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We examine decoding structure for distributed space-time coded regenerative relay networks. Given the possible demodulation
error at the regenerative relays, we provide a general framework of error aware decoder, where the receiver exploits the
demodulation error probability of relays to improve the system performance. Considering the high computational complexity
of optimal Maximum Likelihood (ML) decoder, we also propose two low-complexity decoders, Max-Log decoder and Max-Log-
Sphere decoder. Computational complexities of these three decoders are also analyzed. Simulation results show that error aware
decoders can improve system performance greatly without high system overload and Max-Log decoder and Max-Log-Sphere
decoder can drastically reduce the decoding complexity with negligible performance degradation.

1. Introduction

Relay-assisted communication is a promising strategy that
exploits spatial diversity available among a collection of
distributed single antenna terminals for both centralized and
decentralized wireless networks. In most relay networks, a
two-stage relaying strategy is used. In the first stage, a source
transmits and all relays listen; in the second stage, the relays
cooperate to forward the source symbols to the destination.
Generally speaking, the relay functions can be separated
into two types, regenerative and nonregenerative. If the relay
processes the received signal, we call it regenerative relay,
such as Decode-and-Forward (DCF) [1] and Demodulation-
and-Forward (DMF) [2]. Otherwise, we call nonregenerative
relay, such as Amplify-and-Forward (AF) [1].

It is well known that the channel between source and
relay is unreliable because of fading and noise. The relay
receives an attenuated version of the source signal. AF relay-
ing scheme amplifies noise. DCF scheme always using cyclic
redundancy check (CRC) will cause interruptions when the
relay detects errors from the received message. DMF scheme
is a tradeoff between AF and DCF in relay processing.
Relay can always keep a transmit link from the source

and detects and possibly decodes the source signal [3].
Moreover, the DCF scheme can also be considered as a
special case of DMF if we consider the null signal as
one choice of the modulation constellation. Therefore, in
this paper, we treat DMF as the object to be studied for
regenerative relay networks. However, DMF relay has an
important disadvantage, which is the error produced in
relay’s Maximum Likelihood demodulation degrades the
effective SNR at the destination significantly, which is called
error propagation [4]. For distributed space-time coding
system in regenerative relay networks, the degradation is
more drastic 5, 6]. In [3], we proposed a threshold-based
scheme to minimize the error propagation, which is an
active mechanism equipped in relays but subject to the large
computation complexity.

In this paper, we intend to investigate the ML decoding
structure where the destination is able to be aware of the
error probability at the relays. Since the error probability at
relay is a monotonic decreasing function of received SNR
at relay, the destination can estimate the error probability
through training sequences which is transmitted by source
and amplified by relay. Meanwhile, each relay also trans-
mits its training sequence to estimate the relay-destination



channel [5, 7]. Therefore, error aware distributed space-
time decoding is reasonable. After analyzing the conditional
likelihood function, we give a general framework of error
aware decoder for regenerative relay networks. Because the
proposed ML decoder is composed of multiple likelihood
function generators, the computational complexity is too
large to be affordable in some cases. Due to max-log approx-
imation, we provide a Max-Log decoder based on Csiszar-
Tusnady algorithm [8]. Moreover, to reduce the complexity
further, we also propose a Max-Log-Sphere decoder which
combines max-log approximation and sphere decoding.
In addition, we analyze complexities of these decoders in
terms of elementary operation number. Finally, simulations
verify the low complexity and improved performance of our
proposed decoders.

2. System Model

We consider a wireless network with N randomly placed
relay nodes, relay i = 1,...,N, one source node S, and a
destination node D. Each node is equipped with only a single
antenna and uses the Half-duplex mode. Denote the channel
from the source to the ith relay as f; and the channel from the
ith relay to the destination as h;. Assume that { f;} and {h;}
are independent complex Gaussian random variables with
zero-mean and variance 8% and &7, respectively. Receiver
noise is assumed as complex Gaussian random variable with
zero-mean and unit-variance. We assume a block fading
channel model, where channel gain stays constant during a
time block and changes from block to block [1]. We also
assume that the instantaneous channel is unknown to the
transmitting node but perfectly known at receiving node.
Assume that the source wishes to send the signal s =
[51,52,...,5T]T to the destination, where s; € 4 and 4 is
a finite constellation with average power 1/T. Here T is the
signal block length. Hence, E{ss} = 1. Assume s is in the
codebook 8 = {sy,...,s.}, where L > 2 is the cardinality of
the codebook. For the convenience of expression, we consider
all transmit power is unit.

