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Video sensor networks are formed by the joining of heterogeneous sensor nodes, which is frequently reported as video
of communication functionally bound to geographical locations. Decomposition of georeferenced video stream presents the
expression of video from spatial feature set. Although it has been studied extensively, spatial relations underlying the scenario
are not well understood, which are important to understand the semantics of georeferenced video and behavior of elements.
Here we propose a method of mapping georeferenced video sequences for geographical scenes and use contextual random graphs
to investigate semantic knowledge of georeferenced video, leading to correlation analysis of the target motion elements in the
georeferenced video stream. We have used the connections of motion elements, both the correlation and continuity, to present a
dynamic structure in time series that reveals clues to the event development of the video stream. Furthermore, we have provided
a method for the effective integration of semantic and campaign information. Ultimately, the experimental results show that the
provided method offers a better description of georeferenced video elements that cannot be achieved with existing schemes. In
addition, it offers a new way of thinking for the semantic description of the georeferenced video scenarios.

1. Introduction

The notion of wireless multimedia sensor networks
(WMSNs) is frequently reported as the convergence between
the concepts of wireless sensor networks and distribut-
ed smart cameras [1]. As a result, an increasing number of vid-
eo clips is being collected, which has created complex data-
handling challenges [2]. Further, some types of video data are
naturally tied to geographical locations. For example, video
data from traffic monitoring may not contain much meaning
without its associated location information. Therefore, most
potential applications of aWMSN require the sensor network
paradigm to support location-based multimedia services as
well asmanipulate large scale data at the same time to provide
a high quality of experience (QoE), which raises an important
issue. How to investigate an intelligent processingmethod for
georeferenced multimedia? Although the question has been
extensively addressed theoretically, the method of mapping
video sequences to geographical scenes remains to be
described. On the other hand, with the growth of geographic
information system (GIS) whose major growth area is

the convergence between GIS and multimedia technology, a
new paradigm named video-GIS emerged [3–5]. The major
researches facing video-GIS are the coding of georeferenced
video and the content and types of services that should be
provided by georeferenced video. Further improvement
of these processes is contingent on deeper understanding
of video, as well as improved understanding of the spatial
relationship of geographic space. It is due to the necessity
of using video-GIS to visualize the relationship between
the video analysis methods and the real geographical scene,
resulting in georeferenced multimedia intelligent processing
method based on context-based random graphs.

Georeferenced video is fundamental process in video-
GIS development. Prior research activities on georeferenced
video technologies and applications have been conducted.
Most of them make use of video and GPS sensors. In [6,
7], Stefanakis and Peterson and Klamma et al. proposed a
unified framework for hypermedia and GIS. Pissinou et al.
[8] explored topology and direction under the proposed
georeferenced video. The work of Hwang et al. and Joo et al.
[9, 10] defined the metadata of georeferenced video, which
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support interoperability between GIS and video images.
In the field of georeferenced video search, Liu et al. [11]
presented a sensor-enhanced video annotation system, which
searches video clips for the appearance of particular objects.
Ay et al. proposed the use of geographical properties of
videos [12], whileWang gave amethod of time-spatial images
to extract the basic movement information [13]. Although
single media have been studied extensively, its semantics in
geographic space are poorly understood. How to determine
the spatial relationship of video elements is one of the most
important operations on georeferenced video. For instance,
a moving video element changes its position, shape, size,
speed, and attribute values over time. Understanding the
changing process and rules of these attributes is of important
significance to the geographical description of the video.

Many techniques for video event recognition have been
proposed. As the work on model-driven methodology which
has become well established and approached maturity, the
most common and popular conceptualization of fusion sys-
tems is the SVMmodel [14, 15]. However, such methodology
not only cannot solve the problems, such as multi-instance,
diversity, and multimodal, but needs a large number of
training samples. Most previous studies to date have used
data-driven method [16] which has been carefully designed
to signal clear and distinct semantic of the videos [17–21].
In our event recognition application, we observe that some
eventsmay share commonmotion patterns.Though involved
in pattern discovery, data-driven method also contributes
to social network during pattern discovery [22–25]. These
works have showed a high accuracy in the differentiating
of video and its semantic extraction frame. However, most
multimedia applications are unknown and uncertain, which
are extremely difficult to meet the requirements of real-time
stream processing.

Previous studies have shown that multimedia intelligent
processingmethod is important to the development of video-
GIS and have achieved inspiring progress. However, these
solution methods have suffered from the classical ensemble
average limitation presented by the analysis of low-level char-
acteristics.Therefore, the spatial data gathered are sometimes
inconclusive and, in part, contradictory. These algorithms
usually build or learn a model of the target object first
and then use it for tracking, without adapting the model to
account for the changes in the appearance of the object, for
example, large variation of pose or facial expression, or the
surroundings, for example, lighting variation. Furthermore,
it is assumed that all images are acquired with a stationary
camera. Such approach, in our view, is prone to performance
instability, and thus it needs to be addressed when building a
robust visual tracker.

To overcome these problems, we will begin by looking
at some valid models, which are suitable for georeferenced
video understanding and behavior analysis. In this paper, we
propose a new event recognition framework for consumer
videos by leveraging a large amount of videos. As we know,
graph structure provides a complex, dynamic, and robust
framework for assembling complex relationships involved in
the objects [26], which is suitable for our goal. Thus, mul-
tiple random behaviors are presented in certain movement,

making the graph structure unsuitable for describing the
real video scenario. To circumvent this problem, random
graphmodel has been taken into consideration, which can be
seen as a rather simplified model of the evolution of certain
communication net [27]. In our research, it could simplify the
analysis of the interaction between video objects substantially
for revealing the new insight into the relationships between
objects and its complex interaction. Our analysis focuses
on describing spatial relationships bound to objects using
random graph grammar in georeferenced video, developing
a scientific analysis of behavior and structured methods of
georeferenced video understanding.

