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Copyright © 2013 G. Koç and K. Yegin.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Extensive field tests were carried out to assess the performance of adaptive thresholds algorithm for footstep and vehicle detection
using seismic sensors. Each seismic sensor unit is equipped with wireless sensor node to communicate critical data to sensor
gateway. Results from 92 different test configurations were analyzed in terms of detection and classification. Hit and false alarm
rates of classification algorithm were formed, and detection ranges were determined based on these results. Amplification values of
low-intensity seismic data were also taken into account in the analysis. Algorithm-dependent constants such as adaptive thresholds
sample sizes were examined for performance. Detection and classification of seismic signals due to footstep, rain, or vehicle were
successfully performed.

1. Introduction

Seismic sensors are invaluable parts of security systems that
focus on perimeter or compound security. Footstep detection
is the foremost application of these sensors [1–7]. Fusion
of different sensors has also been considered for the same
task [8, 9]. Many detection algorithms have been proposed
in the past, but some of them place too much burden on
computational resources and some of them are simply too
complex to be implemented on awireless sensor network, and
yet some of them lack field tests. Field tests compromise of
footsteps and vehicles at different ranges of the sensors.

Another critical aspect of footstep detection is the
amount of analog signal gain that is applied to seismic
data. Low-intensity seismic data require large amounts
of amplification before being digitized. On one hand,
high amplification is desired for increased range at the
expense of increased noise level. On the other hand,
low amplification is ideal for suppressing and identifying
noise but has limited application range [10, 11]. Any sig-
nal processing algorithm must pay attention to amplifi-
cation level as well as algorithm-dependent variables. In
this study, we also study the impact of signal amplifi-
cation on detection performance by analyzing data with

different amplification values. Seismic data after being pro-
cessed at the node, has been transferred to other wireless
nodes or directly to the gateway to signal alarm condi-
tions. Wireless sensor network nodes, illustrated in Figure 1,
were specifically developed for this purpose, utilizing Texas
Instruments transceiver and microcontroller family.

2. Test Setup

Field tests were performed at Yeditepe University, and test
conditions are summarized in Table 1. Test site is shown
in Figure 2. Two students with different body weights were
chosen for footstep detection. Footstep, vehicle, and com-
bined footstep-vehicle tests were used to test the detection
algorithm under various signal amplification conditions.

3. Detection Probability and
Classification Performance

The detection algorithm was explained previously in [10].
Flowchart of the algorithm is given in Figure 2.The algorithm
utilizes slow adaptive threshold (SAT) to identify ambient
dynamic noise and quick adaptive threshold (QAT) to detect
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(a) Long distance test-1. (b) Short distance test. (c) Long distance test-2.

Figure 1: Pictures of test setup.

Table 1: Field test conditions.

Test conditions
Test location Yeditepe University Kayışdağı campus
Weather condition Dry
Air temperature 9∘C
Soil moisture status Wet
Sampling frequency 250 sample/second
Amplification gain Different in each Test
Vehicle Kia Rio GSL EX 1.4
Person A weight 60 kg
Person B weight 120 kg

Table 2: Chart for detection performance.

Detection present Detection absent

Signal present True detection (hit) Missed detection
(missed)

Signal absent False detection (false
alarm)

Correct rejection in
detection

any disturbance in sensor readings. For field tests, first, noise-
only data were collected with different gain values. Signal
processing algorithm is expected not to produce any alarm to
these noise-only data. Then, a large number of footstep tests
were executed to assess the performance of the algorithm.
Afterwards, vehicle tests were evaluated, and lastly, vehicle
and footstep combined condition were assessed.

First, we define “True Detection”, “False Detection”,
“Missed Detection”, and “Correct Rejection” according to
Table 2. “true detection”means that the signal type is detected
correctly. “Missed detection” refers to the condition that the
present signal is not detected. “False detection” refers to
incorrect detection; that is, if a vehicle signal is detected in

Table 3: Chart for classification performance.

