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Mitigating anomalies are crucial for trajectory management in logistics and supply chain systems. Among variant devices for
trace detection, computational radio frequency identification (CRFID) tags are promising to draw precise trajectory from the
data reported by their accelerometers. However, full coverage of the processing flow using RFID readers is usually cost inefficient,
sometimes impractical. In this paper, we propose to employCRFID tags as tagging devices and develop aworking system, Tracer, for
precise trajectory detection. Instead of covering the entire processing area, Tracer only deploys RFID readers in essential regions
to detect the mishandling, loss, and other abnormal states of items. We design a tree-indexed Markov chain framework, which
leverages statistical methods to enable fine-grained and dynamic trajectory management. Results from a preliminarily deployment
on a real baggage handling system and trace-driven simulations demonstrate that Tracer is effective to detect the anomalous events
with low cost and high accuracy.

1. Introduction

Trajectory management is of importance to manage and con-
trol objects for inventory, logistics, and supply chain applica-
tions (for simplicity, we term those applications as logistics
systems in the rest of this paper). There is a notoriously
difficult problem in those logistics systems: achieving fine-
grained trajectory management to timely report anomalous
events of objects. For example, the air transport industry
(ATI) [1] reported 25.8 million mishandled bags globally
in 2011, which tenders to a $2.58 billion profit mitigation.
In particular, about 53% cases occurred during the transfer
processes, where the precise luggage tracking solution is
lacking.

Prior works have adopted video cameras, cell phones,
radio frequency identification (RFID) tags, and sensors to
track movements of persons or objects for detecting whether
the trajectories are in “normal” or “abnormal” situations.
However, existing solutions have their intrinsic drawbacks.
For example, video camera based monitoring [2] is cum-
bersome due to its fixed angle, inaccurate automatic video
analysis, irregular activity detection, and high deployment

cost. GPS-based cell phones [3] are cost inefficient if being
implemented to locate numerous objects in large-scale logis-
tics systems. People also use wearable sensors for personal
localization and motion capturing [4], but those sensors are
easily susceptible to interferences from other wireless devices
and environments. RFID based systems often adopt active
[5, 6] or passive [7] tag arrays to track the objects. Active
tags have a penalty of high cost and poor scalability when
replacing battery in the real deployment [6, 7]. Being low-
cost and power-free, passive RFID tags have beenwidely used
in logistics systems. However, passive tags can only report
their IDs to the reader and hence support the trajectory
management in far coarse granularity. If one tagged bag falls
out of the conveyor, while still staying in the interrogation
region of the reader, as shown in Figure 1 (we define such
a situation as an anomalous event in the following), it is
difficult to timely detect such an anomalous event. The
anomalous eventmay be reported after a long period, causing
unacceptable delivery delay or even loss of the passenger
luggage.

With the disadvantages of the previous works in mind,
we are motivated to pursue a precise trajectory management
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Figure 1: Anomalous events happen on a piece of luggage in logistics
systems.

solution for logistics systems. Recently, the battery-free com-
putational RFID (CRFID) tag [8, 9] is appealing to provide
more context-aware information about objects. We propose
to adopt CRFID tags in our trajectory management systems.
Specifically, the collected vibration information from the 3D
accelerometer allows CRFID tags to precisely and promptly
detect the changes of objects trajectories, from which the
legitimate trajectory pattern of objects can be derived.

To achieve this goal, we propose aCRFIDbased approach,
Tracer, to obtain objects moving patterns for trajectory man-
agement. If the obtained patterns are anomalous, Tracer can
alert the administrator to deal with the relevant objects in real
time. Nevertheless, it is time consuming and costly to collect
and process the accelerometer data from tags along the entire
process flow in large-scale logistics systems. This becomes
a key barrier that limits efficient processing and analysis
of Tracer. We solve the problem twofold. First, instead of
monitoring an object across the whole system, Tracer only
interrogates the tags within the essential surveillance regions,
such as the unloading point and junction areas between two
conveyors (as shown in Figure 2). With the data collected
from those essential segments, Tracer can reconstruct the
trajectories of objects. Second, we adopt an efficient tree-
indexed Markov chain framework into Tracer to detect the
anomalous trajectories. The framework characterizes the
legitimate patterns of objects based on the acceleration data.
In particular, our framework takes the advantage of statistical
methods for trajectory detection, which enables Tracer to be
with relatively low deployment overhead and high accuracy
of trajectory detection. The main contributions of our work
are summarized as follows.

