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Mobile cloud computing (MCC) enables mobile devices to outsource their computing, storage and other tasks onto the cloud to
achieve more capacities and higher performance. One of the most critical research issues is how the cloud can efficiently handle
the possible overwhelming requests from mobile users when the cloud resource is limited. In this paper, a novel MCC adaptive
resource allocation model is proposed to achieve the optimal resource allocation in terms of the maximal overall system reward
by considering both cloud and mobile devices. To achieve this goal, we model the adaptive resource allocation as a semi-Markov
decision process (SMDP) to capture the dynamic arrivals and departures of resource requests. Extensive simulations are conducted
to demonstrate that our proposed model can achieve higher system reward and lower service blocking probability compared
to traditional approaches based on greedy resource allocation algorithm. Performance comparisons with various MCC resource

allocation schemes are also provided.

1. Introduction

Cloud computing is a new computing service model with
characteristics such as resource on demand, pay as you go,
and utility computing [1]. It provides new computing models
for both service providers and individual customers, which
can be broadly classified into infrastructure as a service
(TaaS), platform as a service (Paa$S), and software as a service
(Saa$S). Furthermore, smart phones are expected to overtake
PCs and become the most common web access entities world-
wide by 2013 as predicted by Gartner [2]. Since mobile devices
(MDs) have more advantages such as mobility, flexibility, and
sensing capabilities over fixed terminals, integrating mobile
computing and cloud computing techniques is a natural and
predictable approach to build new mobile applications, which
has attracted a lot of attention in both academia and industry

community. As a result, a new research field, called mobile
cloud computing (MCC), is emerging.

In [3], Huang et al. presented a new MCC infrastructure,
called MobiCloud, where dedicated virtual machines (VMs)
are assigned to mobile users to improve the security and
privacy capability. In such an MCC environment, the system
computational resources, such as CPU, storage, and memory,
are partitioned into several service provisioning domains
based on the cluster geographical distribution. Each domain
consists of multiple VMs, and each VM handles parts of
cloud computing resource (i.e., CPU, storage and memory,
etc.). When the MCC service provisioning domain receives
a service request from a mobile device, it needs to make a
decision on (1) whether to accept the request; and (2) how
much Cloud resources should be allocated if the request is
accepted. Although the Cloud resource can be considered



as unlimited compared with the computing resource in a
single mobile device, in practice, a geographically distributed
cloud system usually contains limited resource at a local
service provisioning domain. When all the Cloud resources
are occupied within the local service provisioning domain,
the service request from mobile device will be rejected (or
migrated to a nonlocal service provisioning domain) due to
the resource unavailability. The rejection of a service request
not only degrades the user satisfaction level (i.e., resulting in a
long service delay due to the nonlocal service provisioning or
service migration to other remote domain), but also reduces
the system reward which is usually defined as a metric that
includes the system net income and cost.

In general, the Cloud income increases with the number
of the accepted services. However, it is definitely not true
that cloud service provider (CSP) would like to acccept
service requests as many as possible, since more accepted
services occupy more cloud resources, and more likely a
new request will be rejected when the network resource is
limited, which degrades the QoS level of users. The rewards
of the most existing Cloud resource allocation methods only
consider the income on behalf of the CSP. To obtain a
comprehensive system reward of MCC, the customer QoS
and user satisfaction level should be taken into account in
the system reward as well. Therefore, our research goal is to
address the following questions: how to obtain the maximal
overall system rewards by taking into account from both the
service provider side and the customer side while satisfying a
certain QoS level.

In this paper, we present an adaptive MCC resource
allocation model based on semi-Markov decision process
(SMDP) to achieve the objective mentioned above. Our
proposed MCC model considers not only the incomes of
accepting services, but also the cost resulted from VM occu-
pation in the Cloud. Moreover, other factors including service
precessing time of both Cloud and MD battery consumption
of mobile device are also taken into account. Thus, the overall
economic gain is determined by a comprehensive approach
which considers all the factors mentioned above.

The contributions and essence of this proposed model are
listed as follows.

(i) Semi-Markov decision process (SMDP) is applied
to derive the optimal resource allocation policy for
MCC.

(ii) The proposed model allows adaptive resource allo-
cations, that is, multiple Cloud resources (i.e., the
number of VMs) can be allocated to a service request
based on the available Cloud resource in the service
domain in order to maximize the resource utilization
and enhance the user experience.

(iii) The maximal system rewards of Cloud can be
achieved by using the proposed model and by taking
into the considerations the expenses and incomes of
both Cloud and mobile devices.