2. Preliminary

Surveillance video data is mostly non-ortho image data
so that it does not match up with the geography scene
vector data using the traditional method. To solve this
problem, a mapping method of video scene imaging data
to geography scene vector data is adopted in the paper, as
showed in Figure 1. Firstly, the virtual viewpoint camera is
constructed by the camera interior and exterior parameters.
Secondly, geography scene virtual imaging can be gained
from geography scene vector data using the process of
model transformation, viewpoint transformation, and prun-
ing according to the computer graphics rendering process,
with the corresponding relationship between an object in vir-
tual imaging and vector object. Thirdly, the image matching
technology based on the features that have invariant character
for translation, scale and rotation is used to match the
geography scene virtual imaging and video image. Finally, the
corresponding relationship between video image and vector
data is established using that between an object in virtual
imaging and vector object, with the purpose of accomplishing
the mapping of video scene to objects in geography scene.

In the following part, we will introduce several prelimi-
nary key steps.

2.1. Selection Algorithm of Multicamera Based on Spatial Cor-
relation andTarget Priority. Multicamera surveillance system
should not only gain detecting and tracking information of
motion element of the single camera, but alsomake the coher-
ent dynamic scene description using all the observations to
some extent. Meanwhile, every motion element could be
tracked by cameras simultaneously. How to select cameras for
tracking a specific target is particularly important in video
sensor networks. Based on the spatial correlation [28] and
target priority, the paper proposes a selection algorithm of
multicamera with task allocation optimized to achieve the
automatic selection according to the target priority at each
moment.

The algorithm is based on the assumption that a camera
with no task carries out the basic single camera tracking
which has lower power consumption, and the high-priority
task could be preempted when bending. The selection algo-
rithm of multicamera is shown as in Algorithm 1.

The set of images 𝐼 = {𝐼
1
, 𝐼
2
, . . . , 𝐼

𝑁
} is observed by

these 𝑁 cameras, and 𝑆 denotes the set of cameras selected.
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Figure 1: Process of the mapping relationship of video scene imaging data to geography scene vector data based on virtual viewpoint.

(1) begin
(2) 𝑆 = 𝜙, 𝐼 = {𝐼

1
, 𝐼
2
, . . . , 𝐼

𝑁
}, 𝑃
𝑁
= 𝑃
0
, 𝜌(𝐼
𝑖
, 𝐼
𝑗
) = 𝜌
𝑖𝑗
.

(3) Find (𝐼
𝑖
, 𝐼
𝑗
) = arg min

𝐼𝑖 ,𝐼𝑗∈𝐼

{𝜌(𝐼
𝑖
, 𝐼
𝑗
)}.

(4) Add corresponding 𝐼
𝑖
, 𝐼
𝑗
𝑡𝑜 𝑆. {Count = 2}

(5) for each 𝑘 ∈ Count
(6) for each (𝐼tmp ∈ 𝐼, 𝐼tmp ∉ 𝑆) 𝑜𝑟 (𝐼tmp ∈ 𝐼, 𝐼tmp ∈ 𝑆, 𝑃next > 𝑃curr) 𝑑𝑜
(7) 𝜌(𝐼tmp , 𝑆) = max

𝐼𝑝∈𝑆

{𝜌(𝐼tmp , 𝐼𝑝)}

(8) end for
(9) 𝐼min = arg min

𝐼𝑚∈𝐼, 𝐼𝑚∉𝑆

{𝜌(𝐼
𝑚
, 𝑆)}.

(10) add 𝐼min 𝑡𝑜 𝑆.
(11) end for
(12) return 𝑆 ⊆ {𝐼

1
, 𝐼
2
, . . . , 𝐼Count}

(13) end

Algorithm 1: Selection of multicamera based on spatial correlation and target priority.

𝜌
𝑖𝑗
is correlation coefficient of the two images 𝐼

𝑖
and 𝐼
𝑗
. The

larger the correlation coefficient, the more correlated the two
images. In step 6, 𝑃 denotes the task priority with a default
value 𝑃

0
, which can be marked manually by monitoring

person. It assigns cameras to the motion element with high
priority and coordinates cameras to track different targets
based on spatial correlation and target priority.

2.2. Organization of Video and Location Data. We have put
forward a coding model of video-GIS that is comprised of
video and camera’s position in conjunction with its view
direction and distance. Thus, the location data can be col-
lected automatically by various small sensors to a camera,
such as a GPS and a compass (see Figure 2). This elimi-
nates manual work and allows the annotation process to
be accurate and scalable. Therefore, we investigate the real-
time collection, coding, and integration of video information
and GPS information on the SEED-VPM642 platform, and
finally we can obtain two different bit-rate location-based
streaming media. The lower bit-rate one can be positioned to

the wireless network broadcast live, and the higher one can
be positioned to the hard disk storage.

In the coding of video-GIS, we need to calculate the
three-dimensional coordinate of the video object [29]. As
video-GIS coding based on mobile sensor cannot calculate
single video frame by three-dimensional control field, the
most effectiveway is using digitalmap and spatial geometrical
relations (see Figure 3).

Therefore, the geometric relationship among GPS, pos-
ture sensor, imaging space, and object space should be built.
It is assumed that the axis of imaging space 𝑥, 𝑦, 𝑧 is parallel
with that of object spatial𝑋,𝑌, 𝑍, respectively. Consider

𝑅
𝐺
= 𝑅GPS (𝑡) + 𝑅Att (𝑡) ⋅ [𝑠𝐺 ⋅ 𝑅

Att
𝐶
⋅ 𝑟
𝐶

𝑔
(𝑡) + 𝑟

𝐶

GPS] . (1)

In detail, 𝑅
𝐺
is the coordinate vector of point 𝐺 in the

three-dimensional space. The coordinate function of GPS
antenna in the given mapping frame is expressed as 𝑅GPS(𝑡).
𝑅Att(𝑡) represents the rotationmatrix functionwhile 𝑠

𝐺
repre-

sents the proportional relationship of image frame and object



4 International Journal of Distributed Sensor Networks

Router

Lithium battery
Power module

Power switch

Hard disk Interface converter board

Camera

Audio

Video

GPSVPM 642

Figure 2: Experimental hardware and software to acquire georeferenced video.
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Figure 3: Geometry for calibrating multiple sensors.

spatial. Boresight matrix 𝑅Att
𝐶

means transformation relation
between image frame andmain framework of posture sensor.
𝑟
𝐶

𝑔
(𝑡) represents the vector function of a 𝑔 point in imaging

spatial. And 𝑟𝐶GPS is the excursion of the geometric center of
GPS antenna and the camera lens.

