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An extremity rehabilitation program was proposed based on inertial measurement units (IMU) and virtual reality. A single IMU
consists of a three-axis accelerometer, gyroscope, and geomagnetic sensors. One IMU is attached to the upper arm (master) and
another to the forearm (slave).The IMUs are connected using a distributed sensor network implementedwith interintegrated circuit
communication.Themotion-tracking algorithm running on a PC tracks the subject’s hand based on the estimated IMU orientation
and segment lengths through forward kinematics. The training contents, including various dynamic movements and static holds,
were designed to evaluate the spatiotemporal aspects of the subject’s functionality. The system was tested on a group of healthy
subjects and a group with a simulated stiff elbow, allowing the evaluations to be quantitatively differentiated. The stiff elbow was
simulated by taping the elbow to restrict the range of elbow motion. We expect the patients to be able to assess their own status
without assistance from a therapist and select appropriate training methods to increase their rehabilitation effectiveness. Future
studies will verify the availability and reliability of the upper extremity rehabilitation program for patients with a hemiplegia, leading
to the development of an upper extremity rehabilitation program for three-dimensional movements of the upper extremities.

1. Introduction

A stroke, which is a type of cerebrovascular condition, is the
third-highest cause of death in theUnited States [1]. Although
stroke patients often regain consciousness after onset, 30–
40% of patients suffer from hemiplegic complications such
as a speech disorder or dementia, impeding their ability to
live a normal life. Among the various disorders caused by
a stroke, hemiplegia is very typical, with more than 80% of
stroke patients displaying some form of hemiplegic disability
[2]. The restoration of the upper extremity functionality
is slow compared to the recovery of other functions such
as posture or gait. Furthermore, if the rehabilitation is

discontinued, patients may be unable to regain their normal
upper extremity ability [1]. This poses a problem when cost
and/or space limitations reduce the amount of rehabilitation
training that patients can receive at a hospital. After dis-
charge, patients must undertake rehabilitation at home [3].
Without the direction of a physical therapist, such patients
may be unable to determine their own status or select an
appropriate rehabilitation program.

In addition, traditional devices for upper extremity reha-
bilitation are simple and tedious to use, and patients may lose
interest in them over the long term. If a patient does not
engage in rehabilitation for the recommended time period,
the efficiency of the process may decrease. To overcome this
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limitation,many studies have focused on a variety of training,
confirming the results through a virtual reality system.
Several studies using commercial gaming devices such as
the Nintendo Wii or Microsoft’s XBOX360 Kinect sensor
have shown a clinical effect [4–6]. However, these systems
do not evaluate the patient’s functionality during training,
which is necessary for patients to conduct rehabilitation at
home on their own. Zhang et al. [7] attached an inertial
sensor to the wrist and elbow joints of different patients
and provided therapists with tools to remotely observe the
rehabilitation movements of their patients in real time. The
therapists were then able to design an appropriate exercise
program according to the training progress of their patients.
This system includes only three types of actions, that is, arm
stretching, bending, and drinking water. Similarly,Willmann
et al. [1] used a system that tracks the behavior of the
upper extremity using inertial sensors. A physical therapist
confirms the condition of the patient at a hospital directly or
indirectly based on an examination of the stored data and
then presents the next movement that the patient should
practice. However, this system does not provide a systematic
exercise method because it is dependent on the feedback of
the physical therapist.

We previously presented an upper extremity rehabili-
tation system based on commercial motion tracking and
virtual reality [8]. In the present study, we highlight the
development of a motion-tracking system based on the use
of inertial sensors and a distributed sensor network and
show the functional feasibility of the rehabilitation system.
This motion-tracking system consists of two inertial sensors
attached to the upper limb of the subject and a motion-
tracking algorithm running on a PC.The inertial sensor con-
sists of a three-axis microelectromechanical system (MEMS)
accelerometer, a gyroscope, and geomagnetic sensors. The
sensor data are transmitted wirelessly to a PC, where the
orientation and position of the subject are tracked. Virtual
reality using the OpenGL library (http://www.opengl.org/) is
implemented on the PC to provide rehabilitation movements
and assess the upper extremity functionality of the subject.
The system can be used at home without the assistance of a
therapist. To verify the functional feasibility, this system was
applied to healthy subjects and to subjects with a simulated
stiff elbow condition. The stiffness was simulated by taping
the elbow, which restricted its range of motion.