The rest of this paper is organized as follows. We present
the related work in Section 2. In Section 3, the basic system
model is described. The semi-Markov decision process model
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for MCC system is presented in Section 4. Based on our pro-
posed model, we analyze the probabilities for each adaptive
allocation scheme and rejection probability in Section 5. We
evaluate the performance of the proposed economic model
in Section 6 and conclude this paper and discuss the future
work in Section 7.

2. Related Work

Recent research work for Cloud computing has shifted its
focus from the Cloud for fixed user to Cloud for mobile
devices [4], which enables a new model of running appli-
cations between resource-constrained devices and Internet-
based Cloud. Moreover, resource-constrained mobile devices
can outsource computation/communication/storage inten-
sive tasks onto the Cloud. CloneCloud [5] focuses on
execution augmentation with less consideration on user
preference or device status. Elastic applications for mobile
devices via Cloud computing were studied in [6]. In [3],
Huang et al. presented an MCC model that allows the mobile
device related operations residing either on mobile devices
or dedicated VMs in the Cloud. [7] proposes a way using
traffic-aware virtual machine (VM) placement to improve the
network scalability by optimizing the placement of VMs on
host machines.

Although resource management in wireless networks has
been extensively studied [8-10], there are few previous works
focusing on resource management of Cloud computing and
especially mobile cloud computing. In [11], an economic
mobile cloud computing model is presented to decide how to
manage the computing tasks with a given configuration of the
Cloud system. That is, the computing tasks can be migrated
between the mobile devices and the Cloud servers. A game
theory-based resource allocation model to allocate the Cloud
resources according to users’ QoS requirements is proposed
in [12]. In the past few years, some research work focused
on application of specific resource management in Cloud
computing using virtual machines or end servers in data
center. In [13], authors propose a new operating system which
enables resource-aware programming while permitting high-
level reusable resource management policies for context-
aware applications in Cloud computing. Lorincz et al. [14]
address the problem of resource management in semantic
event processing applications in Cloud computing. Tesauro et
al. [15] propose a reinforcement learning based management
system for dynamic allocation of servers trying to maximize
the profit of the host data center in Cloud computing. In
[16], Boloor et al. propose a generic request allocation and
scheduling scheme to achieve desired percentile service level
agreements (SLA) goals of consumers and to increase the
profits to the cloud provider.

The works discussed above target to achieve a higher
Cloud system profit and/or to meet a better service level
agreement (SLA). However, they model the problem from
service provider’s perspective without considering the costs
and profits of mobile devices. Therefore, the overall sys-
tem rewards derived in previous works are sufficient. Gen-
erally, a Cloud-based application can be assigned with



International Journal of Distributed Sensor Networks

multiple resources in terms of VMs (can be in different
domains/clusters) to obtain more computation/storage and
other capacities. However, to our best knowledge, in the
previous literature, none of them addresses the following
emerging research problems: (1) how to construct a reward
model of MCC system for resources allocation purpose by
considering the rewards from both Cloud system and mobile
users; (2) how to allocate system resources to service requests
to maximize the user satisfaction level of mobile users while
obtaining the maximal overall system and user rewards under
a given QoS level.

3. System Model

A major benefit of MCC over the traditional client-server
mode is that MDs can have more capabilities and better per-
formance (i.e., less processing time, energy saving, etc.) when
they outsource their tasks onto the Cloud. The outsourcing
procedure can be implemented by using weblets (application
components) to link the services between the Cloud and
the mobile devices. A weblet can be platform independent
such as using Java or .Net bytecode or Python script or
platform dependent, using a native code. Some research work
[5] focuses on the algorithm to decide whether to offload
the weblet from MD to the Cloud (i.e., run on one or more
virtual nodes offered by an IaaS provider) or run the weblet
on the MD itself. In this way, a mobile device can dynamically
expand its capabilities, including computation power, storage
capacity, and network bandwidth, by offloading an elastic
application service to the Cloud. The choice made by mobile
device on whether to offload the task onto the Cloud can
refer to the mobile device’s status such as CPU processing
capability, battery power level, and network connection
quality and security. In this paper, the service scenario of
the proposed model is the task oftfloading from MD onto the
Cloud. Also, the task offloading procedure can be done in a
way that MD sends a service request to the Cloud firstly, then
the task is further offloaded to the Cloud once the service
request is accepted by the Cloud.

As shown in Figure 1, a VM is responsible for managing
the weblet’s loading, unloading, and processing in the mobile
Cloud. Each VM has the capacity to hold one weblet at a
time for handling migrated weblet request, and two types
of service requests are defined to be handled by a VM: (i)
paid: a paid weblet service request is sent to the service
provisioning domain from a mobile device; (ii) free: a free
weblet service request is sent to the service provisioning
domain from a mobile device. Figurel demonstrates the
relationship between the paid/free service requests and the
VMs of the service provisioning domain.

