
Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2013, Article ID 153034, 7 pages
http://dx.doi.org/10.1155/2013/153034

Research Article
Data Deduplication in Wireless Multimedia Monitoring Network

Yitao Yang,1,2 Xiaolin Qin,1 Guozi Sun,2 Yong Xu,1,3 Zhongxue Yang,1 and Zhiyue Zu2

1 College of Computer Science & Technology, Nanjing University of Aeronautics & Astronautics, Nanjing, Jiangsu 210016, China
2 College of Computer, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210003, China
3Department of Computer Science & Technology, Anhui University of Finance & Economics, Bengbu, Anhui 233030, China

Correspondence should be addressed to Xiaolin Qin; qinxcs@nuaa.edu.cn

Received 17 July 2013; Accepted 28 October 2013

Academic Editor: Zhijie Han

Copyright © 2013 Yitao Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Wireless sensor network has been applied tomany areas for a long time.Anewkind ofwireless sensors equippedwith a camera and a
microphone has been emerging recently.This kind of sensor is called wireless multimedia sensor (WMS) because it can capture and
process multimedia data such as image, sound, and video.The visual monitoring network is a typical scenario ofWMS application.
Massive datawould be produced in a short time because of the intensiveWMSdeployment.Many data aggregation and compression
technologies have been proposed for addressing how to transfer data efficiently. However, data aggregation technologies need highly
efficient router algorithm, and compression algorithms might consume more computation time and memory because of the high
complexity. This paper applies data deduplication technology to this scenario. It can eliminate the redundant data from raw data to
exploit the network bandwidth efficiently. Moreover, a chunking algorithm with low computation complexity is presented in this
paper, and its efficiency has been proved through the experiments.

1. Introduction

Wireless sensor network (WSN) consists of a large num-
ber of spatially distributed autonomous sensors which are
connected by wireless communication. It is mainly used
for dynamic acquisition of physical information within the
network coverage which will be delivered to users later. Cur-
rently, WSN is widely applied to the capture, processing, and
transmission of the data such as temperature, light intensity,
humidity, and gas concentration [1, 2]. In the recent years, as
the production level of sensors improves, additional camera,
microphone, and other functional devices are installed on
traditional wireless sensors and enable them to capture,
process, and transfer multimedia information such as image,
sound, and video, so that users can obtain improved physical
information which is more vivid and more accurate. This
new kind of sensor can be called wireless multimedia sensor
(WMS). Wireless multimedia sensor network (WMSN) con-
sists of WMS nodes, gateway nodes with storage, sink nodes,
and so on. Then, a typical WMSN architecture is proposed
in [3], as shown in Figure 1. WMSN is widely used in many
areas including visual monitoring, individual positioning,

industrial control, intelligent transportation, environmental
monitoring, smart home, and telemedicine [3–5].

Multimedia sensor nodes have limited resources such
as energy capacity of battery, storage space, and computing
power, while the information they acquire features large
data size and high requirement for computing. The data
in-network processing technology [6, 7], as one of the key
technologies used to save bandwidth and network energy
in data-centered WMSN, can eliminate the redundancy of
source data and minimize the data traffic between nodes by
applying data fusion technology or data compression. The
data fusion technology uses different routing methods to
combine data packages and eliminate redundant data from
them. This technology relies on three basic modules:routing
algorithm, data fusion, and data presentation [6]. However,
in addition to the advantage of high data aggregation, the
application of data fusion technology may also lose raw
data structure, while data compression can prevent this
problem. Data compression has been applied to WMSN,
and the compression algorithm can be divided into two
categories:distributed data compression scheme and local
data compression scheme. The proposed data compression

2 International Journal of Distributed Sensor Networks

Sink

Gateway

Gateway Cloud storageInternet

Wireless multimedia sensor

Storage

Storage

· · ·

Figure 1: A typical system architecture of WMSN.

algorithm is the extension of data fusion technology in
multiple-hop network topology, and compression algorithms
are applied to the entire network [8, 9]. Other compression
algorithms independently performdata compression on local
node, so they do not depend on intensive network or routing
algorithm and are more suitable for sparse sensor network
[10, 11].The data compression scheme can reduce the amount
of data transmission in sensor networks to save bandwidth
and energy consumption; however, as compression algorithm
is relatively complicated and needs more computation time
andmemory, the energy cost of nodes that apply compression
algorithm is much higher than that of nodes without using
compression algorithm [12].

