparent that a sensor has a longer lifetime if it
has a lower active probability. In the sensing field, a point can
be in the detection range of many sensors. Let S(p) denote
the set of sensors that cover point p. The point coverage of p
is given by

σ(p) = 1−
∏

∀Q∈S(p)

(1− ω(Q)). (1)

With the concept of point coverage, we show that Objective
A is implied if we achieve Objective B.

Objective A. to guarantee that the detectability of any event
is larger than the minimum requirement.

Objective B. to ensure that the point coverage of any point in
the field is larger than a given value.

Let t(e) denote the lifetime of event e. The detectability
of this event depends on both the event life and the point
coverage of the location where the event resides. Let t0 be the
minimum necessary time required for a sensor to detect and
process an event. Then, the detectability of e is given by

υ(e) = 1− (1− σ(p(e)))t(e)/t0 . (2)

Event life t(e) is usually a random variable. Given the
probability density distribution of t(e), denoted by ft(e), we
can compute the expected detectability of a random event

E(υ(e)) =
∫∞

t=0

(
1− (1− σ(p(e)))t/t0

)
f (t)dt. (3)

It is apparent that the expected detectability monotonously
increases with the increasing point coverage of p(e). To
ensure that the detectability of the event is greater than the
required detectability,

E(υ(e)) ≥ υ0, (4)
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Figure 1: Necessary point coverage as a function of detectability
requirement.

we can calculate the minimum point coverage (σ0) such that,

∫∞

t=0
(1− (1− σ0)t/t0 ) f (t)dt = υ0. (5)

Based on the monotony of the expected detectability as a
function of point coverage, we can develop a numerical
procedure to obtain the desired σ0. Let

σ0 = g(υ0). (6)

It then becomes obvious that the expected detectability
of e is guaranteed to be greater than the required υ0 as
long as the point coverage of p(e) is maintained above σ0.
Considering the arbitrary selection of the event, we conclude
that by providing the guaranteed minimum point coverage
of any point within the sensing field,

σ(p) ≥ σ0, ∀p ∈ F, (7)

the system is able to ensure that the detectability of any event
is greater than the required υ0.

For pictorial study, we plot the necessary point coverage
as a function of the required detectability in Figure 1. For
simplification, we consider the lifetime of events as a fixed
value. We can see that the necessary point coverage increases
when the required detectability becomes higher. However,
when the event lifetime becomes larger, the necessary point
coverage can be dramatically reduced.

3.4. Detectability Analysis for Nonadaptive Scheme. There is a
straightforward solution (called NAS) to provid guaranteed
detectability to the sensing field; that is, guaranteeing that the
point coverage of any point is greater than σ0. According to
this scheme, every sensor has the identical active probability
of σ0. When the deployment density is sufficiently large,

it is obvious that this scheme can successfully provide the
guaranteed detectability. However, this scheme does not scale
as more sensors are deployed in the sense that additional
sensor deployment does not result in extended system
lifetime. We illustrate the problem by analyzing the actual
detectability of any event achieved by NAS. Firstly, we study
the point coverage as a function of number of deployed
sensors.

Let point p be an arbitrary point in the field. Note that we
do not consider the special case of points on the edge. The
number of sensors covering p (denoted by N) is a random
number. Since the sensors are deployed according to a 2-
dimensional Poisson process, N has a Poison distribution.
The probability mass function of N is given by

Pr(N = k) = 1
k!
λke−λ, where λ = nπr2

L2
. (8)

Theorem 2. The expected point coverage of a point in the sens-
ing field is given by

E(σ(p)) = 1− e−λυ0 . (9)

Proof. Let point p be an arbitrary point in the field. The point
coverage of p is given by

σ(p) = 1− (1− σ0)N . (10)

The point coverage of p is actually a random variable
since it relies on the number of covering sensors. We are
interested in the expected σ(p). We condition on N to
compute this expected value,

E(σ(p)) =
n∑

i=1

((
1− (1− σ0)i

)
× Pr(N = i)

)

= 1− e−λσ0 .

(11)

Theorem 3. The expected detectability of any event occurring
in the sensing field is given by

E(υ(e)) =
∫∞

t=0
(h(i, t) · Pr (N = i)) f (t)dt,

where h(i, t) = 1− (1− σ0)(i·t)/t0 .