For acquiring amore precise spatial locating information,
we need to get the GPS information and attitude information
generated by a posture sensor at least. Therefore, the spatial
locating information is described by the combination of
GPS and angle direction elementary (Heading, Pitch, and
Roll), which obtained by Micro Inertial Measurement Unit
(MIMU), as shown in Table 1.

As shown in Table 1, there are two kinds of the spatial
locating information:

(1) GPS information: such as UTC time and longitude
latitude;

Table 1: Sample of GPS and MIMU.

GPS
UTC 10:12:15 29.564 N 106.585E Alt 213.3 Meters
HPR
Heading 33.4 Pitch 0.5 Roll 1.3

(2) angle direction elementary information: including
Heading, Pitch, and Roll.

2.3. Digital Map-Based Image Resolution. The features of
digital maps are expressed by a two-dimensional plane on the
vertical projection of the vector data. From the standpoint
of this work, the video image is a raster data expression of
the feature in the height direction of the information, and
video image can also be expressed as the data format of the
dotted line surface after the vector processing. Video images
and digital map on the point, the line, and the corresponding
expression of the surface can be shown at Table 2.

From the view of technology, we subject map-based
image resolution to a three-dimensional measurement chal-
lenge and then use single-frame video images and digital
map matching to define the changes in three steps. The
first step is feature extraction of dense range image, which
aims to extract the features of point and line. Under the
premise of the full calibration to video frame, we can
identify the particular characteristics of extracted target to
meet the special requirement. For instance, the corners of
building or telegraph pole as a fixed line characteristic for
the expression of video image is perpendicular to the target.
Once formulated, the second step is to combine the line
characteristics into the characteristics of the surface using
texture information. The third step is matching with digital
map vector data. The contents include a variety of different
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Table 2: Correspondence between video images and digital map.

Image → Digital Map Digital Map → Image

Map Symbol Map Object Map Symbol Image Object

Point Point & line Point Point & line & Polygon

Line Point & line & Polygon Line Point & line & Polygon

Polygon Point & line & Polygon Polygon Line & Polygon

  
7

8

1 2

3 4 5 6

Figure 4: Mapping from Image to Digital Map.

matching points, points and lines, a line and a line, and the
line and the plane between form and technique, which is
shown in Figure 4.

3. Syntactic Structure

3.1. Syntactic Description of Motion Element. Video motion
element mainly refers to the entity objects that could be iden-
tified clearly in visual and are important in morphology, such
as pedestrians in video surveillance.The descriptionmethods
of motion element are mainly based on color and texture at
present, which is difficult to support the definition of motion
element, behavior analysis, and behavior understanding. For
a better description of the dynamic characteristic of the video
motion element, the paper first gives a definition to some
related concepts of motion element.

Definition 1. State.The state is an abstract of attributes owned
bymotion element and is a static description of the condition
and activity of a motion element at a certain time. 𝑆𝑡𝑎𝑡𝑒 =
{𝐴𝑝𝑝𝑒𝑎𝑟,𝑀𝑜V𝑒, 𝑆𝑡𝑜𝑝,𝐷𝑖𝑠𝑎𝑝𝑝𝑒𝑎𝑟} indicates the basic state of
any motion element within the scope of spatial constraint
in a georeferenced video stream, including the description
information of Appear, Disappear, Move, and Stop.

(a) Appear. The emerging motion element is newly appear
and distinguished from the existing ones in the specific area
of geographical boundary, and the state of which is called
Appear. Then the motion element starts to be detected and
tracked. Appear instance is regarded as the first instance of
motion element.

Target trajectory

Stop

Figure 5: The definition of Stop.

(b) Disappear. In contrast with the Appear state definition,
Disappear means the state of disappearance in the geograph-
ical boundary specific area or the untraceable state within a
specific time, which is viewed as the last instance for the state
description. Disappear state is the signal of canceling motion
element detection and tracking.

(c) Stop. Stop S is defined on triple 𝑆 = (𝐴𝑟𝑒𝑎(𝑆), 𝜁min(𝑆),
𝜁max(𝑆)). Among them, 𝐴𝑟𝑒𝑎(𝑆) means the spatial plane
area, and 𝜁min(𝑆) and 𝜁max(𝑆) represent the maximum and
minimum time threshold of Stop, respectively. And the
particular movement or stay that without markedly changed
of space coordinate information within a certain region are
all viewed as motionless, which is shown in Figure 5.

(d) Move. Within the scope of spatial constraint, Move 𝑀
is a general designation of connecting the other three basic
states in a continuous motion process of motion element.
An instance of Move can be represented as𝑀 = (𝐴𝑝𝑝𝑒𝑎𝑟 |

𝑆𝑡𝑜𝑝
𝑘
, 𝑆𝑡𝑜𝑝
𝑘+1

| 𝐷𝑖𝑠𝑎𝑝𝑝𝑒𝑎𝑟). By connecting the other three
basic state instances,Move can form a linear sequence formed
through the combination of Appear, Stop, and Disappear.
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Appear DisappearStop

Move

Figure 6: Behavior state sequence of motion element.

Definition 2. Behavior Attribute. Behavior description of
a single typical motion element mainly includes spatial
location and speed. Spatial location can be defined as
𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑂𝑏𝑗𝑒𝑐𝑡) = (𝑋

𝑖
, 𝑌
𝑖
, 𝑇
𝑖
), which means that the spa-

tial location of the motion element Object at time point 𝑇
𝑖
is

(𝑋
𝑖
, 𝑌
𝑖
), and 𝑋

𝑖
and 𝑌

𝑖
represent the horizontal and vertical

ordinate values in the two-dimensional plane, respectively.
𝑆𝑝𝑒𝑒𝑑(𝑂𝑏𝑗𝑒𝑐𝑡) = {𝑆Value, 𝑆Vector , 𝑇𝑖} indicates the motion
element Object with velocity magnitude 𝑆Value and velocity
direction 𝑆Vector at the time point 𝑇

𝑖
, among which 𝑆Vector is

the unit vector in a general planar domain.