During the first stage, the source node transmits s;,/ €
[0, L — 1] to all relays, then each relay tries to demodulate the
received signal. Denote the demodulated symbol vector at the
ith relay is s;, and s; € 4. By (6.5) of [9], the demodulation
probability can be written as

P(si | fi,si)

1 ~ . ~
@( 2|ﬁ|2|Sz—si|2>,1fsi¢sl
- Z (’Q( ;|fi|2|sl—si|2),if§i=81,

I<j<L-1,j#I

(1)
where @(x) = (1/27) [ e */2dt. If the source node
transmits s;, the ith relay decode its received signal as
si # s with probability (52(\/(1/2)|f,-|2|sz —512). Obviously,
the probability of decoding successfully at the ith relay is
1- zlsng—l,ﬁl@(\/(1/2)|fi|2|sl - Sj|2)-
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At the ith relay, the received signal §; is mapped onto
a T x 1 vector (not necessary), Fi(s;), as processed at one
antenna of colocated space-time coding transmitter. We
assume the map function F; is invertible. Therefore, there are
L possible transmitted vectors to the destination for the ith
relay, because §; could be any vector in §. Herein, we assume
all mapping functions ¥;,i = 1,..., N, are different with each
other. Then, all relays transmit the mapped vectors to the
destination. At the destination, the received signal is

where Y = [yl,...,yT]T is the received signal, H =
[hi,...,hn]T is the relay to destination channel vector,

and N is Gaussian white noise. Define a codebook C =
{[F1(51),..., Fn(sn)]}. Clearly, C includes LV elements. We
define the kth element of € is Cy = [cik,...,CNnk], Where
cik € {Fi(s))}. Thus, if Cy is transmitted, we can express (2)
as

Y = CGGH+N. (3)

Denote the inverse function of £ as £ ~!. Then, we have

N
P(Ck | E,s1) = [[P(F ' (c) | firs1), (4)

i=1

where F = [fl,...,fN]T. So, by (1), we can derive the exact
value of (4). Given a Cy, the conditional probability density
function of Y is

P(Y | H,Cy) = ;%N exp(—(Y - GH)” (Y - CiH)).  (5)

3. Error Aware Maximum Likelihood Decoder

In this section, we provide a general Maximum Likelihood
decoder for distributed space-time coded regenerative relay
networks. First of all, destination should know the channel
information in this relay networks. The channels from relays
to the destination h;,i = 1,..., N, can be estimated through
pilot symbols which are transmitted by each relay before data
transmission [10]. Herein, we assume all the estimators are
ideally accurate without error. The effect of estimation error
will be checked in simulations. To let the destination know
the demodulation error probability of each relay, we propose
the following extra channel estimation scheme.

Step 1. The source transmits its pilot symbol to all relays
through channels fi,..., fv. Without demodulating, each
relay maps the noise version signal to a vector like the scheme
proposed in [11].

Step 2. Each relay transmits the vector to the destination
like the Amplify-and-Forward based distributed space-time
coding [12].

Step 3. The cascaded channel between source and destina-
tion carried by amplified pilots, that is, fih;,i = 1,...,N, can
be estimated at the destination like [11].
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P(Y[H, Cy)

P(Y[H, C2)

P(Y/H, C;v)

Max and
mapping [ 7

F1GURE 1: Error aware ML decoder.

Therefore, f; also can be estimated by the above channel
estimation scheme. It is difficult to analyze the effect of
channel estimation error in error aware decoders, but we
simulate that in Section 6. In following context, we just
assume there is no channel estimation error to allow us to
focus only on structures of error aware decoders. Because the
signal vector set 4 and all mapping functions { #;} are known
at the destination as a prior knowledge, (4) can be derived at
the destination.

If the transmitted signal is s;, the likelihood function is

LN
P(Y |F,H,s) = > P(Y |H,C)P(Cx | F,s)).  (6)
k=1

Therefore, the error aware ML decoder is

arg lrgag)i{P(Y | F,H,s))}. (7)

Utilize (4)—(6), then (7) is derived. By (5), P(Y | H,Cx) is
independent of s;, so that according to the estimated channel
H, P(Y | H,Ck) can be calculated first. Then, using the
amplified pilot, P(Cx | F,s;) is also derived. Therefore, the
ML decoder can be built in Figure 1, where we show the
structure of error aware ML decoder for regenerative dis-
tributed space-time coding. Note that there are L adders and
LY likelihood function generators.