(12)

Proof. We consider an arbitrary event e occurring point p in
the sensing field. Suppose the number of sensors coving p is
N and the event life of e is t. According to (10) and (2), we
can obtain the detectability of e,

υ(e) = 1− (1− σ0)(N·t)/t0 . (13)

To compute the expected detectability, we first condition
on N and then consider the probability density of t. This
completes the proof.

To study the expected detectability when the system
parameters vary, we plot the expected detectability as a func-
tion of the number of sensor nodes. For simplification, we
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Figure 2: Expected detectability as a function of number of de-
ployed sensors; t(e) = t0

consider the lifetime of events as a fixed value equal to t0. We
set the field side to 300 m. The detection range of the sensor
is 10 m. We vary the number of sensors from 4000 to 10000.
In this case, the expected detectability is given by

E(υ(e)) = 1− e−λσ0 . (14)

Figure 2 shows the expected detectability as a function of
the number of deployed sensors under different detectability
requirements. We can see that the actual detectability is
dramatically larger than the required detectability even
when the density of the sensors are relatively low. With
the increasing number of sensors, the detectability quickly
converges to one. This suggests that NAS is not scalable to
the sensor density, thus wasting precious energy.

4. Design of GAP

In this section, we first give an overview of the design of
GAP. Next, we describe the detailed design. Third, we discuss
some design issues. Finally, we present the analysis of the
algorithm.

4.1. Overview. There are two critical design goals for GAP.
On one hand, it should ensure that the point coverage of any
point in the sensing field is not less than σ0. On the other
hand, it needs to reduce energy consumption of every sensor,
thereby extending the system lifetime as much as possible.
The algorithm adopts a probabilistic approach, where every
sensor probabilistically stays active. At any time, a sensor Q
is active with probability of ω(Q) and is in power save mode
with probability of 1− ω(Q).

The central issue of the GAP design is the determination
of the active probability of each sensor. It is intuitive that the
active probability should be minimized for the purpose of

higher energy efficiency. However, at the same time it should
be sufficiently large to ensure that point coverage of any point
is above σ0. This poses a rigid requirement on the algorithm
design. To exploit the dense deployment and balance energy
consumption of the sensors, GAP adaptively tunes the active
probability of every sensor such that the active probability
is minimized but is adequate to ensure that the lowest point
coverage within its detection vicinity is not less than σ0.

The GAP algorithm consists of two phases. In the first
phase, each sensor conservatively selects an initial active
probability based on the neighborhood information. The
initial probability is so sufficiently large that the point
coverage of any point is larger than σ0. To solve the energy
waste introduced by the conservativeness, in the second
phase, each sensor executes an iterative refinement procedure
to reduce active probability for better energy efficiency. The
refinement procedure terminates in finite number of steps.
As there are infinitely points in the sensing field, we divide
the field into virtual grids, as shown in Figure 4. We consider
grid points and will later show that these grid points are
sufficient in providing guaranteed detectability for any point.
Figure 3 depicts the state transition diagram of the proposed
algorithm.

4.2. Design Details

4.2.1. Neighbor Discovery. At the beginning, each sensor
discovers its neighbors within 2r distance from itself by
exchanging HELLO messages with each other. A HELLO
message encloses the ID and the location of the sensor. For a
given sensor, a neighbor is a detection neighbor (distinguished
from a communication neighbor) if its distance to the
neighbor is less than 2r. Every sensor maintains a table for
its detection neighbors. Upon receiving a HELLO, the sensor
records the sender in the table if the sender is a detection
neighbor; otherwise, this packet is silently dropped. Note
that such small HELLO messages can be piggybacked
through other protocol packets for energy efficiency, such as
localization messages in the initialization process. The time
period for neighbor discovery should be sufficiently long
such that each sensor can broadcast its HELLO message.

4.2.2. Initial Probability Selection. After neighbor discovery,
the sensors start to compute its initial active probability. The
initial active probability guarantees that the point coverage
of any point in the field is greater than σ0.