Definition 3. Relation. Relation is an incidence relation of
mutual influence between two motion elements in the same
time subspace 𝑇. 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = (𝑂𝑏𝑗𝑒𝑐𝑡

𝑖
, 𝑂𝑏𝑗𝑒𝑐𝑡

𝑗
, 𝑇) shows the

relationship between motion element 𝑂𝑏𝑗𝑒𝑐𝑡
𝑖
and 𝑂𝑏𝑗𝑒𝑐𝑡

𝑗
in

time subspace 𝑇 which means one-dimensional time coordi-
nates. The measurement of interaction established between
the two elements uses probability 𝑃, which is dynamic
adjustment with the influence of temporal-spatial factor, and
𝑃 ∈ [0, 1].

Definition 4. Spatial Relation. Spatial Relation includes mea-
suring relation, direction relation, and topological relation.
Spatial Relation 𝑆𝑅 = (𝑀𝑒𝑎𝑠𝑢𝑟𝑒, 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦).
Measure indicates the measuring relation among motion
element using some measure in measuring space, such as
distance. In the same planar reference domain, Direction is
the equity mutual relationship between source target and
reference target.

Definition 5. Visual Feature. In the georeferenced video
stream, the visual characters of one motion element, includ-
ing color, texture, and shape, will be dynamically changed
with the time 𝑇. Therefore, the changes of visual characters
of a motion element within the scope of spatial constraint
should be described accurately [30]. And the visual characters
mainly include Color, Texture, Shape, and Size. Texture can
reflect the structuremode and gray space distribution formed
by local pixels inmotion element, while the low-level features
can clearly define and describe the motion element.

3.2. Behavior and Interaction of Motion Element. In the geo-
referenced video stream, Behavior of the motion element
within the specific scope of spatial constraint represents the
behavior state sequence, as shown in Figure 6. Let the state
set of Behavior be a BehaviorState, and the typical element is
𝜏 with the definition as follows:

𝜏 ::= 𝐴𝑝𝑝𝑒𝑎𝑟 | 𝑀𝑜V𝑒 | 𝑆𝑡𝑜𝑝 | 𝐷𝑖𝑠𝑎𝑝𝑝𝑒𝑎𝑟; (2)

𝑃(𝑡)

Object𝑖(𝑋𝑖, 𝑌𝑖)

𝑉𝑖(𝑉𝑖𝑋, 𝑉𝑖𝑌)

𝑉𝑗(𝑉𝑗𝑋, 𝑉𝑗𝑌)

Object𝑗(𝑋𝑗, 𝑌𝑗)

𝑌

0 𝑋

Figure 7: A diagram of interaction relation.

among them, Appear, Disappear,Move, and Stop indicate the
four basic states of motion element, respectively.

As one of the expression forms of motion element in
the video stream, Interaction represents the mutual influence
or joint action caused during the course of the Relation
of two behavior state instance. The necessary condition for
establishing the interaction relationship is the two incidence
relation between the two behavior state instances that exist at
the same time. It can be defined as five-meshes

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = {𝑂𝑏𝑗𝑒𝑐𝑡, 𝐵𝑒ℎ𝑎V𝑖𝑜𝑟𝑆𝑡𝑎𝑡𝑒, 𝑆𝑅, 𝑇, 𝑅𝑢𝑙𝑒} . (3)

Under the influence of temporal subspace 𝑇 and spatial
relation 𝑆𝑅, Interaction is the description of mutual influence
between motion element𝑂𝑏𝑗𝑒𝑐𝑡

𝑖
and𝑂𝑏𝑗𝑒𝑐𝑡

𝑗
. Behavior state

of Object can be any state instance in the BehaviorState
collection, and interaction production rule and interaction
optimization update rule are involved in Rule. Therefore, the
measuring of interaction has two influence factors, temporal
and spatial factors.

Due to the close correlation of spatial relation at any time
point 𝑇

𝑖+1
and former 𝑇

𝑖
, the spatial relation at 𝑇

𝑖+1
is always

closely related to that at former time point𝑇
𝑖
.Thus, the spatial

relation evolution process among motion elements can be
defined as a Markov chain in the temporal subspace 𝑇, with
its evolution having Markov quality

𝑃
𝑇
{𝐺
𝑡+1
| 𝐺
𝑡
, 𝐺
𝑡−1
, . . . , 𝐺

0
} = 𝑃
𝑇
{𝐺
𝑡+1
| 𝐺
𝑡
} . (4)

Meanwhile, themeasuring value𝑃 of interaction between
the twomotion element establishedRelation can be computed
based on the planar spatial distance Distance, velocity mag-
nitude, and direction angle, including the current topology at
time point 𝑇

𝑡
, as shown in Figure 7.
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In the georeferenced video stream, the dynamic update
function of interaction relation within the scope of spatial
constraint is shown as follows:

𝑃 (𝑡 + 1)

= Min [1,Max (0,√𝑃2 (𝑡) + 𝜔 (𝑡 + 1) × 𝜂 (1 − 𝑐 (𝑡)) )] .
(5)

Among them, 𝑃(𝑡) represents the interaction relation
measuring value between a certain motion element and
others, with the range of𝑃 ∈ [0, 1].The higher value indicates
the more hospitable relationship. When the interaction is
established by behavior state instances, the initial value works
as 𝑃(0) = 𝜌

1
× 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑖, 𝑗) + 𝜌

2
× 𝜃(𝑖, 𝑗). 𝜔(𝑡) indicates the

duration of interaction relationwith the current state, and the
dynamic change of 𝑐 parameter is shown as follows:

𝑐 (𝑡 + 1) = 𝑐 (𝑡) + 𝑎 ×
𝐷
𝑡+1

𝐷
𝑡

× (1 −

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜔 (𝑡 + 1) + 1

2
− 𝑃 (𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

×min [𝑐 (𝑡) , 1 − 𝑐 (𝑡)] ;
(6)

𝑐(𝑡) represents a new confidence level while 𝛼 learning rate.
min(𝑐, 1 − 𝑐) ensures parameter 𝑐(𝑡) ∈ [0, 1].