(1) To the best of our knowledge, Tracer is among the
first efforts to leverageCRFIDdevices for fine-grained
trajectory management in real logistics applications.

(2) Tracer adopts a tree-indexed Markov chain frame-
work to reconstruct and monitor the trajectory pat-
terns of objects. With the real accelerometer data
as the input, this framework enables Tracer to react
accurately and promptly upon anomalous events.

(3) We perform extensive trace-driven simulations and
preliminary implementation in a real baggage han-
dling system in Beijing Airport. The result demon-
strates the feasibility and effectiveness of Tracer.

The remainder of this paper is organized as follows.
We provide an overview of related works in Section 2.
In Section 3, we introduce backgrounds and fundamental
observations that motivated this work. Section 4 elaborates
the design of Tracer. In Section 5, we present the simulation
results and evaluation. In Section 6, we conclude this paper
and propose future direction.

2. Related Work

2.1. Motion and Body Trajectory. Motion capturing has been
well studied in the body sensor networks and passive tag-
based RFID systems, such as [4, 10–14]. The authors in
[10] proposed a data processing technique that constructs
motion transcripts from inertial sensors and identifies human
movements by involving collaboration among the nodes into
identification.Their work, however, targets on the distributed
action recognition algorithm, while ignoring the detection
of anomalous patterns that may affect the accuracy of
movement classification. Klingbeil andWark [4] proposed an
indoor wireless sensor network (WSN) based approach for
monitoring humanmotion and position.Their work requires
prior knowledge about the environment, such as indoor map
and seed nodes, to provide accurate position. Young et al.
[13] presented an efficient distributed method which uses a
model of the subject’s body structure to estimate and correct
for linear acceleration. The work in [15] proposed a WSN
based mobile countersniper system to estimate the trajectory
and range of snipers, as well as the caliber and type of
their weapons. Existing works in the literature mainly focus
on motion or body trajectory. They seldom adopt efficient
frameworks to judge whether the data is accurate for motion
capturing [11] and trajectory management [12, 15]. The work
in [16] reported an RFID positioning system that leverages
antenna arrays to localize tags under non-line-of-sight and
rich multipath environments. In this paper, we adopt a tree-
indexed Markov chain framework to detect whether the
accelerometer data collected from CRFID tags is accurate, in
order to yield a fine-grained trajectory management.

2.2. Vibration and Detection. Vibration is always an impor-
tant factor for detecting various object behaviors in many
applications [3, 5, 17–21]. In [17], the authors used sensor
nodes to monitor hand-arm vibrations, which is important
for monitoring health conditions of workers. Cell phones
are used for movement detection [3] but usually with con-
straints imposed by the inaccuracy of commodity sensors and
the limited battery power. For achieving efficient trajectory
detection, the authors in [18] provided a mobility estimation
and prediction for GSM networks. Their system is similar
to the wireless ad hoc structure. Active RFID techniques
[5, 7] are also adopted for activity monitoring using frequent
trajectory pattern mining [5]. But the scalability problem [7]
is a challenging issue due to the predeployment of tag array
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(a) Region 1: an object turns in the corner (b) Region 2: an object drops from a conveyor

Figure 2: Typical essential surveillance regions where accelerometer data pattern changes sharply. Such object movements can produce
distinguishable activity changes over time.

and poor scalability caused by the battery replacement. The
work proposed in [19] aims to discover anomalous driving
patterns from taxi’s GPS traces for detecting driving frauds
or controlling the traffic in modern cites. For enabling the
vibration and trajectory detection, prior works often deploy
high-cost sensing devices or complex deploy strategies but
still suffer from coarse granularity in trajectory detection.
In this paper, we aim at providing an efficient trajectory
management solution with only low-cost CRFID tags, which
highlights the implementation of Tracer.

3. Backgrounds and Motivating Examples

In this section, we show the background of CRFID tags
and observations that reflect the feasibility of adopting
accelerometer-enabled CRFID tags to identify the anomalous
trajectories of objects. The “normal” situation means that the
luggage is moving along the legitimate path on the conveyor.
“Abnormal” situation describes that the luggagemaymeet any
anomalies that occurred in the procedure of transportation.
We present four kinds of trials to illustrate our observation.