The point coverage of p is given by

σ(p) = 1−
∏

B∈S(p)

(1− ω(B)). (15)

To guarantee that the point coverage is not less than σ0,
each sensor initially computes the probability needed for
every single grid point within its detection vicinity, and
then calculates the active probability needed at the sensor.
Each sensor Q considers a grid point p and computes the
active probability needed for p, denoted by ω(Q, p). With the
consideration of energy balance, we let the sensors covering p
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play an equally important role in detecting events at p. Thus,
Q figures out the number of detection neighbors that cover p
by checking the table of detection neighbors. Then Q is able
to compute ω(Q, p),

ω(Q, p) = 1− k
√

1− σ0, where k = |S(p)| ≥ 1. (16)

To compute the initial active probability for sensor Q,
it takes the maximum of the active probabilities for all grid
points within its detection vicinity. Let U(Q) denote the set
of all the grid points within the detection range of Q. Then,
the active probability of Q is

ω(Q) = max{ω(Q, p),∀p ∈ U(Q)}. (17)

The selection of the initial probability is conservative
in the sense that it takes the maximum value as its active
probability to ensure that every point in its detection vicinity

provides larger point coverage than required. The conse-
quence is that the point coverage of a point may actually
be much larger than the required one. Such conservativeness
incurs additional energy consumption and therefore leads to
less energy efficiency.

4.2.3. Refining Active Probabilities. To solve the problem
introduced by the conservativeness of the initial selection,
we propose a coordinated probability refinement procedure,
which is a completely localized algorithm. Each sensor recal-
culates a new active probability based on the active probabil-
ities of its detection neighbors. If the newly computed active
probability is smaller, it tries to update its active probability,
attempting to reduce its duty cycle. It is guaranteed that this
refinement procedure terminates in finite number of rounds.

After determining the initial active probability, sensors
exchange their active probabilities by local broadcast. Each
sensor recalculates a feasible active probability based on the
active probabilities of its detection neighbors. Similarly, a
sensor firstly computes a new active probability for each grid
point. Consider a point p. The new feasible active probability
of Q for p is given by

ω(k+1)(Q, p) =
⎧
⎪⎨
⎪⎩

1− 1− σ0

y
, if 1− σ0 < y

0, otherwise,

where y =
∏

B∈S(p)−{Q}
(1− ω(k)(B)),

(18)

where (k) denotes the number of generations of the associat-
ing active probability.
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To compute the new active probability, Q also takes the
maximum out of all the grid points within its detection
vicinity,

ω(k+1)(Q) = max{ω(k+1)(Q, p),∀p ∈ U(Q)}. (19)

If the new probability is smaller than the original one, it
is preferable to update the probability to the new one for
better energy efficiency. Otherwise, the sensor completes its
refinement procedure.

If a sensor computes a smaller new probability, it cannot
update its probability to the new one immediately due to
the computation dependence. It is critical to avoid parallel
updates. Thus, the sensor instead creates an update attempt,
trying to reduce its active probability. It is required that
before a sensor can actually update its active probability, it
must broadcast its new probability to its detection neigh-
bors and prevent them from updating simultaneously. An
UPDATE message is used to enclose the ID and the new
probability. Before an UPDATE is broadcast, the sensor
undergoes a random backoff to minimize transmission
collisions.

If the sensor successfully finishes the backoff process,
not receiving any update from its detection neighbors, it
broadcasts its UPDATE and commits the update. Next, it
recomputes its new active probability. If the sensor receives
an UPDATE from its detection neighbor before it finishes its
backoff process, it suppresses its planned UPDATE broadcast
and cancels its own update attempt. Next, it recomputes its
active probability. Such a process repeats until all the sensors
fail to further reduce their active probabilities.

In practice, one issue frequently arises that at the begin-
ning the refinement procedure, many of the newly computed
probabilities are close to zero. This is not desirable, because
it does not facilitate balancing power consumption among
the sensors. To address this issue, we pose a constraint on
the maximum reduction (denoted by th1) by which the
active probability of a sensor can be reduced each time. It
is apparent that this threshold controls the tradeoff between
convergence time and energy balance. A smaller threshold
can produce better energy balance but need a longer time for
the algorithm to converge.

We also notice that it is unwise to allow an update that
actually causes a small reduction on its active probability
since it not only requires communication overhead but also
may prohibit other nodes from updating their probabilities.
Therefore, we prefer updates that are more productive. To
this end, we pose an additional constraint on the minimal
reduction (denoted by th2) that a viable update should
possess. For a node having computed a new probability, it
can make an update attempt only if the resulting probability
reduction is greater than the threshold. It is also obvious
that this threshold controls the tradeoff between convergence
time and granularity of energy balance. A larger threshold
leads to a quicker convergence but produces a more coarse-
grained balance of energy consumption.