4. Semantics and Formalization of
Georeferenced Video

For the accurate description and behavior understanding
of motion elements in the georeferenced video stream, the
paper proposes an analysis method based on sparse random
graphs with the purpose of observing the character evolution
with time and presents an indicating and measuring method
of video motion element with dynamic topology structure
information based on context-sensitive sparse random graph
grammar.

4.1. Formalization of Georeferenced Video. Random graph
𝐺 = (𝑉, 𝐸,Ω) is defined on triple, while the edge set 𝐸 of
graph𝐺with the vertex set𝑉 is defined in probabilistic spaces
Ω. Consider

𝑃 (𝑒
𝑖𝑗
∈ 𝐸) = 𝑃

𝑖𝑗
, 𝑃
𝑖𝑗
∈ (0, 1) , ∑𝑃

𝑖𝑗
= 1. (7)

Each edge of random graph 𝐺 is mutually independent;
namely, any two vertexes that established incidence relation
connected independently with probability 𝑃. As the spatial
relation will be dynamically changed during the movement
with the time factor, it is necessary to describe the motion
state and interaction relationships within specific spatial area
using random graph. Context-sensitive sparse random graph
grammar can be defined as five-meshes

𝐺 = (𝑆, 𝑉
𝑁
, 𝑅, 𝛿, 𝐶ℎ) . (8)

Among them, 𝑆 is the root vertex that an initial vertex of
semantic event in the georeferenced video stream. There is

only one 𝑆 vertex in the video event sequence. Vertex 𝑉
𝑁
=

{𝑉
1
, 𝑉
2
, 𝑉
3
, . . .} involves all the motion elements emerged

in the specific spatial area. 𝑅 in the formula means the
evolution process and rule of random graph 𝐺 while 𝛿 the
state transition functions. The cohesion of random subgraph
𝐶ℎ indicates the inner coupling degree of motion element
group.

The motion element vertex of random graph can be
defined as follows:

𝑉
𝑖
= (𝑖𝑛𝑑𝑒𝑥, 𝑇𝑖𝑚𝑒, 𝑆𝑡𝑎𝑡𝑒, 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛,

𝑆𝑝𝑒𝑒𝑑, 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛, 𝑆𝑅, 𝑉𝐹) .

(9)

It shows the motion status and interaction information of
a motion element 𝑉

𝑖
labeled index at the time point Time.

Among them, Location and Speed represent the position
coordinate and the velocity of motion element 𝑉

𝑖
in the

planar area, respectively. Interaction is the description of
interaction while 𝑆𝑅 = (𝑀𝑒𝑎𝑠𝑢𝑟𝑒, 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛, 𝑇𝑜𝑝𝑜𝑙𝑜𝑔𝑦) the
spatial relation existed in the motion element. Virtual feature
𝑉𝐹 shows low-level features information of amotion element
including Color, Shape, and Size at the time point Time.
𝑆𝑡𝑎𝑡𝑒 = {𝐴𝑝𝑝𝑒𝑎𝑟,𝑀𝑜V𝑒, 𝑆𝑡𝑜𝑝,𝐷𝑖𝑠𝑎𝑝𝑝𝑒𝑎𝑟} is the basic state
of motion element.

4.2. Evolution Rule. As a posterior method, dynamic process
of motion elements in the video stream can be visually
described and showed based on sparse random graph. The
temporal and spatial evolution model of motion element is
able to describe the basic character and dynamic process of
spatial relation accurately. The essence of dynamic evolution
process of sparse random graph is the continuous transition
process of state space in random graphs.

Therefore, the state transition function of sparse random
graph can be defined as a mapping relation

𝛿 = Θ 󳨀→ Θ. (10)

Among them,Θ is the state space of sparse randomgraph,
Θ = (𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑛
)
𝑇, and 𝑑 is a variable in state region.

The dynamic evolution process of sparse random graph
includes its character update of motion element vertex 𝑉

𝑁
,

emerging vertex with the Appear and Disappear behavior
states, and the dynamic adjustment of edge set 𝐸 and interac-
tion relation𝑃of randomgraphs. For the accurate description
of event development process in georeferenced video stream,
evolution rule algorithm of sparse random graph is shown
in Algorithm 2.

We can get the corresponding dynamic evolution model
of sparse random graph using the evolution rule algorithm.
Step (2) in the algorithm shows the creating and adding root
vertex 𝑆, and 𝐺

0
= (𝑉
0
, 𝐸
0
) := ({𝑆}, 0). Adding a new motion

element vertex𝑉tmp in sparse random graph 𝐺Active is in step
(5)while deleting the vanish vertex𝑉

𝑖
and its association edge

in step (11). Among them, function getRestriction(𝑉
𝑗
) in step

(18) and getAttract (𝑉
𝑗
) in step (20) indicate whether it can

delete or add the edge that vertex 𝑉
𝑗
associated, respectively.

Step (27) accomplishes the dynamic update of interaction
relation 𝑃 in sparse random graph 𝐺Active.
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Input: sparse random graph 𝐺Active, motion element
detection and recognition information;
Output: return 𝐺Active;
(1) IF 𝑡 = 0Then
(2) Create first node S & Add S to 𝑉

𝑁
;

(3) End IF
(4) While 𝑡 ≥ 1 do
(5) IF 𝑉tmp → State Is Equal Appear Then
(6) Find nearest node 𝑉near;
(7) Create new edge 𝐸(𝑉tmp, 𝑉near);
(8) Add 𝑉tmp to 𝑉𝑁;
(9) End IF
(10) For 𝑉

𝑖
∈ 𝑉
𝑁
do //Update all Nodes in 𝐺Active

(11) IF 𝑉
𝑖
→ State Is Equal Disappear Then

(12) Remove 𝑉
𝑖
from 𝑉

𝑁
;

(13) Delete edge of 𝑉
𝑖
in 𝐺Active;

(14) End IF
(15) Update 𝑉

𝑖
;

(16) End For
(17) For 𝑉

𝑗
∈ 𝑉
𝑁
do //Update all Edges in 𝐺Active

(18) IF Flag← getRestriction(𝑉
𝑗
) Then

(19) Delete edge of 𝑉
𝑗
in 𝐺Active;

(20) Else IF Flag← getAttract(𝑉
𝑗
) Then

(21) Add new edge of 𝑉
𝑗
to 𝐺Active;

(22) End IF
(23) End For
(24) For 𝑉

𝑘
∈ 𝑉
𝑁
do //Update 𝑃 of Graph in 𝐺Active

(25) IF 𝑉
𝑘
→ State Is Equal Appear Then

(26) 𝑃 ← 𝑃(0);
(27) Else Update other 𝑃 of 𝐺Active;
(28) End IF
(29) End For
(30) Return 𝐺Active;

Algorithm 2: Evolution rule algorithm of sparse random graph.