3.1. Computational RFID Tags. In our system, we select
passive WISP tags as the CRFID tagging devices. WISP tags
are developed by Intel. The WISP tag is compatible with
the EPC protocol [22]. A WISP tag is embedded with a
16-bit MCU (8MHz clock rate, 8 KB flash memory, and
256 BRAM). As the first programmable passive RFID system,
WISPs have been implemented to sense light, temperature,
strain, and so forth. Specifically, theWISP tag has an onboard
3D accelerometer, which can sense the vibration and report
the data of the three-axis to the backend server. We then
leverage this function to support the moving pattern training
and discrimination of trajectories. Note that Tracer only
needs the accelerometer data of WISP tag. We will develop
tailored and low-cost CRFID tags based on WISP in our
future work.

3.2. Acceleration Pattern of Moving Objects. We report the
average results of 30 similar moving traces of the tag.
For visualization, only accelerometer readings are shown in

Figure 3 and measured in degrees. Figure 3(a) shows the
acceleration changes collected from a stable WISP tag, and
the degrees around each axis remain stable over time. We
chose various WISP tags and found the noise from WISP
tags with a magnitude generally no larger than 7∘. Thus, if
the change of degrees is not larger than 7∘ on any axis, the
object keeps static. When the WISP tag moves along a line,
the acceleration changes smoothlywith amagnitude no larger
than 50∘ between two adjacent sample points, as shown in
Figure 3(b).

Figures 3(c) and 3(d) show the accelerometer data pro-
duced by two typical movements in critical areas. We find
that continuous fluctuations over 80ms indicate turns at the
corners, and the sudden drops can lead to severe accelerom-
eter data changes over 200∘ on horizontal axis. Therefore, it
is easy to build the correlation between the movement and
the collected data using a simple training process, like CART
or PCA [23]. Each movement sample can be classified into a
specific moving pattern, with which we can form the normal
pattern of moving objects along legitimate routes.

4. Trajectory Management Framework

In this section, we first introduce the design of our CRFID
based logistics system. We then present the tree-indexed
Markov chain framework. By adopting our statistical frame-
work, we can efficiently detect the anomalous trajectories
instead of passive tag-based solutions. Table 1 summarizes
some important notations used in this paper.

4.1. Framework Overview. Our computational RFID-based
logistics system consists of WISP tags, RFID readers, and
backend server. We employ off-the-shelf RFID readers which
follow the EPC standard [22]. The system architecture is
illustrated in Figure 4. At the essential processing areas in
logistics applications, we deploy RFID readers for monitor-
ing. We attach each object, for example, a piece of luggage or
a package containing a valuable item, with a WISP tag. The
backend sever can log the trace of each WISP tag from its
accelerometer data.

Our framework works in three phases.
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(d) Sudden drop from conveyor

Figure 3: Accelerometer data obtained from various movements of an object attached with a WISP tag.

In the first phase, we formulate the whole system status
into a tree-indexed Markov chain. Before the real implemen-
tation, we perform a training process on all behaviors of
tags to derive the legitimate patterns of correct trajectories’
transition probability matrix 𝑄

0
.

In the second phase, we then conduct a composite
hypothesis test to verify whether the sequence has been
generated from the legitimate trajectories (𝑄

0
) or other

unknown trajectories generated from law 𝑄
1
.

In the third phase, we can derive the valid patterns from
those legitimate trajectories and decide whether the trace of a
given tag is “normal” or “abnormal” based on those patterns.

4.2. System Model and Problem Statement. We consider a
general tree-indexedMarkov model that represents the mov-
ing pattern of objects on the conveyor. The tree is initialized
based on the data derived from the trained trajectories.When
an object enters the system, its state will correspond to a
node in the tree. If an object’s state is stable for a period, it
will stay in the current node during this period. When its

acceleration data changes in various forms, the object will
transfer from its current node to one of its child nodes in the
tree.There are two types of events thatmay cause acceleration
change, turning, and dropping. Thus, the tree is a binary
tree in our system. In the tree, an object moves to its left
child if it experiences a drop, otherwise to its right child
after a turn. For example, in Figure 5, when an object enters
the system, it first turns in one conveyor. Later, it drops to
another conveyor and then turns again. Correspondingly, the
object traverses the tree along the path represented by the
bold line. Based on the trained trajectory, we can initialize the
tree containing legitimate trajectories of objects.The problem
thereby becomes as follows:

given all objects and their paths in the tree,
how to detect the anomalous events?