4.2.4. Extension for Surveillance Differentiation. It is some-
times necessary for some area to be more carefully moni-
tored, requiring detection differentiation for different areas.
GAP supports two types of surveillance differentiation. The
first type of differentiation lies in event detectability. For
example, the detectability at a particular point q should be
at least υ0(q). It is not difficult to derive the required point
coverage for q, denoted by σ0(q). All sensors covering q
should replace σ0 with σ0(q) in (16) and (18).

The second type of differentiation is in detection degree.
Recall that previously an event is considered to be reliably
detected as long as it is covered by one active sensor. It
implies that the detection degree is one. In practice, however,
the detection of a sensor on an event can be unreliable. To
address this problem, we can require that an event must
be detected by multiple sensors before it is considered to
be successfully detected. This suggests a higher degree. This
increases the robustness of event detection against unreliable
sensing and sensor failures.

In the following, we take example that point q needs a
higher detection degree of two. For distinguish, we define
the resulting point coverage of q as quadratic point coverage
(denoted by σ̂(q)). It is given by,

σ̂(q)=1−
∏

Q∈S(q)

ω(Q)−
∏

Q∈S(q)

⎛
⎝ω(Q)

∏

B∈S(q)−{Q}
ω(B)

⎞
⎠. (20)

To obtain the initial active probability for each sensor
coving q, we need to solve a high-dimensional equation.
Nevertheless, the quadratic point coverage monotonously
increases with increasing initial probability. Based on this, it
is easy to develop a numerical procedure to find a desirable
active probability that is close to the real minimum, which
satisfies σ̂(q) ≥ σ0(q). It is worth noting that it is unnecessary
to compute the exact minimum because the refinement
procedure is only aimed to reduce active probability as much
as possible. However, it is preferable to find one that is much
closer to the minimum for the purpose of better energy
efficiency.

For the refinement procedure, a sensor adjusts its active
probability based on the active probabilities of its detection
neighbors. The formula (18) should be reformulated as
follows:

ω(k+1)(Q, q) =
⎧
⎪⎨
⎪⎩

1− 1− σ0(q)− a

ab
, if 1− σ0(q)− a < ab

0, otherwise,

where a =
∏

B∈S(p)−{Q}

(
1− ω(k)(B)

)
,

b =
∑

B∈S(p)−{Q}

ω(k)(B)
1− ω(k)(B)

.

(21)

4.3. Design Issues

4.3.1. Grid Granularity. There is a concern about the gran-
ularity of grid points, characterized by grid size d. Notice
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Figure 5: Grid point granularity. The dotted circle represents the
nominal detection range, and the solid circle is the real detection
range.

that GAP actually provides guaranteed detectability for every
grid point. However, this does not necessarily imply that
the detectability at any point in the field is also satisfied.
To address this problem, we adopt a similar technique as in
[5]. We propose a nominal detection range r′ that is smaller
than the real detection range. For each small grid, if a sensor
covers any grid point of this grid with the nominal detection
range, the sensor completely covers the whole grid with its
real detection range. By this means, the system can guarantee
required detectability of any point in the field if it ensures
that the detectability at any grid point is greater than the
required one when using the nominal detection range. It is
not difficult to see that r′ ≤ r − √2d. As shown in Figure 5,
grid point p is within the nominal detection range of Q,
then the shadowed grid which p is attached to is completely
covered by Q. In contrast, point q is out of the nominal
detection range of Q; although it is within the real detection
range of Q, the shadowed grid is not completely covered by
Q.

It should be noted that such a solution comes at the
expense of reduced energy efficiency. This is because each
sensor loses some area that is actually within its detection
vicinity. It is clear that the grid granularity controls the
tradeoff between energy efficiency and computational com-
plexity. A finer granularity can lead to better energy efficiency
but causes a higher computational complexity. In our
implementation, d is set to one-tenth of the detection range.
Under this configuration, each sensor is expected to have
	100π
 grid points.

4.3.2. Network Dynamics. A sensor network is in nature
very dynamic in the sense that existing sensors may become
unavailable because of energy depletion or environmental
damage, or new sensors may join the network for enhanced

performance or extended lifetime. It is of great importance
for the network to adapt to such dynamics.

To deal with new sensor additions, a new sensor broad-
casts a PROBE message, which includes its location and
ID, to inform its detection neighbors of its emergence.
Upon receiving a PROBE, a sensor responds with an ECHO
message that includes its ID and its location. With the
received probabilities, the new sensor computes the necessary
probability as specified in (16) to meet the point coverage of
every point within its detection vicinity. Next, it broadcasts
an UPDATE and triggers a refinement procedure, which gives
its neighbors a chance to decrease their active probabilities.