Classification present Classification absent

Signal present True classification (hit) Missed classification
(missed)

Signal absent False classification (false
alarm)

Correct rejection in
classification

Table 4: Noise-only data (no disturbance).

Gain Vibration type detection Classification
Footstep Rain Vehicle Footstep Rain Vehicle

1000 0 0 0 — — —
2500 0 0 0 — — —
3500 0 0 0 — — —
5000 0 0 0 — — —
6500 0 0 0 — — —
7500 0 0 0 — — —

footstep test, this detection is called “false detection.” “Correct
rejection” condition occurs only if there is no signal and no
detection.

Since detection is different than alarm, a similar table is
formed for alarm conditions in Table 3.

“True Classification” means intruder type is classified
correctly. “Missed classification” means intruder type is not
classified. “False classification” means signal type is classified
incorrectly; for example, if a vehicle signal was classified in
footstep test, this classification is called “false classification”.
“Correct Rejection in Classification” condition occurs only if
there is neither intruder nor any alarm.

Specifying hits and false alarms is sufficient as the others
(miss and correct rejection) can be easily extracted; that is,
probability (Hit) equals to probability (Miss).
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Figure 2: The flowchart of the detection and alarm algorithm.

3.1. Noise-Only Tests. In noise-only tests, ambient environ-
ment is recorded and processed with 20 different gain values
in the absence of any movement. Detection and classification
results are presented in Table 4. A large range of gain values
were tested. Gain values greater than 7.5 K were not tested as
noise levels reach full ADC swing.

As it is seen in the Table 4, the signal processing algorithm
did not produce any alarm or any vibration detection in
noise-only condition at all amplification values.

3.2. Footstep Tests. Nine circles concentric to the seismic
sensor were traversed by two different persons.The test setup
is illustrated in Figure 3. In each test, 60 footsteps were taken
(for larger radius circles, only some portion of the circle
is traversed.). A total of 72 tests were formed according
to Table 5 where combinations of different persons with
different amplification values on test circles were evaluated.

The classification result was “true” when only footstep
alarm was generated, “false” if rain or vehicle alarm were
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Table 5: Footstep test configurations.

Distance Person A Person B
Gain 1 k Gain 2.5 k Gain 5 k Gain 7.5 k Gain 1 k Gain 2.5 k Gain 5 k Gain 7.5 k

4m A-1 k-4m A-2.5 k-4m A-5 k-4m A-7.5 k-4m B-1 k-4m B-2.5 k-4m B-5 k-4m B-7.5 k-4m
6m A-1 k-6m A-2.5 k-6m A-5 k-6m A-7.5 k-6m B-1 k-6m B-2.5 k-6m B-5 k-6m B-7.5 k-6m
8m A-1 k-8m A-2.5 k-8m A-5 k-8m A-7.5 k-8m B-1 k-8m B-2.5 k-8m B-5 k-8m B-7.5 k-8m
10m A-1 k-10m A-2.5 k-10m A-5 k-10m A-7.5 k-10m B-1 k-10m B-2.5 k-10m B-5 k-10m B-7.5 k-10m
12m A-1 k-12m A-2.5 k-12m A-5 k-12m A-7.5 k-12m B-1 k-12m B-2.5 k-12m B-5 k-12m B-7.5 k-12m
14m A-1 k-14m A-2.5 k-14m A-5 k-14m A-7.5 k-14m B-1 k-14m B-2.5 k-14m B-5 k-14m B-7.5 k-14m
16m A-1 k-16m A-2.5 k-16m A-5 k-16m A-7.5 k-16m B-1 k-16m B-2.5 k-16m B-5 k-16m B-7.5 k-16m
18m A-1 k-18m A-2.5 k-18m A-5 k-18m A-7.5 k-18m B-1 k-18m B-2.5 k-18m B-5 k-18m B-7.5 k-18m
20m A-1 k-20m A-2.5 k-20m A-5 k-20m A-7.5 k-20m B-1 k-20m B-2.5 k-20m B-5 k-20m B-7.5 k-20m

Table 6: Footstep classification with 5K gain.