In this paper, the MCC service architecture is based
on the MobiCloud framework presented in [3], in which
a VM can handle a portion of Cloud system resources
(CPU, memory and storage, etc.) that can satisty the minimal
resource requirement to process an application offloading
service in the MCC system. Within the local MobiCloud
service provisioning domain, the resource capacity, in terms
of the number of VMs, is limited. Thus, if the demands of the
arriving service requests exceed the number of available VM

Mobile cloud service provisioning =~
domain

Mobile device pool

VM: virtual machine

FIGURE 1: Reference model of mobile cloud computing.

resources in a certain service domain, the following service
requests will be rejected (or migrated to a remote service
provisioning domain). On the other hand, if the demands
of the arriving service requests are lower than the number
of the available VMs, more VMs can be assigned to one
service request to maximally utilize the Cloud resource and
achieve a better performance and QoS. Our analytical model
is based on a single local service domain. The analysis of local
service migrations to remote service domains is regarded as
the future study.

3.1. System Description. An MCC system mainly consists of
two entities, VM and physical MD. A VM is the minimum set
of resources that can be allocated to an MD upon receiving its
service request. Since an MD is a wireless node with limited
computing capability and energy supply, it can outsource its
mobile codes (i.e., weblet) of an application service to the
Cloud. Then, the Cloud will decide a number of VMs to be
allocated to the arriving service request if the decision for the
service request made by the Cloud is accepted.

In this paper, we consider a service provisioning domain
with K VMs. The maximum number of VMs that can be
allocated to a Cloud service is ¢ VMs (we denote as ¢
allocation scheme), wherec € {1,2,...,C}, C < K. Generally,
the duration for running a mobile application service in the
Cloud depends on the number of VMs allocated to that
service. The relationship between the processing time of an
application service and the number of allocated VMs in the
Cloud can be expressed as a function denoted as &(c). Assume
that the time to process an application service by using one
VM in a service provisioning domain is 0,, therefore the
time to handle the service is &(c)8, if ¢ VMs are allocated to
that service. The higher computing speed for an application
service in a service provisioning domain means the higher
user satisfaction level, which is the major part of the whole
system reward of the Cloud. Thus, in order to improve the
whole system reward of a service provisioning domain by



increasing the user satisfaction level, the traditional greedy
algorithm [17] always decides to allocate maximal VMs to
the service. But on the other hand, if the Cloud computing
resources (denoted by the number of VM) allocated to
the current service by the service provisioning domain are
too high, then the following several arrival service requests
may be rejected by the service provisioning domain because
of insufficient available Cloud computing resources, which
decease the user satisfaction level. As a result, the system
rewards of that MCC service provisioning domain degrade
as well.

It can be more complicated when we consider both the
rewards and costs of mobile devices. Cost involved in the MD
side should not be neglected, which means that the whole
system reward should consider not only the rewards of the
mobile Cloud itself, but also the incomes and the costs of MD,
such as the saved battery energy if the service is processed
in the mobile Cloud and the expense of the battery energy
and the processing time of MD if the application service is
processed on the MD locally.

To model this complex dynamic MCC resource allocation
process, without loss of generality, we assume that the arrival
rates of both paid and free service requests follow Poisson
distributions with mean rate of A, and A ;, respectively. The
life time of services follows exponential distributions. The
mean holding time of a service which is allocated only one
VM in the service provisioning domain is 1/y. Thus, the
holding time of the service allocated ¢ VMs in the domain is
&(c)/p, which implies that the mean departure rate of finished
service is p/&(c).

Since the decision making epoch is randomly generated
in the system, we use semi-Markov decision process (SMDP)
to model the dynamic MCC resource allocation process based
on the system description we presented above. SMDP is a
stochastic dynamic programming method, which can be used
to model and solve optimal dynamic decision making prob-
lems. There are six following elements in the SMDP model:
(a) system states; (b) action sets; (c) the events that cause the
decisions; (d) decision epoches; (e) transition probabilities; and
(f) reward. In the following, we first present the system states,
the actions, the events, and the reward model for the MCC
system.