Event-based monitoring scenario is a typical application
of WMSN. When the triggering condition of an event is
met, the wireless multimedia sensor node will capture the
image data at that moment and upload the real-time data
to the storage device of gateway node. Then, the gateway
node collects data from different sensor nodes and transmits
the data to the cloud for storage and backup through sink
node based on corresponding strategies [13]. In this scenario,
the WMS node deployment in WMSN is very intensive and
will produce a large amount of data in a very short period.
These data have distinctive characteristics so it is suitable
for applying data deduplication technology to this scenario.
Data deduplication can effectively eliminate the redundant
data to reduce the multimedia data traffic between nodes and
improve the bandwidth utilization of WMSN. At the same
time, its computation complexity is less than that of compres-
sion, which means less computation energy consumption.
The chunking algorithm is the key factor that impacts
the effect of deduplication. Basic sliding window (BSW)
algorithm is one of the classical chunking algorithms. This
paper proposes a specific chunking algorithm based on BSW.
The algorithm can decrease system overhead and increase
deduplication efficiency by merging continuous redundant
chunks. In contrast with BSW, the experiment results will
show how efficient the new algorithm is. The rest of this
paper is organized as follows. Section 2 firstly describes the
background of data deduplication and introduces BSW algo-
rithm. A continuous redundant chunk-merging algorithm
is proposed in Section 2.4; Section 3 performs a simulation
experiment and takes the basic sliding window algorithm for

comparison to analyze the advantages and disadvantages of
both; Section 4 will draw a conclusion.

2. Data Deduplication

Data deduplication [14] is firstly applied in the field of storage
backup to reduce storage costs and improve storage space
utilization. The technology segments the source data 𝑆 into
a continuous chunk set 𝐶 = {𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
} according to

chunking algorithm. If small changes are made on 𝑆, 𝑆
should be denoted as 𝑆󸀠 and should be segmented into a new
continuous chunk set 𝐶󸀠 = {𝑐

󸀠

1
, 𝑐
󸀠

2
, . . . , 𝑐

󸀠

2
} by using the same

algorithm. Suppose that 𝑆 is already in memory; only the
chunks in 𝐶

󸀠 but not in 𝐶 should be stored when saving 𝑆󸀠.
If |𝐶 ∩ 𝐶

󸀠
| → 𝑛 (𝑛 ≤ 𝑚), that is, most of elements in 𝐶󸀠 are

the same as the elements in 𝐶, and then the chunk sequences
are regarded as stable. The more stable the sequence is, the
smaller the storage cost is. Data deduplication can be applied
inWMSN to reduce the amount of data transmission between
nodes. If theWMS node is denoted as sender and the gateway
node is denoted as receiver, the sender is ready to send the
data 𝑆 to the receiver. Assume that the receiver already has
the data 𝑅 and the sender knows what chunk in 𝑆 is exactly
the same as the chunk in 𝑅, so the content of these chunks
needs not be transmitted, but only their index in 𝑅 should
be transferred. The receiver will find these chunks locally to
restructure 𝑆 according to the index to achieve the goal of
saving network bandwidth. It is obvious that the chunking
algorithm is important to ensure the stability of chunking
sequence.

Data deduplication can be divided into file level, block
level, and byte level according to operating granularity. The
block level can be divided into fixed-size chunk and variable-
size chunk.The smaller the granularity is, themore redundant
data are removed, but the implementation complexity and
system overhead also increase accordingly. The redundant
data that file level can eliminate is the least, but it is easy
to achieve. The byte level has the best deduplication effect,
but its overhead is extremely expensive and difficult to
implement. If fixed-size chunks are used, their matching
probability will be greatly reduced due to fixed boundary.
In monitoring networks, the position of multimedia sensor
is generally fixed, so the images have a small amount of
information changes. Good variable-size chunking algorithm
can separate duplicate and nonduplicate information asmuch
as possible to reduce the transmission amount of duplicate
information. The content-based chunking algorithm applies
sliding window technology to determine the boundary of the
chunk based on file content. It can control the impact of
update on data partitioning within a small range, so that only
several chunks near the update location will be affected while
other chunks remain unchanged. Therefore, this chunking
algorithm is very suitable for the scenario above.

This section will first introduce basic sliding window
algorithm and will propose an improved continuous redun-
dant chunk-merging algorithm. Then, the advantages and
disadvantages of both methods are analyzed in terms of sys-
tem overhead.