The complexity of the error aware ML decoder equals to
that of LN colocated space-time decoders it is too large to
be affordable if the signal block length, modulation order,
and the number of relay are considerablely large. Reference
[2] considered a piecewise-linear approximation to solve a
similar problem, but in this case it is also too complicated to
design an approximation function.

3.1. Optimality of Error Aware Decoder. To prove the opti-
mality of our proposed error aware receiver, we need to
analyze the error performance difference between the error
aware decoder and nonerror aware decoder (traditional

3 ] | o
(o}
g 2 (] ( o
~
Received signal
g b @,

1 Ly

1 2 3
Relay 1

FiGure 2: Illustration of the signal space.

receiver). Unfortunately, it is difficult to derive the exact error
performances of error aware decoder and nonerror aware
decoder. To illustrate the optimality, we try to give following
two points (in Figure 2).

(1) Receiver Rule. Since the error aware decoder is based on
ML rule, it should be the optimal receiver [10].

(2) Signal Space Description. To express clearly, we set the
source transmit a symbol s € A and A = {1,2,3}. We
assume 1 is transmitted by the source. Consider there are 2
relays in the relay networks. Then, it is obvious that there
could be 3? possible decoding combinations at the relay
network, that is, {1,1}, {1,2}, {2,1},...,{3,2}, {3,3}. In
the nonerror aware decoder, combinations {1,1},{2,2}, and
{3,3} are considered. In following, we consider two cases.



Case 1 (No error happens at relays). In this case, relays
decode the received message as 1, which means decode set
is {1,1} (red ball). According to (6), error aware decoder is
equivalent to the nonerror aware decoder. Therefore, both
have the same error performances.

Case 2 (Error happens at relays). In our interested situation,
the impact of noise is very slight therefore, the system
SNR is very high and we could only consider the closest
symbols as errors. As a result, our candidates are also
limited between {1,2} and {2,1} in error aware decoder.
As we know, the error performance is a Q-function of the
distance between the transmitted symbol and the received
symbols on the signal space [10]. Therefore, the error
performance of nonerror aware receiver could be expressed

as Q(y/d3SNR). By (6), the error performance of error aware

decoder is Q(\/deNR)Q(\/chNR). As we consider high
SNR regime, then there is Q(x) ~ exp(—x?/2). Then the error
performance of error aware decoder can be approximated as
exp(—(di+d2)SNR/2). Denote the angle between d; and d; as
0. Because the received signal is so close to {1, 2}, then cos 0 >
0. By the law of cosines, we have exp(—(d; + d3)SNR/2) <
exp(—d%SNR/Z). For {2, 1}, we can obtain the same result. So
we can prove that error aware decoder outperforms nonerror
aware decoder.

4. Low-Complexity Error Aware Decoders

In this section, we will introduce two low-complexity
error aware decoders through analyzing and simplifying the
structure of ML decoder. The simplifying process we used
herein can be extended for more general cases to obtain low-
complexity decoders. First, we use Max-Log approximation
to derive a Max-Log error aware decoder which can work
with Csiszar-Tusnady algorithm. Second, to reduce the com-
plexity further, sphere decoding also is combined into the
Max-Log decoder, which is called Max-Log-Sphere decoder.

4.1. Error Aware Max-Log Decoder. Substitute (6) into (7),
there is

LN
arg lrgla<>2<|z P(Y | H,Cy)P(Ck | F, Sz)}. (8)
==L k=1

Because log(x) is an increasing monotonic function, the ML
decoder can be rewritten as

LN
arg max- log Z exp{—lllY —- CyH|? +Ak,l} )]
1<I<L 1 2

According to (5) and max-log approximation in [13], we
derive

—Y - CiH|* + A } 10
arg max {arg 1151}2(‘\1{ [ «H| k,l} (10)
where Ax; = log(P(Ck|F, s;)).