4.3. Random Subgraph. Cohesion of random subgraph refers
to the close relation of motion element. To measuring close
relation, the paper introduces the concept of structural
entropy. As a measuring method of messiness and ran-
domness of the state, structure entropy is related closely
to the compactness of random subgraph. The higher the
compactness is, the lower the structure entropy value will be.

If vertexes 𝑉
𝑖
and 𝑉

𝑗
have close correlation with each

other, then 𝑃(𝑉
𝑖
, 𝑉
𝑗
) = 𝑃(𝑡). Let 𝑁(𝑖) = ∑

𝑛

𝑗=1
𝑃(𝑉
𝑖
, 𝑉
𝑗
),

associative strength 𝜉(𝑖) = 𝑁(𝑖)/∑
𝑛

𝑗=1
𝑁(𝑗). The structure

entropy of random subgraph is 𝐻 = ∑
𝑛

𝑖=1
𝜉(𝑖) ln 𝜉(𝑖), and

∑
𝑛

𝑖=1
𝜉(𝑖) = 1. Therefore, the Cohesion of random subgraph is

𝐶ℎ(𝐺
󸀠
) = −∑

𝑛

𝑗=1
(𝑁(𝑗)/𝑛) × (𝜉(𝑖) ln 𝜉(𝑖)/ ln 𝑛), with 𝐶ℎ(𝐺󸀠) ⊆

[0, 1].

4.4. Early Warning of Video Event. Using the numerical
calculation method of interaction relationship, abnormal
behavior and emergency in video can be distinguished based
on random graph grammar, and the possible special situation
can be early warned. There are two different threat levels

AlarmCBRNotifyTwo-layer
discriminate analysis

Figure 8: Notify and Alarm processing of video event.

generated by video event: notify and alarm, which is shown
in Figure 8.

The paper is mainly to detect the unexpected crowd inci-
dent and conflict in the massive video events and proposes
a novel two-layer discriminate method, which consists of
individual attribute layer and group attribute layer. Once
occurring video abnormal event, the corresponding real-time
status of random graph must be described, which can be
expressed as follows.

(1) Individual Attribute Layer.Theowned velocity of multiple
random graph nodes has modified radically in per unit
of time 𝑇, and the relevant movement direction has also
changed significantly.

Specifically speaking, the detection and selection of vari-
ation range or interval of movement attributes in random
graph can use sliding window. In the continuous movement
attribute value 𝑉 = {𝑉

1
, 𝑉
2
, . . . , 𝑉

𝑛
} in time series, 𝑉

1
exists

before the emergence of 𝑉
2
, while 𝑉

2
exists before 𝑉

3
. The

difference is obtained by the two continuous attribute values.
In the paper, the data in the sliding interval Δ𝑇 is viewed
as the discriminative and forecasting sample, when the
continuous difference 𝐷(𝑉

𝑖
, 𝑉
𝑗
, 𝑇) is larger than the given

threshold, and the sliding intervals Δ𝑇 is within the max
time threshold. Otherwise, recalibrate over the entire sliding
intervals for new computation.

(2) Group Attribute Layer. The multiple interaction and dis-
tance values among random graph nodes in groups fluctuate
greatly, or the multiple numerical variations of interaction
relationship in random subgraph are changed significantly.
The discriminant analysis of video abnormal event is
achieved according to the check whether the change rate of
parameter value ⃗𝑟 is greater than the given threshold 𝑝𝑇ℎ𝑟𝑒ℎ,
as

⃗𝑟 =
𝑑𝑝

𝑑𝑡
≥ 𝑝𝑇ℎ𝑟𝑒ℎ. (11)

Once either circumstance occurred, it must be entering
the next notify phase.

When entering the notify discriminative phase, the ran-
dom subgraph showing diffusion or flocking status makes
numerical calculation. Using the computing method of
structure entropy value, the corresponding random subgraph
status is measured, and the entropy value 𝐶ℎ(𝐺󸀠) is viewed
as the warning degree of video abnormal behavior and
emergency. With regard to different levels of urgency and
security, the warning degree 𝑊𝑎𝑟𝑛𝑖𝑛𝑔(𝑡) is set to different
threshold intervals as follows:

𝑊𝑎𝑟𝑛𝑖𝑛𝑔 (𝑡) = 𝐶ℎ (𝐺
󸀠
) = −

𝑛

∑

𝑗=1

𝑁(𝑗)

𝑛
×
𝜉 (𝑖) ln 𝜉 (𝑖)

ln 𝑛
. (12)
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The warning degree 𝑊𝑎𝑟𝑛𝑖𝑛𝑔(𝑡) is divided into three
warning threshold intervals in the paper, which areWarning1,
Warning2, and Warning3. Specifically, Warning1 indicates
the early warning degree, which means that video abnor-
mal event will be occurred in the next unit time and the
discriminative module obtains alertness. Warning2 shows
the probable warning degree and is the identifying pro-
cessing transformed into the CBR phase. If the entropy
value of random subgraph is greater than the max value
of given threshold interval, the CBR discrimination phase
works. Based on the video event features, the traditional
CBR method is used to further identification. Warning3
expresses the confirmed warning degree, which can enter the
Alarm phase of video abnormal event directly without the
traditional CBR method.