International Journal of Distributed Sensor Networks 3

2.1. Basic Sliding Window Algorithm. The process of basic
sliding window algorithm [15] is as follows: a window with
fixed size is moved cross the data, and, at every position
in the data, a Rabin fingerprint [16] of data in the window
is calculated. If an rf-Match appears in position 𝑘, then 𝑘

is declared as a chunk boundary. Repeat these steps until
it reaches the end of data. Finally, a sequence of chunks
𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
is generated.

Definition 1. A Rabin fingerprint for a sequence of bytes
𝑡
1
, 𝑡
2
, . . . , 𝑡

𝛽
of length 𝛽 is given by the following expression,

where 𝑝 and𝑀 are constant integers:

rf (𝑡
1
, 𝑡
2
, . . . , 𝑡

𝛽
)

= (𝑡
1
𝑝
𝛽−1

+ 𝑡
2
𝑝
𝛽−2

⋅ ⋅ ⋅ + 𝑡
𝛽−1

𝑝 + 𝑡
𝛽
)mod 𝑀.

(1)

Definition 2 (rf-Match). For a given sequence 𝑆 = 𝑠
1
, 𝑠
2
,

. . . , 𝑠
𝑛
, rf represents Rabin fingerprint function, 𝑙 is the

window size, and 𝑟 is a constant integer; then, the rf-Match at
position 𝑘 is defined as follows: the last 𝑟 bits of rf(𝑊) value
are zero, in which𝑊 = 𝑠

𝑘−𝑙+1
, 𝑠
𝑘−𝑙+2

, . . . , 𝑠
𝑘
is the subsequence

of length 𝑙 preceding the position 𝑘 in 𝑆.

2.2. Analysis of DuplicateData. In order to analyze the redun-
dancy degree of the image data captured from themonitoring
network, we simulated a scenario in the laboratory, where a
path was left in the middle and fixed objects were placed at
both sides. Excluding the impact of light change, a CMOS
camera was fixed to monitor the scenario. If any objects
appeared on the path, the camera would capture the images at
that moment and store them in external storage immediately.
We asked different groups of testers to move on the path, and
a total of 300 monitored images were collected. All image
data were stored in nondestructive bitmap format (BMP;
resolution 640∗480; bit depth 16 bits). The file name was
numbered in ascending order: 0, 1, . . . , 299. The 0th image
was the initial scenario.

We made two groups of experiments. Group 1 applied
byte comparison tool and took the 0th image as the bench-
mark to compare it with the remaining 299 images and record
the number of bytes at identical parts. The experimental
results are shown in Figure 2. It can be seen that, compared
to the initial scenario, only the image value on the path is
changing in other images, and nearly 78% of pixels in average
remain unchanged.We call this part of data as redundant data
that can be eliminated, namely, duplicate data.

Group 2 was used to verify the validity of BSW algorithm.
In Group 2 experiment, BSW algorithm was used to segment
all images and count the frequency that each chunk appeared.
Theoretically, if the frequency is greater than 1, this means
that the content of this chunk is only required to trans-
mit one time. Before the BSW algorithm is implemented,
three parameter values 𝑀, 𝑟, and 𝑙 should be determined
firstly. 𝑀 determines the possibility of collision for Rabin
fingerprint value, 𝑟 directly affects the final size of chunk,
and 𝑙 determines the minimum chunk size. We built a hash
table in memory to store the content of chunk, the 512 bytes
SHA1 of chunk, and the frequency chunk appeared.The BSW

0
20
40
60
80

100

(%
)

0 40 80 120 160 200 240 280
File name

Identical pixels to the 0th image (%)

Figure 2: Percentage of identical pixels to the 0th image.