We can see that decoding distributed space-time code
becomes searching a two-dimension array, which is indexed
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by (k,1). Intuitively, this decoder also needs LN ML detector
like ML decoder. The only difference is that calculating the
likelihood function of each symbol vector does not need
cross-computation. However, double maximization problem
can take advantage of Csiszdr-Tusnady algorithm to reduce
computing [8]. Because the set {||Y — C:H|?} is a set of
distance measure which is one-one mapped to a probability
distribution set and {Ax;} is the set of probability distri-
bution, moreover, {Ax;} < 0, then (10) can be seemed to
seek the vector which has the minimum sum distance which
equals to the distance from s; to Ci plus the distance from Cj
to Y. Thus, Csiszar-Tusnady algorithm does converge to the
maximum element [8]. We summarize the iterative Max-Log
decoder as follows (Figure 3).

4.2. Error Aware Max-Log-Sphere Decoder. If the length of
vector s and the constellation size are sufficiently large, Max-
Log decoder is also subject to the implementation. The
largest computation is required for searching code set C with
cardinality LN. Reducing the decoder complexity depends on
searching C.

To state the Max-Log-Sphere decoder, we first find the
real-valued equivalent of (3), Define

T
2Tx1’

Y= [R{Y}T,l{Y}T]

H-= [{R{H}T,JC{H}T !

T (11)
2Tx1’

]2N><1’
N=[RIN}, 2{N}"]

- R{CL} L{Ci}
k —J{Cr} R{C} 2T><2N’

where R{-} and f{-} denote real part and imaginary part.
By (10), we yield

arg min{ min {H? - ékﬁHz - )Lk,l}}. (12)

1=<I<L (1<k<IN

For a specific s;, the decoding object is

arg llslllérLlV{ ’? - Ekﬁ“z - /\k,l}
o . (13)
= arg min 1[[¥ - (87 ©1) vec {&f [ - 2],

1<I<IN

where ® is the Kronecker product operation. Obviously, we
can use sphere decoding method [14, 15] to searching Cy,

~ o~ ~ey 2
which minimizes (13). Note that IINH2 = ||lY — CH|| is an
x* random variable with 2N degrees of freedom. We choose

. . . . ~ 2
the radius r to be a linear function of the variance of ||N]|
r? = 2aN, (14)

where the coefficient « is chosen in such a way that with a
high probability Py, we can find a lattice inside a sphere

2aN XN71
- 15
) rv© (15)
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Loop
l i=1,..,L
——>| IY-CH|? T
——| Y- CH|? b
Y Max —
| IY-CwH|? b
FIGURE 3: Max-Log decoder.
(1) Initialization: Set error probability set &. Take any element of C; € € and compute Dy = —[|Y — CtH||%.
(2) Step 1: Find the | that makes Dy + Ay is maximum for the chosen k, where A,; € & and is calculated by (4).
(3) Step 2: Fix / and find a D,, € € which makes D,, + A,,; is maximum.
(4) Decision: If n = k, goto End, otherwise, goto Step 1.
(5) End: s; is the decoded vector.
ALGORITHM 1
where T(N) = [;° tNe7'dt. Note that the radius is chosen ~ and a new necessary condition can be written as
based on the noise not on channel efficiency. As stated in
[14], this point has a beneficial effect on the computational )
complexity. B2 . bym ( %)
For expression convenience, we define H' ® I = B and R R by M XM (20)

Vec {(N:k} = X with size 4NT X 1. Therefore, searching X is
equal to searching Ci. Applying the idea of the Fincke Pohst
algorithm (See Algorithm 1), we search for the point X that
belongs to the geometric body described by

N
~\H ~
iz (X=X) UTU(X - X) - Y log(P(cik | firs1)),
i=1

(16)
where X = B'Y = (BB) 'ATY and U is the low triangular
matrix obtained from QR factorization of B. The search
radius r'x; is chosen according to the statistical properties

of noise and the decoding error at relays. Denote 4NT = M,
then, a necessary condition for xs, the Mth element of Xy, is

A 2 ’
by (en — Xm)” = Skpm < 1 i,z, (17)

where 8y 1 pr is defined as

1
Ok 1m = ﬁlog})((:j,kfjasl)a
) (18)
j= Emod (M,2T).

Herein we allocate the additional weight &k, averagely over
N relays. Moreover, we define

2 2 ~ 2
o1 = Tk — b (o — Xn)” + O, (19)