3.2. System States. According to the assumption, there are
total K VMs in one service provisioning domain, and ¢ VM
can be allocated to the service request, which is from 1 to
C, where C < K. However, the arrival of paid application
service request and free application service request and the
departure of the finished service are distinct events. Thus, the
system states can be described by the number of the running
Cloud services which occupy the same number of VMs and
the events (including both arrival and departure events) in
the service provisioning domain. Here, we use ¢ to indicate
the number of VMs allocated to one application service
(denoted as c allocation scheme as presented in Section 3.1),
c €{1,2,...,C}. Therefore, the number of the running Cloud
services which occupy ¢ VMs in one service provisioning
domain can be denoted as s...
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In the MCC system model, we can define two types of
service events: (1) a paid or free service request arrives from
an MD, denoted by A, and A, respectively; and (2) the
departure of a finished application service occupying ¢ VMs
in the current service provisioning domain, denoted by F..
Thus, the event e in the MCC system can be described as
e € {A,,ApF, By, ..., Fc}. Therefore, the system state can
be expressed as

»SC €>}’ @)

S={sls="{sps5-...

where Z§:1(Sc xc) < K.

3.3. Actions. For a system state of the service provisioning
domain with an incoming service request from an MD (i.e.,
A, or A f), the mobile Cloud needs to make a decision
on whether to accept the service request and what is the
allocation scheme (i.e., how many VMs to allocate to the MD)
if the decision is acceptance. If the decision is acceptance,
then the c allocation scheme is assigned to the arriving service
request; thus, the action to assign the ¢ allocation scheme can
be denoted as a(s) = c¢. While if the decision is rejection based
on the whole system reward, which means no VM will be
assigned, thus the paid or free service request will be rejected
and the application will run on the MD itself. Then, the action
to reject the service request can be denoted as a(s) = 0.

And for the departure of a finished service in the service
provisioning domain (i.e., e = F,), the action for this event
can be considered as to calculate the current available Cloud
resources and denoted as a(s) = —1. Therefore, the action
space can be defined as a(s) € Act,, where

C[{01,....C), ee{a, ALl
“(S)_{—l, ee{Fsz,...,FC}. @

3.4. Reward Model. Based on the system state and its cor-
responding action, we can evaluate the whole mobile Cloud
system reward (denoted by r(s, a)), which is computed based
on the income and the cost as follows:

€{A,ALF,F,. . Fc},
(3)

where w(s, a) is the net lump sum income for the Cloud and
MDs and g(s, a) denotes the system cost.

The net lump sum income should consider the payment
from MD to the mobile Cloud, the saved battery energy of
MD, and the consumed time of mobile Cloud to process the
service if the service is run in the mobile Cloud, the consumed
battery energy, and the consumed time of MD if the service
is run on MD locally.

Thus, the net lump sum income w(s, a) is computed as

r(s,a)=w(s,a)—g(s,a),

w(s,a)
0, a(s)=-l,e€{F,F,...,F}
_ —y3U; = 0,45, a(s)=0,ee€ {AP,Af}
Ej—648-8()0,B, a(s)=ce=A,
-0,8-&(c) 0,55, a(s)=ce=A.

(4)
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FIGURE 2: An example of state transition probabilities for two allocation schemes. The first item represents the action and the second item

represents the state transition probability.

In (4), E; is the income of the service provisioning domain
obtained from the MD when it accepts a paid service request
from the MD. §,; denotes the time consumed on transmitting
the service request from MD to the service provisioning
domain through wireless connection, while 8 denotes the
price per unit time, which has the same measurement unit as
the income. Thus, §,;8 denotes the expense measured by the
time consumed on transmitting the service request from MD
to the service provisioning domain. U, represents the expense
measured by the battery energy consumed by the MD when
the service request is rejected by the service provisioning
domain and run on the MD locally, which has the same
measurement unit as the income. y, is the weight factor that
satisfies 0 < y; < 1. Let O, denote the time to process
an application service by using one mobile device, then 0,
represents the expense measured by the time consumed to
process the application using one mobile device. Similarly,
0, denotes the expense measured by the time consumed to
process the service using one VM in a service provisioning
domain. Therefore, &(c)0,3 denotes the expense measured by
the time consumed to process the service using ¢ VMs in a
service provisioning domain.
In (3), g(s, a) is given by

g(s,a)=1(s,a)o(s,a), af(s)e€ Act,. (5)

In (5), 7(s, a) is the average expected service time when the
system state transfers from current state s to the next potential
state j and the decision a is made; o(s, a) is the cost rate of the
service time and it is defined as the number of all occupied
VMs; thus, it can be computed as

C
o(s,a) =Z (s, *c). (6)
c=1

4. SMDP-Based Mobile Computing Model

Based on the SMDP model, we have already defined the
system states, action sets, the events, and reward for the MCC
system in the last section, then we need to define the decision
epoches and obtain the transition probabilities to calculate the
maximum long-term whole system reward.