To deal with sensor leave due to power depletion or
environmental damage, there are two basic approaches.
One is to let each sensor periodically broadcasts heartbeat
beacons. By this means, a sensor is able to be aware of a
neighbor’s leave when it fails to receive the heartbeat beacons
from that neighbor for a certain time. It can then recompute
its probability to compensate the point coverage loss caused
by that neighbor’s leave. With periodic beacons, a WSN
is responsive to sensor failure. However, periodic beacons
should be used with caution since it causes much traffic
overhead.

The other approach is to reschedule the whole network
periodically. This approach can also deal with the dynamic
addition of new sensors. Rescheduling also helps to achieve
better energy balance since it gives additional chances for
sensors with lower energy to decrease active probability. The
key issue here is the selection of the rescheduling period. It
should be adaptive to the degree of network dynamics. A
more dynamic network should have a shorter rescheduling
period.

4.3.3. Heterogeneous Sensors. The sensors may have different
detection ranges due to various reasons. However, GAP
is able to deal with such heterogeneity easily. Recall that
each sensor determines the set of grid points according to
its own detection range. In addition, when computing the
active probability for a point, a sensor needs to know the
detection vicinity of their neighbors. However, this can be
easily done by exchanging such information during the phase
of neighbor discovery.

4.4. Algorithm Analysis

4.4.1. Correctness

Theorem 4. GAP is correct; that is, it is able to provide guar-
anteed detectability for any point in the sensing field.

Proof. In Section 2, we have proved that the detectability of
any event at a point can be ensued to be larger than the
required detectability if the point coverage of each point in
the field is not less than σ0. In the selection of the initial
active probability, each sensor is assigned the probability that
is sufficiently larger than the required σ0. In the refinement
procedure, a sensor computes its necessary probability for
each grid point in its detection range. It takes the maximum
among all the grid points as its new active probability.
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Parallel updates are prevented using the effective random
backoff technique. An update is a local operation in the
sense that it only involves the region within the detection
vicinity of the updating sensor and does not affect other
regions. By introducing the nominal detection range, GAP
can successfully ensure that the detectability of every point is
greater than the required detectability υ0.

4.4.2. Convergence.

Theorem 5. GAP converges in a finite number of steps.

Proof. The maximum probability of a sensor is one. Each
successful update will reduce the active probability by at least
th2. In GAP, no operation will cause the active probability of
a sensor to increase. Thus, there is no fluctuation. Note that
the minimum of the active probability is zero. This suggests
that the number of updates that a sensor could have is at most
1/th2. Thus, GAP converges in a finite number of steps.

4.4.3. Computation Complexity. A tiny sensor processes lim-
ited computational capability. Thus, it is important that the
computation complexity is affordable for such tiny sensors.
Let us look at the number of steps needed for each sensor
to compute the final active probability. Each sensor covers
s = πr2/d2 grid points. Suppose a sensor has m detection
neighbors. For each grid point, the sensor needs m steps
to determine the set of covering sensors. In computing the
initial active probability, the sensor spends constant time to
compute the probability for a point. Finally, it takes s steps
to compute its active probability. Thus, it needs ms steps in
computing the initial probability. Thus, the total steps for
computation is

π
r2

d2
×m. (22)

For instance, when d = r/10 and m = 20, it takes less
than 10 thousand steps. Later, in each round of refinement, a
sensor basically performs the same operations as in the initial
computation. However, we emphasize that only those sensors
that feasibly further reduce probability need to perform such
operations.

A tiny sensor also has very small memory. For example,
a typical Mica2 sensor [23] has 4 K Bytes RAM. Memory
usage in GAP needs to be investigated. The memory usage
is mainly for storing the probabilities computed for the grid
points, which are s bytes. In addition, the sensor needs 4m
bytes to store the related information of detection neighbors.
For instance, when d = r/10 and m = 20, it takes less than
1 K bytes. By implementing GAP using TinyOS codes on a
Mica2 node, we find that such computation and space cost
are affordable for sensors.

4.4.4. Communication Cost. It is of importance to study the
communication complexity as it reflects energy overhead
introduced by GAP. We analyze the number of protocol
messages. Both the neighbor discovery and the initial active
probability exchange require each sensor to broadcast a

Table 2: Simulation parameters.