The discriminate method based on the random graph is
defined as graph-based reasoning (GBR) in the paper, while
the improved GBR fused with traditional CBR method is
GBR-C. The intelligent analysis for different video scenes
plays an important role in the real-time detection of video
abnormal behaviors and mass incidents. The instantaneous
status information of video motion element is integrated
with the random graph model and summarizes the ran-
dom subgraph patterns and behavior rules with a statistical
description. In violation of the behavior regularity of com-
mon video events, it is a latent exceptional event, and extracts
the features of video motion elements involved which are
recorded in object layer stream for the efficient retrieval of
content-based video.

5. Experiment and Analysis

In order to verify the feasibility and availability of the
proposed framework, space information of a motion element
is extracted at real-time based on the detection and tracking
[31, 32]. According to the dynamic change situation of space
semantics, a timing description method using random graph
grammar depicts the event development of video stream
clearly.

5.1. Interaction Description. Interaction is the mutual inci-
dence relation among motion element. For the accurate
description of the dynamic change process of interaction
relation, interaction 𝑃 should be calculated real-time based
on the spatial information in experimental video including
planar spatial distance, velocity magnitude, and direction
angle. And the calculation results of real-time interaction
update function 𝑃(𝑡) of the video clip trim from frame 550
to frame 685 is shown in Figure 9.

In Figure 9, function𝑃
1
shows a changing trend of increa-

sing first and then decreasing gradually in the video clip. The
minimum value of interaction 𝑃

1
is at frame 685 with the

value 0.11 while the maximum is at frame 586 with the value
0.38. And function 𝑃

2
indicates the changing process of two

close targets. The minimum value of 𝑃
2
is at frame 592 with

the value 0.23 while the maximum is at frame 685 with the
value 0.79.The increasing planar spatial distanceDistance and
motion direction variation of two motion elements make the

decreasing interaction value. On the contrary, as the planar
spatial distance decreases and the duration of interaction
continues to increase, interaction value𝑃 increases gradually.

The previous results show that it can accurately depict
the dynamic varying changes of the interaction relation of
video motion elements. However, the accurate depiction is
an indispensable premise for the description of the georef-
erenced video stream.

5.2. Georeferenced Video Stream Description. Based on the
richer spatial semantic of motion elements in the georefer-
enced video stream, we can realize the intelligent parsing of
georeferenced video content using context-sensitive sparse
random graph grammar. The spatial relationship of motion
elements in image space is transformed to that of object
space, and the motion status and interaction relation can
be depicted using random graph. The continuous transition
process of inner state space in random graph is enforced with
the dynamic evolution process of sparse random graph.

With the spatial reference data, the sparse random graph
evolution processing based on the monitoring target is
achieved. And the consecutive people emerged within the
video surveillance range are labeled as A, B, C, and D
which are shown in Figure 10. As soon as the moving object
appears, a new random graph node will express it; when it
leaves the surveillance confine, the corresponding node will
disappear while the edge set constituted by the interaction
that associated with the node is set to null. Using our
video test data, the evolutionary process and timing evolving
description diagram of the video clip trim from frame 1041 to
frame 1712 is shown in Figure 10.

We can see that the timing evolving description diagram
can be constructed by the automatic intelligent analysis and
calculation of a video clip, and it verifies the correctness
and effectiveness of the evolution rule algorithm of sparse
random graph. Within the scope of the specific geographical
space, the time-varying attributes of random graph nodes are
visual displayed, such as behavior state, spatial location, and
movement parameter. And the basis recorded information of
each video motion element is shown in Algorithm 3.

Among them, the basic information consists of attribute
information, spatial location information, and other move-
ment parameter, which are shown in Algorithm 3.The attrib-
ute information State indicates the behavior status of the
video motion element with succinct expressional number 0,
1, 2 and 3, which are described respectively with the four
basic behavior 𝑠𝑡𝑎𝑡𝑒 {𝐴𝑝𝑝𝑒𝑎𝑟, 𝐷𝑖𝑠𝑎𝑝𝑝𝑒𝑎𝑟,𝑀𝑜V𝑒, 𝑆𝑡𝑜𝑝}. And
the interaction relationship attribute including the index of
two elements, the numerical calculation value of interaction,
and the relative spatial directions. The whole structural
description of video motion element generated automatically
is shown in Figure 11.

The automatically generated file mainly consists of two
parts: the configuration data and content data.Themovement
status information about motion element Object in the geo-
referenced video stream is described in detail in the content
data part while the basic attribute information about testing
video clip in configure data part. In the continuous period
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Figure 10: Timing evolving description diagram of the georeferenced video stream.

Table 3: Three test sample videos.

Test samples Alarm types Time (s) Scenes number
A Cross-border 372 18
B Flocking 1423 42
C Conflict 588 27

of time series, movement status information of each motion
element including the behavior state sequence, real-time
spatial location information, and the statistical information

about interaction relation can be queried directly from the
XML file. It also provides a novel simple nonlinear indexing
for the understanding and description of video content.

5.3. Performance of Video EventWarning. To validate the pro-
posed early warningmethod of video abnormal behavior and
emergency, we analyzed the performance of various attributes
using the video test data which involves a crowd video scene.
Experimental analysis mainly contains the real-time warning
entropy value of random subgraph, warning degree, and real-
time changes of corresponding subgraph node number and
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<?xml version="1.0" encoding="UTF-8"?>

<SRG>

<configData>

<descriptor name="VideoMotionInfo" type="FILE">

<attribute Medianame="TrackElement Session 1"></attribute>

<attribute FrameCount="76283" FPS="30" ></attribute>

<attribute CamGPS="GPS" UTC="10:12:15" LAT="29.564" LON="106.585"></attribute>

<attribute CamMIMU="HRP" Heading="33.4" Pitch="0.5" Roll="1.3"></attribute>

</descriptor>

<descriptor name="IMGLOCTInfo" type="LOCAT">

<attribute ReferPoint="UL" PixelX="184" PixelY="104" LocatX="0" LocatY="0" ></attribute>

<attribute ReferPoint="UR" PixelX="346" PixelY="142" LocatX="580" LocatY="291" ></attribute>