Consider the example in Figure 5 again. If the object stays
at a node for a long period that exceeds some time-out setting,
or its path extends to some unknown states in the tree, an
anomalous event may occur. For example, if an object drops
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Figure 4: The main framework of Tracer for CRFID based logistics system.

Table 1: Important notations.

Symbol Definition
𝑋(𝑖) The state of node 𝑖 in the tree 𝑇

𝑄
𝑖

Transition probability matrix

𝐿
𝑛

𝑋

Empirical measure of 𝑋 as the 𝑚
2-dimensional

vector
𝑃
𝑄𝑖

The probability evaluated from law 𝑄
𝑖

𝐼
𝑝

(⋅)
Large deviation rate function associated with
the law 𝑝(⋅)

𝑃
𝜗

[⋅] Probabilities under the law 𝑝
𝜗

(⋅)

Λ
𝑛

Anomalous trajectory set associated with any
arbitrary decision ruleT

𝑛

T
A decision test for detecting whether the trace
is normal or not

𝑇 = (𝜌, 𝑉, 𝐸)
A finite tree with root 𝜌 and sets of vertices and
edges denoted by 𝑉 and 𝐸

𝑍 =

(𝑧
1

, 𝑧
2

, . . . , 𝑧
𝑡

)

A recent trace of states collected from CRFID
tags

out of the conveyor at the “A” point, it generates an unknown
state, marked with a dash line in the tree. In this case, we need
a proper tool to decide whether the corresponding trajectory
is anomalous or not, where Tracer enters the picture.

Let the tree 𝑇 = (𝜌, 𝑉, 𝐸), where 𝜌, 𝑉, and 𝐸 denote the
root, vertices, and edges, respectively. Each node in the tree
represents a state selected from a finite set X. We use 𝑋(𝑖)

to denote the state of node 𝑖. Without loss of generality, we
select 𝑋 = {1, 2, . . . , 𝑚}. Then, we give a discrete probability
law ] on X and a 𝑚 × 𝑚 transition probability matrix
𝑄
0
= (𝑞
0
(𝑏 | 𝑎))

𝑚

𝑎,𝑏=1

.

Drop

Drop

Drop

Drop

Turn

Turn

Turn ATurn

Turn

Start
point

Figure 5: We construct a tree such that every leaf node is a sample
point of the object states, and the states indicate movement changes
with a typical event occuring in the logistics system. The red line
depicts a legitimate trajectory of an object, and if the object drops
out the conveyor, the state will turn to be unknown.

From the illustration of the tree-indexed Markov model,
the problem we studied can be stated as follows.

First, we construct a new random tree starting from the
root 𝜌. We independently select 𝑁(V) nodes form 𝑉 as the
V’s children. The 𝑁(V) is determined according to a discrete
probability distribution 𝑝(⋅) = 𝑃[𝑁(V) = ⋅] such that 0 <

𝑝(0) < 1. We then allocate a state to each node. Let 𝑋(𝜌)

represent the state of the random tree. For each node V, let
𝑋(V) represent its states, conditioned on the state of its parent
node by adopting the transition probability matrix 𝑄

0
. Here,

we employ the acceleration pattern as a source of calculating
𝑄
0
.
In the application of trajectorymanagement, if an anoma-

lous event happens on one node, the trajectory tree remains
stable. Furthermore, we suppose that a state 𝑖 measures a
vector 𝑥

𝑖
of quantities in its situation and passes the state

information on 𝑥
𝑖
to all nodes. We consider a fixed time
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interval [0, 𝑡] and define the state of a node depending on
the average value of 𝑥

𝑖
in [0, 𝑡] and the corresponding values

𝑥
𝑗
of nodes that communicate with 𝑖. As a consequence, the

state of the children is influenced by the state of the parent.
Then, the transition probability matrix 𝑄

0
can be esti-

mated from a sequence of past observations from the
accelerometer data.The question now can be transformed as,
given a recent trace of states 𝑍

𝑡
= (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑡
) (implying

a path in the tree), we seek to detect whether this sequence
has been generated from the law 𝑄

0
or from other unknown

law 𝑄
1
. We aim to differentiate between a known law 𝑄

0

(hypothesis 𝐻
0
) and an unknown law 𝑄

1
(hypothesis 𝐻

1
)

using composite hypothesis testing, and a decision test could
be defined as follows.