40

50

60

70

80

90

100

0 128 256 384 512

r = 3

r = 5

r = 7
r = 9

𝛿
(%

)

l (bytes)

Figure 3: Impact of 𝑟 and 𝑙 on the ratio of duplicate chunk in 𝑆.

algorithmwas then implemented. Each time a new chunkwas
generated, the hash table was queried one time. If there were
identical chunks, only one chunkwas stored and its frequency
was added as 1. If BSW algorithm was applied to segment the
byte sequence set 𝑆 = {𝑆

1
, 𝑆
2
, . . . , 𝑆

𝑛
}, then finally a chunk-

ing sequence set 𝐶 = {{𝑐
11
, 𝑐
12
, . . . , 𝑐

1𝑛
}, {𝑐
21
, 𝑐
22
, . . . , 𝑐

2𝑛
},

. . . , {𝑐
𝑛1
, 𝑐
𝑛2
, . . . , 𝑐

𝑛𝑛
}} was generated. If the frequency of each

chunk was 𝑘
11
, 𝑘
12
, . . . , 𝑘

1𝑛
, . . . , 𝑘

𝑛1
, 𝑘
𝑛2
, . . . , 𝑘

𝑛𝑛
, respectively,

then the duplicate chunk set that could be eliminated in𝐶was
represented by𝐶dup = {𝑐

𝑖𝑗
| 𝑘
𝑖𝑗
> 1}, and the ratio of duplicate

chunk in 𝑆 was represented by 𝛿 = |𝐶
󸀠

dup|/|𝐶|.
Considering that the sensor memory capacity was lim-

ited, we chose 𝑀 = 2
30, and the collision probability of

fingerprint at this length was small. Figure 3 shows different
impact of 𝑟 and 𝑙 on 𝛿, and, the same as in theoretical analysis,
larger 𝑟 and longer 𝑙 led to the increase of chunk size and
the decrease of chunk number, finally resulting in the decline
of 𝛿. However, the excess reduction of 𝑟 and 𝑙 would cause
extra system overhead. In the experiment, we allocated 20-
megabyte memory to hash table. The impact of 𝑟 and 𝑙 on
the elimination rate of hash table is shown as in Figure 4.

4 International Journal of Distributed Sensor Networks

The results show that, because the capacity of hash table
was limited, excessive chunks would lead to the frequent
elimination of hash table items, thus increasing the system
overhead. Therefore, a more balanced choice was 𝑟 = 5 and
𝑙 = 64 bytes. The chunk statistic results with these parameter
values are shown in Table 1. In a follow-up experiment, the
two parameters selected these two values.

2.3. Evaluation Indicators. In this section, we introduce an
evaluation indicator mentioned in [17] for evaluating our
works.

For two byte sequences𝑃 and𝑄, use𝑃𝑄 to represent their
concatenation. If 𝑃𝑄 = 𝑆, then 𝑃 is the prefix of 𝑆 and𝑄 is the
postfix of 𝑆. |𝑆| represents the length of 𝑆 in bytes.

For a byte sequence 𝑆,𝐻(𝑆) denotes the chunk sequence
𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
generated by a chunking algorithm on S.

𝜇(𝑆) = (total size of all chunks/the number of chunks)
denotes the average chunk size in𝐻(𝑆).

For the given threshold 𝑡, if (shared (𝑆, 𝑆
󸀠
)/|𝑆| > 𝑡),

then 𝑆
󸀠 is a local modification sequence of 𝑆, in which

shared (𝑆, 𝑆
󸀠
) refers to the sum of bytes with the same prefix

and postfix of 𝑆 and 𝑆
󸀠, and it is defined that new (𝑆, 𝑆

󸀠
) =

|𝑆
󸀠
| − shared(𝑆, 𝑆󸀠).
Δ(𝑆, 𝑆

󸀠
) is defined as the total size of chunks that appear

in𝐻(𝑆󸀠) but not in𝐻(𝑆).

Definition 3. Assume that 𝑆 is a byte sequence; 𝑆󸀠 is the
local modification sequence of 𝑆. 𝑉(𝑆) is defined as follows:
Δ(𝑆, 𝑆

󸀠
) − new(𝑆, 𝑆󸀠).

Definition 4. For a defined 𝑉(𝑆), the algorithm overhead
index 𝛼 is defined as follows:

𝛼 =
𝑉

𝜇
. (2)

With chunking algorithm, if duplicate data and nondu-
plicate data are divided into one chunk, the duplicate data in
this chunk is an extra cost because it should not be stored
and transmitted. 𝑉 is the average number of bytes used to
evaluate the overhead.The parameters 𝑟 and 𝑙 in Definition 2
can be adjusted to make 𝑉 smaller, but this will also increase
the metadata overhead, so 𝜇 is introduced to balance the
overall cost. 𝜇 is the average chunk size which is inversely
proportional to the metadata overhead and proportional to
𝑉. By calculating the ratio of 𝑉 and 𝜇, a comprehensive
evaluation on chunking algorithm and cost of metadata can
be achieved.