2. System Overview

The proposed system consists of a motion tracker and reha-
bilitation content (Figure 1). The motion tracker consists of
two inertial measurement units (IMU) attached to segments
of the subject’s upper limb and a motion-tracking algorithm
running on a PC.The IMUs are connected with a proprietary
distributed sensor network. One IMU collects the sensor data
of the other IMU and transmits both sensor data packets
wirelessly to the PC. The motion-tracking algorithm on the
PC receives the data packets, estimates the orientations of
the IMSs from the sensor data, and finally calculates the
segment positions of the subject along with the estimated
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Figure 1: System overview. The two IMUs and the motion-tracking
algorithm utilize a motion tracker. The motion-tracking algorithm
and rehabilitation content are implemented on a PC.

orientation and segmental length.The rehabilitation content,
which also runs on the PC, provides the trajectory of the
upper limb using a graphic library and evaluates the subject’s
real trajectory.

Each IMU (17.8mm × 13.0mm) is composed of a
microcontrol unit (MCU), microelectromechanical system
(MEMS) inertial sensors, and a Bluetooth communication
module (Figure 2(a)). A three-axis accelerometer/magne-
tometer (LSM303DLHM, STMicroelectronics) and a three-
axis gyroscope (L3GD20, STMicroelectronics) were used
as the inertial sensors. The gyroscope was set to a full
scale of ±500∘/s and a sampling rate of 100Hz. The MCU
(STM32F103C8, STMicroelectronics) reads the sensors using
interintegrated circuit (I2C) communication.Themaster and
slave IMUswere attached to the upper arm and forearmof the
subject, respectively.The communication between themaster
and slave IMUs was conducted using a distributed sensor
network implemented based on another I2C communication.
The I2C master and slave protocols were programmed in the
master and slave IMUs, respectively. The MCU in the master
IMU reads the sensor data of the slave IMU through I2C
communication and sends the master and slave data packets
using a Bluetooth module (Parani ESD200, Sena Technology,
Korea) to the PC.

3. Motion-Tracking Algorithm

The transmitted data packet is processed using the motion-
tracking algorithm on the PC to estimate the IMU’s orienta-
tion.This orientation is expressed as a rotation matrix, S2G

𝑅,
from the global frame to the sensor frame, which is calculated
by integrating the gyroscope’s angular velocity signal, 𝜔 =

[𝜔
𝑥
𝜔
𝑦
𝜔
𝑧
]
𝑇 [9]:
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Figure 2: Inertial measurement unit (IMU): (a) sensor board and its direction and the (b) slave (left) and master (right) IMUs.
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However, small offsets in the gyroscope signal accumulate
during the integration, which is known as a drift problem.
Drift is corrected by fusing the gravity and Earth’s magnetic
field sensed using a Kalman filter [9, 10]. In particular, the
system model for human-motion tracking is described well
in [9]. For self-completeness, the orientation estimation can
be summarized as follows (Figure 3).

The accelerometer, gyroscope, and magnetometer sensor
signals (𝑦

𝐴,𝑡
, 𝑦
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and 𝑦
𝑀,𝑡
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are modeled as in (1):
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where 𝑎
𝑡
, 𝜔
𝑡
, and 𝑚

𝑡
are the acceleration, gyroscope offset,

and magnetic field, respectively; 𝑔, 𝑏
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gyroscope offset, andmagnetic disturbance; and V
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, and

V
𝑀,𝑡

represent white Gaussian measurement noises.
The acceleration and magnetic disturbance are modeled

into a Markov process model with white driving noise and a
constant of between 0 and 1, as in
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In this indirect Kalman filter, the error state including the
orientation, gyroscope offset, and magnetic distortion, 𝑥

𝜖,𝑡
=
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Figure 3: Kalman filter structure. The gyroscope signal, 𝑦
𝐺

, is inte-
grated to predict the sensor orientation. The predicted orientation
is corrected with the accelerometer signal, 𝑦

𝐴

, and magnetometer
signal, 𝑦

𝑀

.