Definition 1. A decision test T is a sequence of maps T𝑡 :

∑
𝑡

→ {0, 1}, with the interpretation that when 𝑍
𝑡

= (𝑧
1
,

𝑧
2
, . . . , 𝑧

𝑡
) is observed, 𝐻

0
is accepted (𝐻

1
is rejected) if

T(𝑍
𝑡
) = 0; otherwise 𝐻

1
is accepted (𝐻

0
is rejected) if

T(𝑍
𝑡
) = 1.

The accuracy of a decision test T is characterized by the
type I and type II errors, which is known as false positive (FP)
errors and false negative (FN) errors. The probabilities that
the two types of errors occur are

𝛼
𝑡
≜ 𝑃
𝑄0

[T
𝑡 rejects 𝐻

0
] , (false positive error)

𝛽
𝑡
≜ 𝑃
𝑄1

[T
𝑡 rejects 𝐻

1
] , (false negative error),

(1)

where 𝑃
𝑄𝑖

is a probability evaluated by law 𝑄
𝑖
. Since we

cannot minimize both error probabilities at the same time,
we consider the optimal criterion known as generalized
Neyman-Pearson criterion [24].

Definition 2 (generalized Neyman-Pearson criterion). For a
given 𝛿 > 0, if a testT is optimal among all tests that satisfy

lim sup
𝑡→∞

1

𝑡
log𝛼
𝑡
≤ −𝛿, (2)

the test T maximizes the asymptotic exponent of the FN
error probability.

4.3. Probability of Anomalous Events. We consider a deter-
minate instance of the random tree and a realization 𝑋 of
the tree-indexed Markov chain, that is, a recent leaf-root
path. Indeed, this path reflects the continuous state changes
of the logistics system. The large deviation results can figure
out the probability of anomalous events occurring under the
condition mentioned in Section 4.2.

We define the empirical pair measure 𝐿
𝑋
as

𝐿
𝑋
(𝑎, 𝑏) =

1

|𝐸|
∑

(V1 ,V2)∈𝐸

𝛿 (𝑋 (V
1
) = 𝑎,𝑋 (V

2
) = 𝑏), (3)

where (V
1
, V
2
) denotes an edge of the tree between the parent

V
1
and child V

2
.

The authors in [25] prove a large deviation principle for
𝐿
𝑋
with a 𝑛-nodes tree. They assume the tree is critical. The

    

    

Figure 6: Deployment of Tracer on the baggage handling system.

assumption can be relaxed by redefining the 𝐼
𝑝
(⋅) [26]. For

each probability law 𝜇 on X × X we let 𝜇
1
and 𝜇

2
denote

the two marginals, so that 𝜇
1
(𝑎) = ∑

𝑚

𝑏=1

𝜇(𝑎, 𝑏) and 𝜇
2
(𝑎) =

∑
𝑚

𝑏=1

𝜇(𝑏, 𝑎).
Let 𝐼
𝑝
(⋅) denote the convex dual of the generating func-

tion of the offspring law 𝐼
𝑝
(⋅):

𝐼
𝑝
(𝑥) = sup

𝜆∈

{𝜆𝑥 − log(

∞

∑
𝑛=0

𝑝 (𝑛) 𝑒
𝜆𝑛

)} . (4)

It is known as Cramer’s theorem [27] that 𝐼
𝑝
(⋅) is the

large deviation rate function correlated with the law 𝐼
𝑝
(⋅).

Therefore, we define 𝜇
1

⊗ 𝑄
0
as the vector with elements

𝜇
1
(𝑎)𝑞
0
(𝑏 | 𝑎), 𝑎, 𝑏 = 1, 2, . . . , 𝑚, and let ≪ indicate strict

inequality between vectors.