2.4. Continuous Redundant Chunk-Merging Algorithm. The
chunks created by the BSW algorithm in Section 2.2 are not
equal in size. The chunk size has very large impact on the
algorithm effect, so we try to improve BSW algorithm by
adjusting the chunk size. Group 2 experiment in Section 2.2
has recorded all chunks sizes. 79% chunk size is less than
the average chunk size. If smaller chunks can be merged to
reduce the total number of chunks, the average chunk length
𝜇 will increase; thus the overhead index 𝛼 will decrease.
For our simulation scenario, most of the pixels are basically

0

5

10

15

20

25

30

35

40

Ra
tio

 o
f h

as
h

ta
bl

e e
lim

in
at

io
n

(%
)

0 128 256 384 512

r = 3

r = 5

r = 7
r = 9

l (bytes)

Figure 4: Impact of 𝑟 and 𝑙 on elimination rate of hash table.

Table 1: Chunk statistics of Group 2 experiment (𝑟 = 5 and 𝑙 =

64 bytes).

Stat. item Result
Total number of chunks 10068
Number of stored chunks 2395
Number of redundant chunks 8273
Percentage of redundancy 82.17%
Average chunk size (ACS) 19KBytes
Number of chunks whose size > ACS 2115
Number of chunks whose size < ACS 7953
Maximum chunk size 25KBytes
Minimum chunk size 1 KBytes

unchanged. BSW algorithm is a content-based chunking
algorithm, so the boundary between chunks is stable. For
example, Figures 5(a) and 5(b) shows two continuous image
files. The nonduplicate bytes part concentrates in one area,
and the chunk boundary does not change in the first and
the last duplicate bytes parts, so we declare that the chunk
boundary is stable. If we merge the first three chunks and the
last three chunks in Figures 5(a) and 5(b), respectively, total
number of chunks will drop from 20 to 12, average chunk size
𝜇will rise by 66%, and overhead index𝛼will reduce by 39.7%.

We propose a continuous redundant chunk-merging
(CRCM) algorithm. The algorithm works as follows: first, to
determine the chunk boundary by applying BSW algorithm
on files. Each time a new chunk is generated, the hash table
is queried to determine whether the chunk has been stored
before. If stored, the chunk will be sent to a data stack. If not
stored, the algorithm continues to look for the next chunk
and then repeat the above steps until meeting the end of

International Journal of Distributed Sensor Networks 5

Duplicate bytes

(a)

(b)

Duplicate bytesNonduplicate bytes

Figure 5: Example of stable chunk boundary.

file. The algorithmmerges chunks according to the following
rules: if the total length of chunk in the stack is greater than
the threshold 𝐿, then merge all chunks in the stack to form a
new chunk and insert it into the hash table. The detection of
chunkmerging is performed when a new chunk is generated.

Because the chunk boundary is stable, the probability of
merging the same continuous redundant chunks is reason-
ably great when segmenting different files by applying CRCM
algorithm. The algorithm effect is related to the threshold
𝐿 and metadata costs. These will be discussed through the
experiment in Section 3.

3. Result and Discussion

When wireless multimedia sensor is used for experiments in
the simulation scenario, the following questions should be
considered:

(i) hardware specification of WMS,
(ii) construction of wireless multimedia monitoring net-

work,
(iii) data synchronization between nodes.

Computing power, storage capacity, and battery life of
WMS have been improved greatly. The energy consumption
of WMS is mainly in data processing, storage access, image
acquisition, network communication, and so forth. Stargate
[18] is a product of MEMSIC, and its hardware specification
is Intel PXA-255Xscale 400MHz CPU, 64MB SDRAM, and
32MB flash storage. Meantime, it also supports embedded
Linux operating system and IEEE802.11 wireless communi-
cation protocol. Therefore, it is enough to complete some
complicated computing tasks.

The wireless multimedia monitoring network composed
of multiple WMS independently collects data and transmits
information to sink node through gateway node. The com-
puting power and storage capacity of gateway node are both
far greater than those of WMS nodes. Multiple WMS can
eliminate duplicate data together with gateway node at the
same time, and the effect will be better, but this brings about
a new problem of data synchronization between nodes. Some
proposed synchronization methods such as distributed data
deduplication [19] can address this problem.

This section will continue the experiment in the simu-
lated scenario in Section 2.2. The chunking algorithm was
replaced with CRCM algorithm, and then the evaluation was
performed in terms of overhead index and PDR.