Distance (m)
Footstep classification results with 5K gain

Person A Person B
Footstep Rain Vehicle Result Footstep Rain Vehicle Result

4 + − − True + − + False
6 + − − True + − − True
8 + − − True + − − True
10 + − − True + − − True
12 − − − Missed + − − True
14 − − − Missed + − − True
16 − − − Missed + − − True
18 − − − Missed + − + False
20 − − − Missed + + − False

Geophone
sensor

Walking paths

4 m
6 m

8 m
10 m

12 m
14 m

16 m
18 m

20 m Distance between
human and

sensor

Figure 3: Footstep test setup.

triggered, and “miss” if no alarm occurred. The probability
of each classification results according to different conditions
was evaluated by using data from both persons. The results
are presented in Figures 4 and 5 and Tables 6 and 7.

Classification performance can vary depending on gain
and range. For >90% true classification rate and less than 10%
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Figure 4: True classification rates of footsteps with different gain
and range values.

false classification, 7.5 K amplification at 14m provides best
results. However, 7.5 K is still too large for vehicle tests, and if
target detection range is lowered to less than 10m, 5K gain is
as good as 7.5 K gain.

3.3. Vehicle Tests. Test setup for vehicle tests is shown in
Figure 6. Vehicle tests were executed on a straight line with
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Table 7: Footstep classification with 7.5 K gain.

Distance (m)
Footstep classification results with 7.5 K gain

Person A Person B
Footstep Rain Vehicle Result Footstep Rain Vehicle Result

4 + − − True + − − True
6 + − − True + − − True
8 + − − True + − − True
10 + − − True + − − True
12 + − − True + − − True
14 + + − False + − − True
16 + − − True + + − False
18 − − − Missed + − − True
20 − − − Missed + − − True

Table 8: Vehicle tests configurations.

Distance (m) Gain = 1 K Gain = 5K
Speed = 20 km/h Speed = 40 km/h Speed = 20 km/h Speed = 40 km/h

10 G1000S20D10 G1000S40D10 G5000S20D10 G5000S40D10
20 G1000S20D20 G1000S40D20 G5000S20D20 G5000S40D20
30 G1000S20D30 G1000S40D30 G5000S20D30 G5000S40D30

Table 9: Vehicle classification with different test parameters.

Test ID Vibration type detection Classification
Footstep Rain Vehicle

G1000S20D10 3 1 1 True
G1000S20D20 0 0 0 Missed
G1000S20D30 0 0 0 Missed
G1000S40D10 1 2 1 True
G1000S40D20 3 0 0 Missed
G1000S40D30 1 0 0 Missed
G5000S20D10 8 0 1 True
G5000S20D20 9 0 1 True
G5000S20D30 0 0 0 Missed
G5000S40D10 3 2 1 True
G5000S40D20 4 2 1 True
G5000S40D30 1 1 0 Missed

varying distances from the geophone sensor, 10 meters, 20
meters, and 30 meters. All lines are passed with two different
vehicle speeds, 20 km/hr and 40 km/hr. Test IDs were formed
as GXXXXSYYDZZ, where XXXX represents gain amount,
YY represents speed, and ZZ represents distance to sensor.
Tests were performed with 1 K and 5K gains. Although 7.5 K
gain produced very good results, we did not use that in vehicle
tests due to increased noise levels, which in turn degraded the
sensitivity of the system. Particular tests, with corresponding
test IDs were given in Table 8, were performed.

Summary of the tests are given in Table 9.Therewere false
vibration type detections. However, these false detections
were filtered in the classification processes. Only 1 false
classification was observed in 12 tests.
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Figure 5: False classification rates of footsteps with different gain
and range values.