Theorem 3. Assume that 𝑇 is a tree with offspring law 𝑝(⋅)

such that 0 < 𝑝(0) < 1−𝑝(1),∑
𝑙

𝑙𝑝(𝑙) = 1, and 𝑙
−1 log 𝑝(𝑙) →

−∞. Let 𝑋 be a Markov chain indexed by 𝑇, which initially
follows arbitrary distribution and an irreducible transition
probability matrix 𝑄

0
. Then, for 𝑛 → ∞, the empirical

pair measure 𝐿
𝑋
conditioned on {|𝑇| = 𝑛} satisfies a large

deviation principle in the space of probability vectors onX×X
with speed 𝑛. The good rate function is

𝐼 (𝜇) =

{{{{{{

{{{{{{

{

𝐻(𝜇 ‖ 𝜇
1
⊗ 𝑄
0
) +
𝑚

∑
𝑎=1

𝜇
2
(𝑎) 𝐼
𝑝
(
𝜇
1
(𝑎)

𝜇
2
(𝑎)

)

if 𝜇
1
≪ 𝜇
2

∞

otherwise,

(5)

where 𝐻(⋅ ‖ ⋅ ) denotes the relative entropy between two
probability vectors defined in [28] and 𝜇

1
and 𝜇

2
are the first

and second marginal of 𝜇 and 𝜇
1
⊗ 𝑄
0
.

Note that the first term in (5) characterizes large devi-
ations of the assignment of states to the nodes, while the
second term is related to the structure of the tree. In fact, we
could also adopt the result to deal with noncritical trees, since
non-critical trees are also important for detecting anomalous
object states.

4.4. Anomalous Trajectory Detection Test. In this section,
we propose an anomalous trajectory detection test that can
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Figure 7: RFID readers are deployed into the essential processing
regions.

detect the anomalous trajectories with minimized false neg-
ative error. Therefore, we need to demonstrate the detection
test is optimal in a generalized Neyman-Pearson criterion.

Given a sequence of realizations 𝑋
𝑘 of the tree-indexed

Markov chain, the tree𝑇 is with 𝑛 nodes.We can approximate
the offspring law 𝑝(⋅) and the transition probability matrix
𝑄
0
by taking the corresponding samples. Specifically, if 𝐿

𝑋𝑘

is an empirical measure of the kth realization (3), then
(∑
𝑘

𝑙=1

𝐿
𝑋
𝑙(𝑎, 𝑏)/𝑘)/(∑

𝑘

𝑙=1

∑
𝑚

𝑏=1

𝐿
𝑋
𝑙(𝑎, 𝑏)/𝑘) converges to 𝑞

0
(𝑏 |

𝑎) with the probability approaching one as 𝑘 → ∞.
Alternatively, we can compute the frequencies on a single
large tree when 𝑛 → ∞.

Suppose that we have estimated 𝑝(⋅) and𝑄
0
from the pre-

vious trajectories. 𝑝(⋅) and 𝑄
0
determine whether a specific

realization 𝑋 is anomalous. As discussed in Section 4.2, we
need to differentiate 𝑝(⋅) and 𝑄

0
(hypothesis 𝐻

0
) from other

unknown law 𝑄
1
(hypothesis 𝐻

1
).

Then, we denote the empirical measure of𝑋 derived from
(3) by 𝐿

𝑛

𝑋

, where the superscript 𝑛 indicates that the tree
has 𝑛 nodes. The following theorem provides an optimal
test for the tree-indexed Markov chain, which is the test of
anomalous trajectory detection.

Theorem 4. The decision testT∗,𝑛
2

(𝑋)

T
∗,𝑛

2

(𝑋) = {
0, if 𝐼 (𝐿

𝑛

𝑋

) < 𝛿,

1, otherwise
(6)

is optimal according to the generalized Neyman-Pearson crite-
rion.

As we concentrate on the anomaly detection approaches,
proof of the theorem has been omitted, and a similar proof
can be found in [26].

Based on these theories, the anomalous decision test
can be executed in our system in order to judge whether
the moving objects obey the legitimate patterns of correct
trajectories’ transition probability matrix 𝑄

0
. If the decision

test accepts the hypothesis 𝐻
0
, that addresses the trace is

collected from a correct path of tree 𝑇; otherwise, otherwise,
the decision test will accept𝐻

1
and conclude that the trace is

collected from anomalous trajectories. Furthermore, we can
derive the valid patterns from those legitimate trajectories

and decide whether the trace of a given tag is “normal” or
“abnormal” based on those patterns.