There are three types of events in the MCC system (i.e.,
an arrival of a paid service request, an arrival of a free
service request, and a departure of a finished service). The
next decision epoch occurs when any of the three types of
events takes place. Based on our assumption, the arrival of
service request follows Poisson distribution and the departure
of finished service follows exponential distribution. Thus,
the expected time duration between two decision epoches
(i.e., 7(s,a)) follows exponential distribution as well. Then,



TABLE 1: States transition probabilities of system model at C = 2.
Y=A, +Aptsip+ 250,00 = A, + Ap+ (s; + Dy + 25,4, 0, =

Apt+Ap+sip+2(s, + Dy

Current state ~ Next state Action (a) Transition probability
(51550, Ap) 0,-2 Aplys
(sl,sz,Af) 0, -2 )\f/y,
(s; = 1,8, F)) 0,-2 s1plys
(5= Ls,+1L,F) 2 s 4oy,
(51,8, Fy) 1 (sy + Dp/oy,
(151 A,) (1,85, F,) 2 2(s, + Dp/o,,
(s;+1L,s,—-1LF,) 1 2s,u/04,
(s1,8, - LLE,) 0,-2 2s,uly,
(sp+1,s,A,) 1 A,loy,
(sp+ 1,5 Ap) 1 Asloy,
(51,8, + I,AP) 2 /\P/Jz,
(sps; + LA 2 Asloy,
(51585, Ap) 0 Aplys
(sl,sz,Af) 0 Af/y,
(s; = L,s,, F}) 0 s1plys
(s, — L s, +1,F) 2 s ulo,,
(s1,85, F}) 1 (sy + Dp/oy,
(s1ospA ) (51,55, F,) 2 2(s, + Dp/o,,
(s;+1,5,-1LF,) 1 2s,u/0y,
(s18, — LE,) 0 2s,u/y,
(sy + l,sz,Ap) 1 /\P/al,
(sy + l,sz,Af) 1 /\f/al,
(5,5, + LA,) 2 A,ploy,
(sps + LAY 2 Asloy,
(s, 85, F}) (s;— 1,8, F)) -1 s plys
(sl,sz,AP) -1 )»P/y,
(51,55, ) (sl,sz,Af) -1 Af/y,
(8, — LLE,) -1 2s,ufy.

the mean rate (denoted as y(s,a)) of expected time can be

represented as

y(s,a) =1(s, a)’!

cs”
A, + A+ e,
P f;ac)

e {F,F,...,Fc}

oreQ{Ap,Af}, a=0,

Made Y S B cia a) e
PRI L) B U

7)

Thus, the expected discounted reward (denoted as (s, a))
during 7(s,a) can be obtained based on the discounted
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reward model defined in [18, 19],

r(s,a) = w(S,a)_O(S’a)E? {J’Te_atdt}
0

a{[l—e”]}
=w(s,a)-o(s,a)E; B (8)

o(s,a)

=w(s,a)— m,

where « is a continuous-time discounting factor and w(s, a),
o(s,a), and y(s, a) are defined in (4), (6), and (7), respectively.

Then the only element left to be calculated is the transition
probabilities. To calculate the transition probabilities, we
show an example in Figure 2.

In this example, without loss of generality, we assume that
there are only two allocation schemes, which means C =
2. Thus, the transition probabilities in this example can be
obtained in Table 1.

From the example, the transition probabilities of C
allocation schemes can be deduced. Let g(j | s,a) denote
the state transition probability from the current state s to the
next state j when action a is chosen. Then, the transition
probability g(j | s, a) can be expressed as following.

For the state s = (5,85, ...555 ... ,sC,AP), q(j | s,a) can
be obtained as

q(jlsa)
Y(}:Da)’ j:<51’52>...,sC,AP>’ a=0
Y(tf[a)’ j=(s05me s ALY, a=0
%’ j={s1,sp0rsc—1,...,50,F.),
%’ j:<Sl’52""’5c"")sc,FC>, a=c
_ ] suu

——  j=(8158...5S, —1,...,s.+1,...,
s(m)y(s,a) ] <1 2 m [

SooFp)» sp=1, m#c, a=c

A
P .
v (sa) ]_<51’52’-~’5c+1’-~-’SC)AP>,
SCSC_I, a=cCc
A
f .
v sa) J—<51,52,...,sc+1,...,sC,Af>)

s.<C-1,a=c¢

€)

wherec € {1,2,...,C},m € {1,2,...,C},m+c.
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For the states s = (5;,555...,54.-
can be obtained