72
= Okam—1 < T i Mo

In a similar fashion, one proceeds for x)_,, and so on,
and until all components of vector X are found. Note that
the dominant difference between Max-Log-Sphere decoder
and sphere decoder proposed in [14] is that radius varies
according to all possible code words. In this Max-Log-Sphere
decoder, for each k, we just check X; whether to meet
its radius. If there exists more than one Xj can meet the
constraint (17) for x,,, keep these survival code word and
go to next code word. If some of these code words cannot
meet the new constraint, then drop them. That is to say for
each lattice we must try all possible radiuses. For a specific sj,
Max-Log-Sphere decoder can be summarized as Figure 4.

After terminating the decoder algorithm for s; (See
Algorithm 2), select the C; which achieves the minimum
distance to Y. Then through L Max-Log-Sphere decoder with
I=1,...,L, choose the s; which minimizes the distance to Y.

Note that Max-Log-Sphere decoder needs estimating the
noise variance of the receiver. However, Max-Log decoder
using Eulerian distance and error probability is more real-
izable. Hence, there is a tradeoff between computational
complexity and implementation to choose which one is
suitable.
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Sphere
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S1
k=1,..,IN
Sphere

Y decoding

s1
k=1,..,LN

Sphere
decoding

Min

FIGURE 4: Max-Log-Sphere decoder.

Input B, Y, X, r,Akn, d, Setk = 1.
, ~ 2 S A A
(1) Setm = M, rj, = 1> — IYI" + IBXIl, Xaas1 = X
(2) (Set bounds for x,,) Set zx = 741,/ byms
UB(xm) = sz +5C\m\m+lJy Xm = [_Zk +£m\m+l-| —d.
(3) (Check x,,) Set x,, = X;.(m),

if b2, (Xm — Xmimo1 S rkzlm + Ok,m and x,, < UB(x,,), go to (5), else to (4).
(4) (Increase k) k = k + 1, If k = LN + 1, terminate algorithm, else go to (1).
(5) (Decrease m) If m = 1 goto (6). Else m = m — 1, Xpym-1 = X + Z?ﬁmﬂ(bk.j/bm,m)(xj - %)
rl;,zl,m = rl;,zl,m+] - 751+1,m+1 (me - 35\m+1\m+2)2 + 8k,l,m+l> and go to (2)
(6) Solution found for k. Save k, Xy and exact distance dy,. and set k = k + 1, if k = LN + 1, terminate algorithm, else go to (1).

ALGORITHM 2

5. Computational Complexity Analysis

In this section, we analyze and compare the computational
complexity of above three decoders. We use the average num-
bers of real elementary operation, C, (including addition,
subtraction, multiplication, and division), as a measure for
computational complexity.

5.1. Complexity of ML Decoder. By (5), it easy to know that
compute P(Y | H, Ci) needs TN+5T+3N+1 times additions
and 4NT + 4T multiplications. Similarly, observe (4), we
also can figure out that compute P(cx | F,s) needs N — 1
multiplications. Therefore, there are (LN —1)+LN(TN+5T +
3N —1) additions and LN(4NT +4T + N — 1) multiplications
to obtain P(Y | F,H, s;). As a result, it needs

CY = LN*I(5NT +9T +4N - 1) — L. (21)

operations (additions and multiplications) to perform ML
decoder.

5.2. Complexity of Max-Log Decoder. Recall (10),
IIY = CtH||* needs TN +5T+3N — 1 additions and 4ANT+4T

multiplications and Ax; needs N — 1 multiplications. There-
fore, Max-Log decoder needs

Cy ™% — IN(SNT + 9T +3N — 1) + IN*/(N — 1) + L.
(22)

real operations. To compare the complexities of ML decoder
and Max-Log decoder, we have

ML Max — log

1 2
_ 7N+1 _ _ - _
=L [(5N+9T+3N 1)(1 L>+1 LN]'

(23)

As stated in system model, L > 2and N > 1, so there is Cj" >

C;\,Aax_log. That is to say ML decoder has higher complexity
than Max-Log decoder.