5. Evaluation

We conduct trace-driven simulations and evaluate Tracer
over training data sets and several real test samples. We per-
form the preliminary deployment of Tracer on the baggage
handling system (BHS) at Terminal 2 of Beijing Airport, as
shown in Figure 6.

5.1. Experimental Setup. During the implementation, we face
a challenging issue of the interrogation range. The interroga-
tion range depends on the communication range of backward
channel. The reader usually adopts pulse-interval encoding
(PIE) mechanism to code commands or data. This selec-
tion enables easy demodulation for the extremely resource-
limited tags. On the contrary, the tag employs Miller 4 as the
encoding mechanism for high throughput as well as low bit
error rate.Meanwhile,muchmore energy consumedbyMCU
and sensors on WISP tags further shortens the interrogation
range significantly compared to common passive tags [29].

In addition, existing commercial readers do not provide
programming interfaces to achieve fine-grained interroga-
tion parameters tuning. As a result, the communication
between commercial readers and WISP tags is not well
optimized. Therefore, we develop the reader specifically
tailored for our system but still compatible with the EPC
C1G2 Air protocol [22] and following the FCC regulation.
It works on the frequency of 860–960MHz and transmits
at a power of 30 dBm over 8 dBi gain circularly polarized
antennas.The interrogation range of tags can be expended to
1.5–3m.

In our preliminary implementation, we test Tracer over
6 flights. We randomly attach WISP tags to some volunteer
passengers’ luggage. The information of the passenger, for
example, the flight number, is encoded and stored into the
EPC field in the bag. Those bags then enter into the sorting
area of BHS. The size of sorting area is around 50m × 20m,
with a rectangle belt conveyor and an incline belt conveyor.
We deploy the RFID reader into two types of the processing
regions, the junction between two conveyors and the corners
of conveyors, as shown in Figure 7.The bags are sorted based
on flight numbers. Tracer jointly works with the BHS. As we
present in Section 3, the data collected by Tracer includes 6
dimensions, including the time of detection, sensor type, EPC
code, and three-axis accelerometer data. Tracer injects the
collected accelerometer data into its tree-basedMarkov chain
framework and reports the anomalous trajectories of luggage
during the process in real time. From the traces collected
from WISP tags, we generate 3000 data sets for simulating
large-scale logistics systems. Later, we also employ the real
trace to examine the soundness of our simulation results.

5.2. Metric andMethodology. In our experiments, we employ
the following metrics to evaluate the performance of Tracer.

Response time: we define the response time as the time
that Tracer will consume after the anomalous events happen.
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Figure 8: FP error (linear scale).
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Figure 9: FP error (log scale).

This is a critical parameter to reflect the efficiency of Tracer
in real logistics applications.

Error probability: we evaluate the accuracy of Tracer
using the number of errors. There are two major types of
errors that may occur in Tracer, false positive (FP) error and
false negative (FN) error, as we have discussed in Section 4.2.
An FP error means that Tracer reports an anomalous trajec-
tory which indeed does not happen, while an FN errormeans
that Tracer fails to report an anomalous trajectory which has
really happened.
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Figure 10: FN error (linear scale).
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Figure 11: FN error (log scale).

Following the model of Tracer proposed in Section 4.2, a
tree is generated with an estimated probability distribution.
The nodes in the tree monitor anomalous events and for each
observed event, they send information back to the root. In
our simulations, the events at each node occur according to
independent Poisson processes. Our goal is to detect changes
in the event generation rates as described in Section 4.4. The
offspring law 𝑝(⋅) is uniform in {0, 1, . . . , 10}. It can be easily
found that the state of each node depends on the average
times of event happening per unit time through the node.The
average times of event happening aremapped to 10 states.The
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0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Response time (ms)

CD
F

Large deviation rule
Average rule: 5 groups
Average rule: 10 groups

Average rule: 20 groups
Average rule: 30 groups

Figure 13: CDF of response time.

transition probability matrix 𝑄
0
is estimated from anomaly

free traces.
Considering a determinate tree, the empirical measure

𝐿
𝑋

is calculated in a distributed way; each node keeps a
vector of counts of downstream nodes in a certain state.
When a node changes its state, the corresponding value in this
vector is changed and this update is propagated up the tree.
Note that distributed computation is useful in implementing
anomalous trajectory detection techniques. We employ the
detection test of Theorem 3, where the anomaly free law
𝑝(⋅) and 𝑄

0
can be calculated from observations before

the anomaly is introduced. We deliberately generate an
anomalous trace which interferes with a state change on
the tree. As a result, the node changes its parent and the
anomalous trajectory can be detected.
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Figure 14: CDF of tree generation time.