[𝜃
𝜖,𝑡
𝑏
𝜖,𝑡
𝑑
𝜖,𝑡
]
𝑇, is estimated. The error state transition matrix

is defined from the error dynamics, as in

𝐴 = [

[

𝐼
3×3

0
3×3

−𝑇 ⋅ 𝐼
3×3

0
3×3

𝐼
3×3

𝐼
3×3

0
3×3

0
3×3

𝐼
3×3

]

]

. (6)

After the error state is estimated, it is added to the state
estimation. With an estimated orientation of 𝜃, included in
the estimated state, the acceleration and magnetic signals
in the global frame can be estimated. Since the estimated
orientation has an error, these estimated signals also have
an error. This estimated orientation is therefore corrected
by comparing the estimated and measured signals with a
measurement matrix, as in

𝐶 = [
−𝑍
𝐺
× 𝑇𝑍

𝐺
× 0

3×3

−𝐻
𝐺
× 𝑇𝐻

𝐺
× −𝑐
𝑑
𝐼
3×3

] , (7)

where 𝑍
𝐺
and 𝐻

𝐺
correspond to the vertical 𝑍 acceleration

and magnetic field in the global frame calculated by integrat-
ing the gyroscope signal, respectively.
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Figure 4: Virtual-reality-based upper extremity rehabilitation program. A conceptual drawing (a) and the simplified version used in this
study (b).

The error state covariance 𝑄 and measurement covari-
ance 𝑅matrixes are calculated as in
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where 𝑄V𝐺
, 𝑄V𝐺

, and 𝑄V𝐺
are the measurement covariance

matrixes of the gyroscope, accelerometer, andmagnetometer.
𝑄V𝐺

and 𝑄V𝐺
correspond to the covariances of the gyroscope

offset and magnetic disturbance.
With these matrixes, the indirect Kalman filter estimates

the current state from the previous state and state transition
matrix𝐴.The covariance of the estimated state error 𝑃 is also
estimated as in (9). 𝑃

𝑘+1|𝑘
indicates the covariance of the state

error estimated at time 𝑘 + 1, based on that at previous time
𝑘:
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Finally, the measurement is updated as in
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where 𝑧
𝑘+1

is a measurement consisting of acceleration and
magnetometer signals, and 𝐾

𝑘+1
corresponds to the Kalman

filter gain.
These procedures from (1) to (10) are repeated when

the sensor signals are received. They are programmed with
MATLAB scripts and converted into 𝐶 files using a codegen
tool (MATLAB7.12, Mathworks). The converted 𝐶 files are
included and compiled as a PC application, which includes
the motion-tracking algorithm and rehabilitation content.
The execution time of the orientation algorithm with a
Kalman filter was measured to be about 0.03ms on a PC
(3.0GHz dual-core Pentium with 2.0GB of RAM).

With the estimated orientations and predefined segmen-
tal lengths, the positions of the upper arm 𝑃upper and forearm
𝑃fore relative to the shoulder joint were calculated using the
forward kinematics. For the upper arm, the position was
calculated as in

𝑃upper = 𝑅
G2U

𝐿upper ,

𝑃fore = 𝑅
G2F
𝑅

G2U
𝐿 fore + 𝐿upper ,

(11)

where 𝑅G2U and 𝑅G2F are the rotations of the sensors in the
upper arm and forearm, and 𝐿upper and 𝐿 fore correspond
to the measured segmental lengths of the upper arm and
forearm, respectively.

4. Upper Extremity Rehabilitation Program

The upper extremity rehabilitation application was pro-
grammed using Visual C++ 6.0 (Figure 4).The virtual reality
platform used to express three-dimensional movement of the
upper extremity and the two-dimensional upper extremity
rehabilitation program were implemented using OpenGL.