The WMS nodes in the experiment adopted the engi-
neering board based on ARM9 architecture, equipped with
200MHZ CPU, 64M SDRAM, 1GB flash storage, and
onboardQuickCam camera.The maximum image resolution
was 640 × 480, and the operating system was embedded
Linux (2.4.19). Gateway node used DELL VOSTRO 3560
laptop, specification was the following: Intel i7-3632QM
2.2GHz, 8G RAM, and 250GB hard of which drive. WMS
node and gateway node used the IEEE802.11 wireless protocol
to communication.

In the experiment, WMS node was used to monitor
the simulation scenario. Any changes in the scenario would
trigger sensors to capture and transmit real-time information
to gateway node. CRCM algorithm was used for image
chunking before the transmission of WMS node. Only those
nonduplicate data chunks were transmitted. For duplicate
chunks, only their index values were transmitted. The details
of data synchronization between nodes would not be men-
tioned here.

Firstly, we observe the impact of threshold 𝐿 on overhead
index by running CRCM algorithm (see Figure 6). 𝐿 is the
multiple of the average chunk size of current file, that is, 𝐿 =

𝑥 ⋅ 𝜇. When 𝐿 = 0, CRCM algorithm was degenerated into
the BSW algorithm and 𝛼 ≈ 2.5. Greater 𝐿 resulted in more
merged chunks. When 𝐿/𝜇 = 1.4, the overhead index was
the best, 𝛼 ≈ 1.3, and the cost reduced by about 23.8%. As
𝐿 continued to increase, the overhead was not reduced any
longer. The reason was that if excessive chunks were merged,
chunk size would be large, thus increasing the 𝑉 value in 𝛼.

Metadata cost is another system overhead, so it must
be involved in our evaluation. We focused on the metadata
storage cost.WMSnode’s storage capacity is limited, so dupli-
cate chunk data cannot be stored locally forever. Therefore,
local metadata storage will encounter the problem of hash
table elimination.We conducted four groups tests ondifferent
memory size allocated for hash table. The results were shown
in Figure 7, and we can find that the ratio of hash table
elimination by running CRCM was less than that of BSW
algorithm, because BSW algorithm generated more chunks
which needed more hash table items. According to ourWMS
hardware capacity, we considered 20M would be a better
choice in this scenario.

The computation complexity of both BSW algorithm and
CRCM algorithm is much less than that of compression.
The most time-consuming calculation is Rabin fingerprint
calculation. Recalling rf in Definition 1, for fast execution, we
can define an iterative formula as follows:

rf (𝑡
𝑖+1

⋅ ⋅ ⋅ 𝑡
𝛽+𝑖
) = (rf (𝑡

𝑖
⋅ ⋅ ⋅ 𝑡
𝛽+𝑖−1

) − 𝑡
𝑖
⋅ 𝑝
𝛽
) ⋅ 𝑝

+ 𝑡
𝛽+𝑖

mod 𝑀,

(3)

where 𝑡
𝑖
⋅𝑝
𝛽 can be precomputed and stored in a table. Rather

than generating a new fingerprint from scratch, advancing
rf calculation only requires three operations: a subtraction,
a multiplication, and a mask mod.

6 International Journal of Distributed Sensor Networks

0

1

2

3

4

5

0 1 2 3 4 5

O
ve

rh
ea

d
in

de
x

L (𝜇)

Figure 6: Impact of 𝐿 on overhead index.

0
10
20
30
40
50
60
70
80
90

5 10 15 20

Ra
tio

 o
f h

as
h

ta
bl

e
 e

lim
in

at
io

n
(%

)

Memory size of hash table (bytes) (M)

CRCM
BSW

Figure 7: Ratio of hash table elimination by running CRCM versus
BSW on different memory size.

4. Conclusion

In wireless multimedia sensor networks, massive data needs
to be transmitted to the cloud storage. This paper applies
data deduplication technology to WMSN. In the simulated
monitoring scenario, this paper puts forward a continuous
redundant chunk-merging algorithmby taking the character-
istics of scenario data into full consideration. The algorithm
considers the computing power and storage capacity of sensor
hardware. Compared with BSW algorithm, it effectively
reduces system overhead through experiments.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (61373015 and 61272422), The Research
Fund for the Doctoral Program of High Education of
China (Grant no. 20103218110017), the Priority Academic
Program Development of Jiangsu Higher Education Insti-
tutions (PAPD), and the Fundamental Research Funds for
the Central Universities, NUAA (Grant nos. NP2013307 and
NZ2013306).