5.3. Accuracy of Tracer. To aid the detection, we utilize
trained data of “normal” trajectories as the ground truth.
Consequently, Tracer can make correct decision during the
trajectory detection. Tracer adopts the large deviation rule
as described in Section 4.3. To testify the effectiveness of
our method, we compare the large deviation rule adopted
by Tracer with other average rules. The average rules are
coming from grouped samples. We divide the trace into
several groups (5, 10, 20, and 30) based on their depth of the
tree. Averagemeasurements are collected from the samples in
the same group and compared to a threshold, which is derived
from the estimation on our traces. If any groups that deviate
from the threshold, then an anomalous event is detected.

The comparison results between Tracer (large deviation
rule) and other average rules are reported in Figures 8–11.
Figures 8 and 9 show that the FP error of large deviation
rule is 1.5x smaller and 4x smaller than all average rules
under linear scale and log scale, respectively. Figures 10
and 11 show the FN error in linear scale and log scale
under different rules, and Tracer outperforms average rules
(5 groups) almost 1x and 2x, respectively. Figures 15 and
16 plot the CDF of FP error probability and CDF of FN
error probability. Both of the two figures demonstrate that
the FP and FN error probability of Tracer are relatively
smaller than other average rules. Figure 18 describes the
detection accuracy of Tracer by adopting large deviation
result; it outperforms other situations as expected. The ROC
curves shown in Figure 19 are drawn for Tracer and other
average rule approaches. The result demonstrates that the
large deviation rule outperforms all average rules; that is, the
large deviation rule has the smallest FN error probability for
any fixed FP error probability.

It is clear that the amount of FP errors induced by Tracer
is static.This demonstrates that Tracer performswell in terms
of accuracy as well as scalability.
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Figure 15: CDF of FP error probability.
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Figure 16: CDF of FN error probability.

5.4. Efficiency of Tracer. FromFigure 17, the average response
time is calculated from 30 trials. Tracer remains a little longer
than the theoretical results when the average response time
is under 800ms. Tracer performs better when the average
response time is above 800ms. With a relatively high average
response time, the result of Tracer converges faster than the
theoretical result.

Figure 12 shows the comparison between the minimum
response time and maximum response time with 30 trials.
The result demonstrates that the gap between the minimum
response time and maximum response time is small, which
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Figure 17: Average response time CDF of Tracer and theoretical
results.
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Figure 18: CDF of detection accuracy.

provides us an efficiency guarantee on using Tracer to detect
anomalous trajectory in logistics systems.

Figure 13 shows the response time comparison under
different rules. We find that, in 70% of cases, the response
time of Tracer is under 500ms, indicating that Tracer out-
performs other average rule methods; the detection response
time is always at an acceptable state. Figure 14 describes the
time used for the tree generation of the tree-indexed Markov
model, and the tree generation time of other approaches is no
better than Tracer.

6. Conclusion

In this paper, we propose a tree-indexed Markov chain to
characterize the movements of objects in logistics applica-
tions. By adopting the statistical test and CRFID tags, our



International Journal of Distributed Sensor Networks 11

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

FP error 

FN
 er

ro
r 

Large deviation rule
Average rule: 5 groups
Average rule: 10 groups

Average rule: 20 groups
Average rule: 30 groups

Figure 19: Comparison of ROC curves.

approach, Tracer, can effectively detect anomalous trajecto-
ries. Specifically, our framework is general to be applied for
statistically detecting significant temporal or spatial changes.
We believe this is a step towards fine-grained anomalous
trajectory detection in logistics applications, even though
some future works, for example, developing cost-efficient
CRFID tags, are necessary before a large-scale deployment.
We also expect that the experience achieved in this work
can give useful design guidance of trajectory management to
future logistics applications.
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