-)SC,Af>, q(] | S’a)

q(jlsa)
A
p .
’ = > ye e ,A s :0
y(s,a) j= (snsmaseidy) a
Ay .
Y(S,a)’ ]:<51’52""’SC’Af>,a:0
Scbt _
_— = (S, S ""’SC_]-)---,S ,FC ,
e(0)y(s,a) j=(sps; o FE.)
s.21,a=0
(s +Du
_—, = (81582580550 F)
e(c)y(s,a) j=(s o F.)
a=c
= < s ‘u
— M i={s,8,...,8, —1,...,
e(m)y(s,a) j={sns -
s+ 1l,...,50F,),
Sp21, m#c,a=c
A
P .
o) j= (s18peensct Luse ALY,
SCSC_L a=¢c¢
A
f .
v (sa) ]=<51,52,...,sc+1,...,sC,Af>,
SCSC_l) a=gc¢,

(10)

wherec € {1,2,...,C},m < {1,2,...,C},and m #c.

For the states s = (5,55,...,54...,50c F.), the action for
this departure state is always —1 which means a = —1, then
the transition probability q(j | s, a) can be obtained as

A
P .
a1 (wsesody)
. Ag j:<5 s s A>
aG1sa)=1{yGay S
scht ,
-, = R i
@) y(sa) J <S1 S Se
. s F), s> 1,

(11)

wherec € {1,2,...,C}L

Then, the maximal long-term discounted reward is
obtained based on the discounted reward model defined in
[18,19] and can be denoted as

v(s)=argljflcxts {r(s,a)+AZq(j|s,a)v(j)}, (12)

jES

where A = (y(s,a))/(a+ y(s,a)), and r(s,a) and q(j | s, a) can
be obtained in (8), (9), (10), and (11).

In the reward equation (8), the first part is that the
revenue is a lump earnings of the reward and the second
part is that the cost is a continuous-time payment of the
reward. Thus, the reward function needs to be uniformized to
obtain the uniformized long-term reward, then the discrete-
time discounted Markov decision process can be used in this
model. Based on the assumption 11.5.11in [19], we need to find
a constant w satisfying [1 — g(s | s,a)]y(s,a) < w < oo to
obtain the uniformized long-term reward by utilizing (11.5.8)
in [19]. Letw = /\f+)LP+K #*Cxpandq(j| s, a), v(s),y(s,a)
denote the uniformized transition probability, the long-term
reward, and the reward function, respectively.

Thus, the transition probability can be uniformized as

1

w
qa(jlsa)y(sa)
w b

[1-qGlsalysa)
q(] | s, a) = (13)
JESs.

For the state s = (s1,8,...,5,...,5c,A,), the uni-
formized transition probability g(j | s, a) is rewritten as

q(jlsa)
((w+ A, -y (s,a) ‘
( Pw ), J=As180. 550 A,), a=0
Ay _
e ]=(sl,sz,...,sC,Af), a=0
S .
E(Z)w’ F=A{s180 -8 — L., so, B,
s.21,a=0
(s +Dp .
g(CT, J=(81, 83 s S0 e-Soo Bo), a=c
St .
f(:’l)w’ j=(s18prSy— Lo,
setLossoEy)y sy > 1,
m#c, a=c
Ap ‘
o J=Ass st 150, AL,
s.<C-1l,a=c
Ay ‘
o ]:(51,52,...,sc+1,...,5C,Af),
s.<C-1l,a=c
(w=y(s,a)
, =s,a=c

(14)

Similarly, for the state s = (s1,55,...,5,...,5c, A ), the
uniformized transition probability g(j | s, a) can be rewritten
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as
q(jlsa)
'(w+)t —y(s,a))
P .
" , ]:<sl,52,...,sC,Ap>, a=0
Ay )
o ]=<sl,52,...,sC,Af>, a=0
S .
E(Z)w’ j=(s1Spersc—1L...,80,F),
se21l,a=0
(sc+Du ,
EC(CT) F= (81,80 e38p S EL)
a=c
Sl .
_ N =(81,8),...,8, —1,...,
=1Em) j={s1ss m
s+ 1l..,80F,), s> 1,
m#c, a=c¢
Ap )
o’ ]=<sl,sz,...,sc+1,...,sC,AP>,
s;<C-1,a=c
Ay )
o ]:<51,52,...,sc+1,...,sC,Af>,
s;<C-1l,a=c
(w—Y(&a)) .
—_—, j=s a=c.
w
(15)
And for the state s = (s;,85,...,8,...,50 F.), the

uniformized transition probability g(j | s, a) is rewritten as

(A
Ep, j=<51,52,...,5C,Ap>
f .

o ]:<sl,sz,...,sC,Af>
— . — S M .
q(j|sa) E(ZW’ = (81808 — 1,

IS S SR
(w-y(sa) .
—, j=s
w

(16)

Using the uniformization equations presented above,
then the expected maximal long-term reward in (12) can be
uniformized as

y(s,a)+«

7(s,a) =7(s,a) 17)

(¢ + w)

and the parameter A can be uniformized as A= w/(w+ ).