Parameter Value

R 30 m

r 10 m

L 300 m

n 4000

ρS 19 mW

ρP 20 mW

ρR 24 mW

t(e) 2t0
υ0 90%

σ0 0.684

ξ 10 J

ϕ 0.1

th1 0.1

th2 0.01

message. Thus, each sensor needs two broadcast transmis-
sions. Later, as mentioned, a sensor can have at most x =
1/th2 updates and therefore it can broadcast for at most x
times. As a result, a sensor can has at most 2 + x broadcast
transmissions. In implementation, we find that the th2 of
1/10 can provide a good tradeoff between convergence and
communication cost.

5. Performance Evaluation

In this section we first present the evaluation methodology
and then provide comparative evaluation results.

5.1. Methodology. To validate the design and to evaluate
the performance of GAP, we conduct extensive simulation
experiments. Simulations are conducted using a simulator
developed with extra emphasis on event detection. The
simulator is built on OMNet++ [24], a powerful discrete
simulation system.

In simulation experiments, we study events with the fixed
event life of 2t0. We fix the detection range and the com-
munication range. To derive different densities, we vary the
deployment rate n. The presented results are averaged over 20
independent experiments with different sensor deployments.
The simulation configuration follows the setting shown in
Table 2 if not stated elsewhere. In the table, ρS, ρP , and
ρR denote the power consumption rates of the sensing
device, the processor, and the transceiver, respectively. The
transceiver of the transceiver ϕ is set to 0.1. Although the
energy provided by two AA batteries can be several thousand
Joules, the energy of each sensor node is initialized to 10 J to
reduce lengthy simulations.

We design the following metrics to study the perfor-
mance of the algorithm.

(i) α-Lifetime of Surveillance. It is defined as the amount
of time until the instant when only α% of the sensing
field can provide the guaranteed detectability.
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Figure 6: Point coverage over time.

(ii) α-Lifetime of Network. It is defined as the amount of
time until the instant when only α% of sensors are
alive in the network.

(iii) Convergence Time. It is defined as the time from the
beginning to the instant when the refinement proce-
dure terminates.

(iv) Number of Packets per Node. We study the number of
packets per node transmitted in the execution of the
algorithm to study the communication cost.

We present a competitive study, comparing GAP with the
following schemes:

(i) NAV. In this algorithm, every sensor has the identical
active probability of σ0.

(ii) GNO. It is the same algorithm as GAP except that
GNO does not have the refinement procedure.

(iii) BOUND. It is the theoretical upper bound.

It is difficult to derive the tight bound of system lifetime.
We give an optimistic upper bound of the lifetime. A point in
the field is covered by λ sensors. Ideally, these sensors share
the same active probability, which is 1 − (1− σ0)1/λ. Thus,
the actual power consumption rate of the sensing device is
(1− (1− σ0)1/λ)ρS. The upper bound of the hard lifetime can
be computed accordingly,

Γbound = ξ

(ρP + ρR)ϕ + (ρS + ρP)(1− λ
√

1− σ0)
. (23)

Note, however, this upper bound is over optimistic because
in reality there is no such uniform deployment where every
point in the field is covered by an identical number of
sensors.

5.2. Typical Run. We study a typical run in which the
number of sensors is set to 4000 and the upper threshold
of th1 is set to 0.1. The object is to investigate how the
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Figure 7: Point detectability over time.
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Figure 8: Percentage of satisfied area over time.

system successfully provides guaranteed detectability of any
event. To this end, we generate fifty random events over
the sensing field at each time instant. In Figure 6, we show
point coverage over time. Each dot in the figure represents
the point coverage of the location of an event. We can see
that before the time of 3 × 105 ms every point coverage
is beyond σ0. After this time, the point coverages of some
points drop below σ0. This is because some spots in the
field are covered only by limited sensors. After these sensors
are depleted, the nearby sensors fail to provide the desired
point coverage for these spots. It is very interesting that many
dots are aligned on the line of y = σ0. This demonstrates
that the GAP algorithm successfully supports the minimum
necessary point coverage. Accordingly, the point detectability
of corresponding points are shown in Figure 7. We can see
that before the time of 3 × 105 ms, the detectability of every
event is greater than υ0. Figure 8 shows the percentage of
satisfied area (i.e., the point coverage of these areas are larger
than σ0) over time. Each point in the figure represents the
percentage of points, out of the fifty, whose point coverage is
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Figure 9: Comparison of 100-lifetime of surveillance.
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Figure 10: Comparison of 70-lifetime of surveillance.

over σ0. We can clearly see that as time elapses, the percentage
of satisfied area becomes smaller until it reaches 2 × 106 ms
when all the sensors are depleted.