References

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: a survey,” Computer Networks, vol.
38, no. 4, pp. 393–422, 2002.

[2] Tubaishat, Malik, and S. Madria, “Sensor networks: an over-
view,” IEEE Potentials, vol. 22, no. 2, pp. 20–23, 2003.

[3] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “A survey on
wireless multimedia sensor networks,” Computer Networks, vol.
51, no. 4, pp. 921–960, 2007.

[4] F. Hu and S. Kumar, “QoS considerations in wireless sensor
networks for telemedicine,” in InternetMultimediaManagement
Systems IV, vol. 5242 of Proceedings of SPIE, pp. 217–227,
November 2003.

[5] J. Campbell, P. B. Gibbons, S. Nath, P. Pillai, S. Seshan,
and R. Sukthankar, “IrisNet: an internet-scale architecture for
multimedia sensors,” in Proceedings of the 13th Annual ACM
International Conference on Multimedia, pp. 81–88, New York,
NY, USA, 2005.

[6] J. N. Al-Karaki, R. Ul-Mustafa, and A. E. Kamal, “Data aggre-
gation and routing in wireless sensor networks: optimal and
heuristic algorithms,” Computer Networks, vol. 53, no. 7, pp.
945–960, 2009.

[7] Z. Lu, Y.Wen, R. Fan, S. Tan, and J. Biswas, “Toward efficient dis-
tributed algorithms for in-network binary operator tree place-
ment in wireless sensor networks,” IEEE Journal on Selected
Areas in Communications, vol. 31, no. 4, pp. 743–755, 2013.

[8] A. Ciancio and A. Ortega, “A distributed wavelet compression
algorithm for wireless multihop sensor networks using lifting,”
in Proceeding of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP ’05), pp. 825–828, March
2005.

[9] C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Madden,
“Distributed regression: an efficient framework for modeling
sensor network data,” in Proceeding of the 3rd International
Symposium on Information Processing in Sensor Networks (IPSN
’04), pp. 1–10, April 2004.

[10] F.Marcelloni andM. Vecchio, “An efficient lossless compression
algorithm for tiny nodes of monitoring wireless sensor net-
works,” Computer Journal, vol. 52, no. 8, pp. 969–987, 2009.

[11] Liang, Yao, and Wei Peng, “Minimizing energy consumptions
in wireless sensor networks via two-modal transmission,” ACM
SIGCOMMComputer Communication Review, vol. 40, no. 1, pp.
12–18, 2010.

[12] K. C. Barr and K. Asanović, “Energy-aware lossless data com-
pression,” ACM Transactions on Computer Systems, vol. 24, no.
3, pp. 250–291, 2006.

[13] S. Misra, M. Reisslein, and G. Xue, “A survey of multimedia
streaming in wireless sensor networks,” IEEE Communications
Surveys and Tutorials, vol. 10, no. 4, pp. 18–39, 2008.

[14] Q. He, Z. Li, and X. Zhang, “Data deduplication techniques,” in
Proceeding of the International Conference on Future Informa-
tion Technology and Management Engineering (FITME ’10), vol.
1, pp. 430–433, Changzhou, China, October 2010.

[15] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-
bandwidth network file system,” ACM SIGOPS Operating Sys-
tems Review, vol. 35, no. 5, 2001.

[16] Rabin and O. Michael, “Fingerprinting by random polyno-
mials,” Center for Research in Computing Technology, Aiken
Computation Laboratory, 1981.

International Journal of Distributed Sensor Networks 7

[17] K. Eshghi and K. T. Hsiu, “A framework for analyzing and
improving content-based chunking algorithms,” Hewlett-
Packard Labs Technical Report TR 30, 2005.

[18] M. O. Farooq and T. Kunz, “Wireless multimedia sensor net-
works testbeds and state-of-the-art hardware: a survey,” Com-
munications in Computer and Information Science, vol. 265, no.
1, pp. 1–14, 2011.

[19] Y. Zhang, Y. Wu, and G. Yang, “Droplet: a distributed solution
of data deduplication,” in Proceeding of the ACM/IEEE 13th
International Conference onGridComputing (ICGC ’12), pp. 114–
121, Beijing, China, 2012.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