<attribute ReferPoint="DL" PixelX="240" PixelY="337" LocatX="289" LocatY="1164" ></attribute>

<attribute ReferPoint="DR" PixelX="612" PixelY="321" LocatX="1160" LocatY="1162" ></attribute>

</descriptor>

</configData>

InteractionNum="1" Interaction="{(18,17, NE, 0.42)}" VF="0" Other="0"/>

InteractionNum="1" Interaction="{(17,18, SW, 0.42)}" VF="0" Other="0"/>

<ContentData>

<object framespan="1:1500">

<attribute name="MotionElement">

· · · · · ·· · · · · ·

<index="17" State="2" frame="302" timeDelay= 302 PixelX="212" PixelY="171"

LoctX="160" LoctY="486" DeltX="0.43" DeltY="0.29" Speed="(0.43,0.29)"

<index="18" State="2" frame="302" timeDelay= 302 PixelX="374" PixelY="259"

LoctX="606" LoctY="898" DeltX="0.33" DeltY="0.72" Speed="(0.33,0.72)"

· · · · · ·· · · · · ·

</attribute>

</object>

<object framespan="1501:3000">

<attribute name="MotionElement">

· · · · · ·· · · · · ·

</attribute>

</object>

</ContentData>

</SRG>

<attribute ReferPoint="O" PixelX="359" PixelY="251" LocatX="582" LocatY="870" ></attribute>

Figure 11: Structural description of video motion feature.

the total graph node number, which are shown, respectively,
in Figure 12. And the horizontal axis indicates the video
running time with 10 seconds as a scale unit.

As can be seen from the previous illustration, the warning
entropy value of real-time random subgraph using the com-
puting method of structure entropy value is due to random
fluctuations in Figure 12(a). According to the warning degree
of video abnormal behavior and emergency, three different

warning threshold intervals are set in our test. And the
Warning2 degree occurred between 252 and 270 seconds
shown in Figure 12(b). The Warning1 indicates the early
warning degree in most of the time, which means that
video abnormal event will be emerged. Figure 12(c) shows
the real-time nodes number of random subgraph in the video
surveillance scope while Figure 12(d) shows the total graph
node number.
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Figure 12: Structural description of video motion feature.

⟨attribute name=“MotionElement”⟩
⟨ index=“63” //Sequence Number
State=“2” //Behavior State
frame=“612” //Current Frame Number
timeDelay=“612” //Duration
PixelX=“198” PixelY=“211” //Image Space Coordinate
LoctX=“45” LoctY=“60” //Object Space Coordinate
DeltX=“0.85” DeltY=“0.24” //Relative Distance
Speed=“(0.85, 0.24)” //Speed
InteractionNum=“1” //Interaction Relationship Number
Interaction=“{(64, 63, NE, 0.51)}” //Interaction Relationship

//(Objecti, Objectj, Direction, 𝑃(𝑡))
VF=“0”
Other=“0”/ ⟩

⟨/attribute⟩

Algorithm 3: Basic information of each video motion element.

5.4. Performance Comparisons of Intelligent Analysis Methods.
In this section, we compare the proposed method with
other methods, such as the Coarse-Grained SVM, Fine-
Grained SVM [15], and MKL [19]. Using the three sample
videos (Table 3) which involve some events that contain
a group of people interact with each other, we carry out
the comparison study. And all the chosen samples are
considered as the labeled training data within the target
domain.

GBR accomplishes a concise numerical calculation and
avoids the problems of computing complexity in the tradi-
tional CBR method. In Tables 4, 5, and 6, we compare the
performance of GBR, GBR&CBR, with other methods using
three different videos.

From Tables 4, 5, and 6 , we observe that GBR extends the
processing time in a common detection of video event, but
the forecasting accuracy of video abnormal behavior and
emergency increased significantly with lower computation
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Table 4: Comparison of crossing sample A with different methods.

Method Out-Detection Correct-Detection Omit-Detection Time (s)
GBR 20 18 0 0.72
GBR (with CBR) 25 18 0 1.35
Coarse-grained SVM 40 16 2 1.47
Fine-grained SVM 26 15 3 1.21
MKL 30 16 2 1.50

Table 5: Comparison of flocking sample B with different methods.

Method Out-Detection Correct-Detection Omit-Detection Time (s)
GBR 48 35 7 2.74
GBR (with CBR) 51 39 3 4.33
Coarse-grained SVM 90 37 5 5.41
Fine-grained SVM 45 35 7 4.76
MKL 43 36 6 5.53

Table 6: Comparison of conflict sample C with different methods.

Method Out-Detection Correct-Detection Omit-Detection Time(s)
GBR 35 23 4 3.46
GBR (with CBR) 36 24 3 4.17
Coarse-grained SVM 53 24 3 3.90
Fine-grained SVM 37 21 6 3.54
MKL 40 22 5 3.95

and complexity. Therefore, the energy consumption of sen-
sors will be reducedwhich is consistent with the transmission
costs, especially in the nonrecurring flocking emergency with
complex video event modeling.

6. Conclusion

In summary, findings from the present study are all based
on low-level visual features, which mean that there was a
shortage of spatial constraints and coupling analysis with
geography environment. It is necessary to establish the
relationship between video analysis method and the real
geographical scene. A georeferenced video analysis method
is proposed based on the context-based random graph. The
data are obtained using a wireless network of environmental
sensors scattered at the supervising area and a vision sensor
monitoring the same geographical area. Experimental results
prove that the proposed descriptionmethod of georeferenced
video using random graph is feasible and efficient. Through
the intelligent parsing of the georeferenced video data stream,
we can get a novel visual description method using random
graph which can clearly depict the development clue of video
scenes and also offer the possibility to browse the video
stream quickly. Meanwhile, random graph can be used as
an effective nonlinear indexing for the content-based video
indexing and browsing application.

As a future work, we will propose the enhancement of the
implemented algorithms with alternative combination rules
and the fusion of audio and video to deal with the uncertainty,
imprecision, and incompleteness of the underlying informa-
tion. In addition, large amounts of data should be conducted
to set various parameters, such as thresholds, false alarm
rates, and fusion weights.
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