The rehabilitation content was designed to provide both
training and evaluation at the same time. The content
included various dynamic movements and static holds and
provided them to the subject within the virtual environment
(Figure 5). The dynamic movements consisted of various
movements such as shoulder flexion, abduction, adduction,
and elevation; elbow flexion and extension; and forearm
pronation and supination. The evaluation algorithm was
derived from well-established methods including the Upper
Extremity Motion Score [11] and Fugl-Meyer Assessment
Scale [12]. The static holds were designed to maintain the
arm position for a certain period after stretching and lifting
the arms and were evaluated based on the National Institutes
of Health (NIH) Stroke Scale [13] and the European Stroke
Scale [14]. Based on these rationales, the functionality of
each subject was evaluated for its spatiotemporal aspects.The
average positional difference (𝐷pos) between the provided
training trajectory and the hand position of the patient was
calculated as 100Hz. The average time duration (𝑇out) was
also accumulated when the positional difference was larger
than a predefined threshold.
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Figure 5: Training content examples: (a) static hold, (b) linear movement, and (c) circular movement.
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Figure 6: Subject conditions: (a) normal condition and (b) stiffness simulated by taping the elbow.

5. Feasibility Test

To verify its functional feasibility, the system was applied to
five healthy subjects (26–30 years old, all male). To simulate
a stiff elbow, which is a poststroke complication, the elbow of
each healthy subject was taped to restrict its range of motion
(Figure 6).Thefigure shows the system configuration for both
the normal group and the group with a simulated stiff elbow
[15, 16].

The linear and circular movements were provided within
the virtual environment. The subjects were asked to follow
the provided trajectories as best they could. The linear
movements were provided in eight directions (Figure 5(b)),
whereas the circular movements were provided in the CW
and CCW directions (Figure 5(c)). Each movement was
repeated ten times for each subject. The values of 𝐷pos and
𝑇out were calculated and analyzed.

Figure 7 shows the hand position trajectory for both the
normal and stiff-elbow simulated groups. It was observed

that the trajectory under a simulated stiff-elbow condition
was qualitatively rougher than the trajectory under normal
conditions.

Table 1 summarizes 𝐷pos and 𝑇out for the linear and
circular movements. All 𝐷poss and 𝑇outs values were merged
over the subjects and movement types and compared using a
paired 𝑡-test for the linear and circular movements of both
groups, respectively. The values of 𝐷poss and 𝑇outs showed
significant differences between the normal and stiff-elbow
simulated groups (all 𝑃 < 0.001 for linear 𝐷pos, linear
𝑇out, circular 𝐷pos, and circular 𝑇out). This demonstrated the
functional feasibility of the proposed system for evaluating
the upper extremity function of a poststroke patient in a
quantitative manner.

6. Conclusion

In this study, an extremity rehabilitation program was pro-
posed based on the use of IMUs and a virtual-reality system.
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Figure 7: Trajectory example: (a) linear and (b) circular movements.The black line, blue rectangles, and red circles correspond to the training
trajectory provided, the tracked positions under normal conditions, and the tracked positions for the stiff-elbow simulated group, respectively.

Table 1:𝐷poss (cm) and 𝑇outs (s) for the two groups and movement
type (cm): N, normal group; S, simulated stiff elbow group.

group 𝑇out 𝐷pos

Linear
movement

Circular
movement

Linear
movement

Circular
movement

N 0.07 0.97 5.40 5.76
S 0.39 3.79 5.89 6.76

The IMUs were used to track the subject’s hand based on
its calculated orientation and segment lengths with forward
kinematics. In addition, the training content, including var-
ious dynamic movements and static holds, was designed to
evaluate the spatiotemporal aspects of the subject’s func-
tionality. To quantitatively differentiate the evaluations, the
proposed system was tested on both a group of healthy
subjects and a group of subjects with a simulated elbow
stiffness achieved by taping the elbow.

Using the upper extremity rehabilitation system devel-
oped in this study, we anticipate that patients will be able to
undergo upper extremity rehabilitation on their own without
the help of a therapist. Furthermore, a subsequent evalua-
tion of the upper extremity function can be conducted by
selecting an appropriate training program; this will increase
the effectiveness of their rehabilitation. In future studies,
the validity and reliability of upper extremity rehabilitation
programswill be assessed for patients with a poststroke upper
extremity hemiplegia. Three-dimensional upper extremity
rehabilitation programs will be developed to ensure more
accurate rehabilitation training for various upper extremity
movements as displayed three dimensionally.
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