5.3. Lifetime Extension. We compare lifetime extensions
achieved by different schemes under the different configura-
tions of varying sensors. In Figure 9, we plot the 100-lifetime
of surveillance for different schemes when the number of
sensors increases. We can see that when the density of
sensors is low, different schemes have similar performance
in terms of 100-lifetime. This is because that most area is
covered by a single sensor. When the sensor is depleted,
the 100-lifetime is determined. As the number of sensors
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Figure 11: Comparison of 50-lifetime of surveillance.

becomes larger, the lifetime extension achieved by GAP
becomes more significant. We can also find that the lifetime
produced by GAP is larger than GNO, demonstrating the
efficacy of the interactive refinement procedure. 100-lifetime
is greatly limited by the specific deployment of the sensors. To
further investigate the performance gain obtained by GAP,
we show 70-lifetime and 50-lifeitme in Figures 10 and 11,
respectively. From these figures, we can see the significance
of the GAP algorithm. It is important to note that when the
sensor density becomes higher, the lifetime extension is more
significant. This suggests that GAP can scale up well with the
increasing number of sensors.

We also compare lifetimes of network achieved by
different schemes, as shown in Figures 12, 13, and 14. The
lifetime extensions of network are reflecting the lifetime
extensions of surveillance. The lifetime of NAV remains the
same as the more sensors are deployed. This shows the
limitation of NAV that it fails to adapt to the increasing
sensor density.

6. Discussions

Unreliable Links. It has been well known that wireless
transmissions are unreliable. In GAP, the broadcasting of an
UPDATE is important. Suppose that sensor Q broadcasts its
new probability and reduces its active probability accord-
ingly. Sensor B, a detection neighbor of Q, fails to receive the
packet from Q. In this case, there may occur a violation since
B still keeps the previous probability of Q that is larger than
the current real active probability of Q. Based on this out-
of-date information, B may calculate a new probability that
fails to ensure that the detectability of some point within its
detection range.

However, we should point out that the detection range
is usually much shorter than the communication range.
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Figure 12: Comparison of 90-lifetime of network.
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Figure 13: Comparison of 70-lifetime of network.

According to the data measured on eXtreme Scale Mote,
the detection range of magnetic sensor detecting vehicles
are 8 m. The communication range of a Mica2 Mote [23]
is about 150 m in the outer door environment. It has been
revealed that two sensor nodes that close to each other
have much more reliable packet transmission. On the other
hand, we can introduce an additional duplicate packet
immediately following the previous one to confirm the
update packet. This can further mitigate the problem that can
be introduced by occasional failures of UPDATE reception, if
the environment is harsh for wireless communication.
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Figure 14: Comparison of 50-lifetime of network.

Inaccurate Locations. In the design of GAP, location informa-
tion has been crucial. The accuracy of location information
of sensor nodes certainly impacts the performance of the
algorithm. If the estimated location is inaccurate, a sensor
fails to precisely identify the set of grid points that are really
within its detection range and the set of detection neighbors.
The consequence is that the system may fail to provide
guaranteed detectability.

Fortunately, we are able to address the problem intro-
duced by inaccurate location if location errors are insignif-
icant. On one hand, we have witnessed rapid advances
in technologies for positioning sensor nodes accurately.
Recently, study has reported that localization with accuracy
of several centimeters has been possible [25]. On the other
hand, we can use a more conservative nominal detection
range to compensate the inaccuracy introduced by location
errors.

7. Conclusion and Future Work

In this paper, we have presented the GAP algorithm that
provides guaranteed detectability for any event occurring
in the sensing field. GAP exposes a convenient interface
for the user to specify the desired detectability. Employing
the probabilistic approach, GAP is able to finely tune the
active probability of each sensor so as to minimize the
power consumption of the sensors. The algorithm does not
rely on costly time synchronization and is fully distributed,
therefore truly scalable to network scale and sensor density.
It has demonstrated through simulation experiments that
GAP significantly prolongs system lifetime while satisfying
the specified detectability for any event.

The future work will proceed in several important
directions. First, we plan to further study the impact of inac-
curate location and unreliable wireless communications on
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detection performance and the necessary design that should
be enhanced. Second, we will implement the algorithm in a
testbed to validate the design and to study its performance
under realistic complex environments.
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