5.3. Complexity of Max-Log-Sphere Decoder. Max-Log-
Sphere decoder for a s; has LV radiuses but each radius is
only assigned for searching one possible Ci. According to
[14, 15], an arbitrary lattice point X, that belongs to an
m dimensional sphere of radius r; around the transmitted
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point X, is given by the following incomplete Gamma func-
tion:

2aN + A 2N - 2T +m
2\’ 2
m _ xm

2<1+PrHXt xy|| ) (24)

2LPrIXP XTI (2N-2T+m)/2)-1
= J e *dx,

0 I'(2N = 2T +m)/2)

where X" = [xM,m,xM,mH,...,xM]T, and Pr is the relay

transmit power, which is assumed as unit in above context.
The number of elementary operations that the Max-Log-
Sphere decoder performs per each visited point in dimension
mis

Cp(k, I, m) = 2m +12. (25)

Denote (24) as Py ; therefore, C,, of Max-Log-Sphere decoder
is yielded as

L IN M

C, = Z z Z Cp(k, I, m)Py,. (26)

I=1k=1m=1

It is difficult to compare Max-Log-Sphere decoder with other
decoders, but in next section we will show simulation results
to illustrate the differences.

6. Simulation Results

In this section, we provide the simulation results to show the
proposed error aware decoders. We denote the total power
noise ratio as the system signal-noise ratio (SNR) indicator.
And half of total power is assigned for source transmit
power, and another half is equally divided by all relays. In
this simulation, we adopt distributed linear dispersion code
proposed in [12] as the coding scheme for its simplicity,
where Fi(s) = A;s and A; is a random unitary matrix. For
Max-Log-Sphere decoder, herein we set Py, = 0.99. All other
parameters are the same with system model. We also should
claim the nonerror aware decoder is

arg min||Y — C(s)H]’, (27)
where C(s) = [A;s, Ass, ..., Ans].

6.1. Performance Comparison with Ideal Receivers. Figure 5
demonstrates bit error rate (BER) performances of different
decoders where two relays are employed and the signal
modulation is BPSK. That is to say T = N = 2. We
can see that at high SNR regime error aware decoders
achieve almost 6 dB gain than nonerror aware decoder and
outperform AF scheme-based ML decoder about 3 dB. Thus
it is worthy to bring slight system overhead for delivering
channel estimation to improve the system performance.
Over all SNR range, Max-Log decoder and Max-Log-Sphere
decoder have nearly the same performance with ML decoder.
Therefore, the degradation of Max-Log approximation is
negligible. Carefully observing, we found that the slope of

100 £
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—+— Nonerror aware decoder

—— AF ML decoder

—8— Error aware ML decoder

—A— Error aware Max-Log decoder

—o— Error aware Lax-Log-Sphere decoder

FIGURE 5: BER performance of error aware decoders (2 relays, ideal
receiver).

BER curve decreases. The reason is that the hard-decision
error at relay limits the systems performance even though
SNR is enough high.

In Figure 6, we also simulate a 4-relay network to show
the BER performance of that decoders. Herein, T = N = 4
and modulation is QPSK. Similarly, error aware decoders
can bring about 7dB power gain than nonerror aware
decoder at 22dB SNR. We can see that it is different
from Figure 5 that error aware decoders only achieve about
1.5dB gain than AF-based ML decoder. The reason is that
high-order modulation incurs more error after decoding at
relays and enlarges errorpropagation so that deceases the
possible gain of error aware decoder. And in this case, the
differences of three error aware decoders are more slight. It
is interesting that the slope of BER curve does not decrease
here. That is because more relays bring more error conditions
and consume more power. Therefore, the slope decreasing
threshold is larger than 2 relay with BPSK system. From
both two figures, we can assert that error aware decoders can
improve the system performance efficiently with little system
cost.

For distributed space-time coded (DSTC) relay net-
works, [12] had proved that the maximum achievable
diversity order is min{N, T'}. Reference [16] addressed that
demodulate-and-forward scheme in a relay network where
direct link is available can only achieve half of maximum
diversity. In our simulations, relay network with nonerror
aware decoder has an even less diversity, that is, the
diversity of nonerror aware decoder in Figure5 is 1 and
in Figure 6 is only 1.2. That is because there is no direct
link in our model and direct link which does not produce
demodulation error. Adding a direct link can increase the
system diversity by one but adding on one relay could not
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FIGURE 6: BER performance of error aware decoders (4 relays, ideal
receiver).

gain advantages, but even get worse. Essentially speaking,
demodulation error limits the diversity growing. On the
other hand, error aware decoder has a larger diversity than
nonerror aware decoder. That is to say error aware decoder
gains advantages from the available error probabilities.
Since there are also demodulation errors at relays, error
aware decoder cannot achieve the full diversity at finite
SNR.