3.4. Vehicle and Footstep Combined Tests. The test setup
is illustrated in Figure 7. Vehicle with footstep tests were
executed on twodifferent lines at the same time.Walking path
distance to geophone sensor was 5 meters, and vehicle path
distance to sensor is 10 meters. On vehicle path, two different
vehicle speeds (20 km/hr and 40 km/hr) were used; all tests
were repeated twice.

As before, test ID’s were assigned with GXXXXSYYTZ
where XXXX, YY, and Z represent gain, vehicle speed, and
test number, respectively. The tests, all configurations were
given in Tables 10 and 8, were performed.

Here, false Alarm was defined as “Rain” alarm, and
missed classification was defined as missing any one of



6 International Journal of Distributed Sensor Networks

Table 10: Vehicle and footstep combined tests.

Test repeat Gain = 1 K Gain = 5K
Speed = 20 km/h Speed = 40 km/h Speed = 20 km/h Speed = 40 km/h

First test G1000S20T1 G1000S40T1 G5000S20T1 G5000S40T1
Second test G1000S20T2 G1000S40T2 G5000S20T2 G5000S40T2

Vehicle paths

10 m

Geophone
sensor

10 m 10 m

Figure 6: Vehicle test paths.

Vehicle path

10 m

Geophone
sensor

Walking path

5 m

Figure 7: Vehicle and footstep combined test configuration.
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Table 11: Vehicle and footstep classification results.

Test ID Vibration type detection Classification
Footstep Rain Vehicle

G1000S20T1 10 1 1 TRUE
G1000S20T2 8 0 1 TRUE
G1000S40T1 7 0 1 TRUE
G1000S40T2 14 1 1 TRUE
G5000S20T1 9 1 1 TRUE
G5000S20T2 7 1 1 FALSE
G5000S40T1 19 0 1 TRUE
G5000S40T2 11 2 1 TRUE
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Figure 9: False footstep detection rate with different QAT memory
sizes.

the two alarms, either vehicle or footstep. Test results were
summarized in Table 11.

There were false vibration type detections, but these false
detections were filtered in the classification. Only one false
classification was observed in eight tests.

4. Algorithm-Dependent Parameters

Detection algorithm heavily relies on QAT and SATmemory
sizes, that is, number of samples where moving average
is calculated. Thus, we studied detection performance by
varying these critical memory sizes. Amplification was set to
5 K for all tests. True, false, and missed detection for various
QAT memory sizes as a function of range are shown in
Figures 8, 9, and 10. Same analysis was performed for SAT
memory sizes and the results are presented in Figures 11, 12,
and 13.
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Figure 10: Missed footstep detection rate with different QAT
memory sizes.
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Figure 11: True footstep detection rate with different SAT memory
sizes.

Best performance for true footstep detection was
achieved when QAT memory size was 30 samples and SAT
memory size was 20000 samples. Lower or higher than 30
samples QAT memory size prevents detection of footsteps
due to oscillations in the footstep vibrations. Larger SAT
memory sizes provide stability at the intruder movement
moments. However, due to memory limitations of WSN,
SAT memory size cannot be increased indefinitely.

5. Conclusion

Extensive field tests were performed to assess the perfor-
mance of adaptive thresholds detection algorithm. Over 92
different test scenarios were performed, and results were
evaluated in terms of detection performance. Performance
tests also included the amplification amount of seismic sensor
signals operating in a wireless sensor network. As higher
amplification values lead to better detection range, they also
increase noise level which, in turn, increases false alarm
classification. For detection range under 10m, 100% footstep
classification with less than 5% false alarm rate was observed
with 5K gain. For detection range less than 15m, 7.5 K
gain produced about 95% hit rate and less than 10% false
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Figure 12: False footstep detection rate with different SAT memory
sizes.
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Figure 13: Missed footstep detection rate with different SAT
memory sizes.

classification rate. Although the number of experiments with
vehicle tests were limited, 5 K gain was also successful (nearly
68% true detection and no false detection). Algorithm-
dependent constants such as QAT and SAT sample sizes were
analyzed for best performance, and these values were used in
detection and classification.
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