Thus, according to the uniformization equations (14),
(15), (16), and (17), the uniformized maximal long-term
expected reward is obtained as

7 (s) = max
acAct;

Fsa)+A)q(jlsa)v(j)p.  (8)

jes
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5. Performance Analysis

The probability of allocation scheme ¢, which is defined as
the probability that ¢ VMs are allocated for a cloud service,
is an important performance metric for ensuring the user
satisfaction level and the Cloud resource utilization ratio. It
is very useful for the operator to manage the system capac-
ity/utilization status based on the system parameters of the
service provisioning domain (such as arrival rate, departure
rate, and the VM number of Cloud resource). Meanwhile,
blocking service request does not only mean the loss of whole
system reward, but also means the degradation of users’
satisfaction level. Then, the blocking probability, which is
the probability that blocking the cloud service requests from
mobile device, is another important performance metrics
for the service provisioning domain. In this section, we
analytically derive the probabilities of each allocation scheme
and blocking probability for the proposed economic mobile
computing model based on SMDP.

From the reward function (18) and probability equations
(14), (15), and (16), the expected total discounted reward
Y(s) at state s € S is related with the arrival rates of
paid service request (A p) and free service request (A f),
the departure rate (4/&(c)) of each allocation scheme, the
occupied Cloud resource expressed by the number of being
occupied VMs ZCC:I(SC # ¢), and the capability of the service
provisioning domain (i.e., the total number of VMs-K). For
a given service provisioning domain and a certain system
state of an arrival of service request (i.e., (s1,5;,...,5c, A ,)
or (S1, S5+ -+>Sc Af)), the above parameters /\P, /\f, ulé(c),
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Zil(sc # ¢), and K are fixed. As a result, the steady-state
probability of each state can be obtained from the probability
equations (14), (15), and (16). Thus, the probabilities of
each allocation scheme and blocking probability can also be
achieved through the steady-state probability of each state.
Let 7, denote the steady-state probability of the system
state s in the service provisioning domain. From the exam-
ple in Figure 2 and Tablel, the steady-state probability of
T (s, spmscey AN De classified as three types: (1) the arrival
of a paid service request; (2) the arrival of a free service
request; (3) the departure of a finished service with ¢
allocation scheme. Based on the probability equations (14),
(15), and (16), the steady-state probabilities 775 o A,) and

T 51530 p) €A be derived as follows

ﬂ(sl,sz,...,sc,Ap)
_ M
y (s, a)
/\P

y (s, a) PAs15300050A 1) TE(S158,m0S oA £)

p(sl,sz,.“,sC,AP) (s, 15230050 A p)

A C
—2
+ y (S, 61) Z p(sl,52,“.,55,1,...,5C,Ap)n(51,52,--,551,",50141,)
C
Ty .
y (s, a) < PAs1800mnSetreirScrA 1) TS 3 Sp0mrSe oS oA £)
C
NI
EORISN 3}
y(s,a) = (81:825-5CoFe)

(19)

s, $$2peenSCHA £)

_ M .
yG.a) PU51,520m50sA p) 518250005004 )
bl
Ay
+ y(sa) PAs1,5300800A 1) TE(S11530m0S oA £)
C
Ay .
Y(S, a) & p(sl,52,...,sc,1,...,sC,AP) (851:8523000sSc_ 10080 A p )
C
Ay .
y (s,q) ~ p<51,sz,...,sc,l,...,sc,Aﬁ (815823e00Sc_ 150> A £)
C
T,
3S25eenSCFC)?
y(s,a) & sk