6.2. Performance Comparison with Practical Receiver. In
order to validate the practical performance of our proposed
error aware decoders, we also consider a practical receiver
at the destination, where channel state information is
generated by channel estimator. It means that channel state
information is not perfect and has estimation error. We set
the transmit power of pilot symbols used to estimate channel
equal to the transmit power of data symbols. The procedure
of channel estimation follows that 3-step scheme described in
Section 3. Channel estimators are built on minimum mean
square error (MMSE) rule [11]. In addition, the performance
degradation of low-complexity decoders is incurred by less
searching in codebook. Moreover, both Figures 5 and 6 prove
that low-complexity decoders achieve similarly performance
compared with the error aware ML decoder. Therefore, in
following simulation, we do not draw the performance of all
three error aware decoders but error aware ML to compare
with other schemes.

Figures 7 and 8 give the BER performances of differ-
ent decoders with practical receivers where channel state
information is not perfect. Clearly, the channel estimation
error does not change performance relationship among
nonerror aware decoder, AF-based ML decoder, and error
aware ML decoder. Comparing Figures 5 and 7, we can
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Fi1GURE 8: BER performance of error aware decoders (4 relays, ideal
receiver).

see that the performance gain obtained by error aware
decoder as compared to AF-based ML decoder decreases
from 3 dB to 2.5dB. We also can find that the gain of error
aware decoder over nonerror aware decoder decreases from
6dB to 5dB through comparing Figures 6 and 8. That is
to say that the uncertainty of channel state information
does degrade the performance of our proposed error aware
decoder but the degradation is limited. Error aware decoder
still outperforms nonerror aware decoder. In summary,
our proposed error aware decoder works well in practical
receivers.
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FIGURE 9: Average operation number of three decoders with 2 relay,
BPSK.

6.3. Complexity Comparison. We will show the computa-
tional complexity of three error aware decoders by elemen-
tary operation number. Note that the operation number of
Max-Log-Sphere decoder varies with unitary matrices A; and
the channel realization because of (13). We average the ele-
mentary operation number over 1000 channel realizations.

In Figure 9, we show the average operation number of
these three decoders when 2 relays are employed. Obviously,
Cps of ML decoder and Max-Log decoder are independent
of SNR. Max-Log decoder has a lower complexity than
ML decoder. Max-Log-Sphere decoder needs far smaller
operation number than that of ML decoder and Max-
Log decoder. Of course, for 2-relay network, the operation
number of ML decoder is trivial compared with current
hardware computing rate. However, for 4 relays with QPSK
modulation scheme, it is too large to be affordable. Figure 10
gives the elementary operation number in this case. We
can see that ML decoder has 1.4404e + 014 operations!
The operation number of Max-Log decoder is nearly 1%
of that of ML decoder. It is notable that Max-Log-Sphere
decoder needs only 0.1% operation number of Max-Log
decoder. Therefore, Max-Log-Sphere decoder achieves the
same BER performance with optimal ML decoder but costs
drastically low computation. Although Max-Log-Sphere has
an attractive performance, the noise variance should be
estimated first to calculate searching radius [14]. Max-Log
decoder just utilizes Eulerian distance and error probabilities;
therefore, it is a good tradeoff for decoding structure between
implementation and computational complexity. We can
choose one of them due to different receivers.

7. Conclusion

In this paper, we provide a general framework of error
aware distributed space-time decoder for regenerative relay

Average operation number
_ —
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10°
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FiGUre 10: Average operation number of three decoders with 4
relay, QPSK.

networks. Through two-stage pilot symbols, the destination
can estimate not only the relay-destination channel but
also the error probability happening at relays. Using these
estimated error, Maximum Likelihood decoder is provided.
To reduce computational complexity, Max-Log decoder and
Max-Log-Sphere decoder are also proposed by max-log
approximation. Simulations show that error aware decoders
can improve the performance drastically. Max-Log-Sphere
decoder can achieve the same performance with ML decoder
and needs far lower computational complexity. Without
noise estimating, Max-Log decoder can make a good tradeoff
between implementation and computational complexity.
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