(20)

where P(sl,sz,...,sc,AP)’ p<sl,sz,...,sC,Af>’ P(sl,52,...,sc_1,...,sC,AP) and

Pls1,30msserrmscsAp)> L€ the parameters decided by the

9
correlative actions respectively as follows:
Pis1,SyrnscrA,) = b a(SI)SZW’fC)AP) -0
Prpeie iy 0, otherwise,
Pis),530mscsA sy = L a<51’52""’5C’Af) =0,
RCiasaind 0, otherwise.
p(51,sz,...,sc,l,“.,sc,AP)
_ L sy simsody) = 6 € S {1,2,...,C},
0, otherwise,
P(Sl,Sz,...,SC,l,..‘,SC,Af>
_ 1, a<51)52»-")55—1)---:5C:Af> =c¢ cC {1, 2,0, C} 5
0, otherwise.
(21)
Similarly, the steady-state probability m( , . g, can be
attained as
TE(s18pmmSoFe)
(s +1)p
- E (C) y (5’ (1) (sl,sz,...,sC“,...,sC,AP)ﬂ(sl,sz,.“,scﬂ,...,sc,AP)
(sc+D)p
£(c) y(s,a) P(sl,sz,...,sc,Ap)n(sl,sz,...,sc,AP)
, et i )
E(C) y (S, Cl) . (sl,sz,...,scﬂ,...,sm_l,...,sC,AP)
X ﬂ(sl,sz,...,scﬂ,...,sm,l,...,sc,AP)
(sc+1)p -
E (©) y (s,a) p(sl,sz,...,scﬂ,...,sc,Af) (S13825eerScy13enSCA £)
(sc+1)u
E (C) y (S a) p(sl,sz,A..,sC,Af)n(sl,sz,..‘,sc,Af)
C
(sc+1)p
+ S —
E (C) y (S, a) m:1zmq&c P(sl,52,...,5C+1,...,sm,l,...,sc,Af)
x 7-[(51)52»--:5“1:--~)5m—1:--~)5c’Af>
L et Du &
@y (s,a) = (pszrnsentsonsolin)?
(22)

where Pls1$pmmscr )

p(sl,sz,...,scﬂ,..,,sm_l,...,sc,AP>’ p<sl,52,...,sc+1,...,sC,Af)’ p(sl,sz,...,sC,Af)’
andpig o oo e A, are defined by the related actions

Pls1,53008ci1 SCrAp)?
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TABLE 2: Simulation parameters.

Parameter Value
E, 50
8, 30
B 1
Ya 1
U, 10
0, 60
0, 12
respectively as

_ 1Y Bsssiseay) = 05
Plovsprssentressordy) 0, otherwise

Lo G, s0a,) =6 €S {1,2,...,C},

P(sl,sz,...,sC,AP) = {0

p(sl,sz,...,sc+1 yeeSmmtoenSCrAp)

otherwise,

1, Ay 530S trnmrscrAy) = M € S {1,2,...,C},
= mc{l2,...,C}, m#c,
0, otherwise,

p _ 1) a(sl,sz ..... Sc+l""’5C>Af> = Oa
(StSareascrimnscy) 0, otherwise,

b Hsspsean =6 €S {L,2,...,C},
p(sl,sz,...,sc,Af) - 0

otherwise,

Py 18p0mnSes 1St menSCA £)

1, a(sl’52>""SC+1’""sm—l’""sC’Af> =m, ¢= {la 2,00, C} >
= mc{l,2,...,C}, m#c,
0, otherwise.
(23)

Since the sum of the steady-state probabilities for all states
equals to 1, we have

Z (ﬂ<sl,52,...,sC,A,,> + n(sl,SZ,...,sc,Af) + ”(sl,SZ,...,sc,Fc)) =L
S

(24)

Therefore, the steady-state probability of each state in
an MCC service provisioning domain can be obtained by
solving (19), (20), (22), and (24). Thus, as a result, for the
service request arrival states (ie, (s;,8,...,5c,4,) and
($1>835 >S50 A f)) in one service provisioning domain, the
probability of each action can be achieved, which is the
ratio of the sum of all steady-state probabilities with the
same action to the sum of the steady-state probabilities of
all service request arrival states (i.e., (s},5,,...,5c, Ap) or
(81>82,-->5¢, A y)) in one domain. Let Pp, and Pf, denote
the probability of each action for paid service request and
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FIGURE 4: Probabilities for each action of paid service using SMDP
model, varying with the arrival rate of paid service requests (A, =
24,4 =66,K=6).

free service request, respectively, then, Pp, and Pf, can be
expressed as

_, 7T
As1,520mm50rAp) =4 (8158258 A p)

Ppa = C >
Zm:O (Za(sleZv-wSoAﬁ:m T[(sl,sz,...,sc,Ap)) (25)

a=1{0,1,2,...,C},

Z“<S1>Sz)---,5c,Af>:“ T[(sl,sz,.--,sc,Af)

Pf, =

>

C
Zm:O <zu(sl ,sz,,,,,sc,Af) =m ﬂ(sl ’52)~“’5C:Af) ) (26)

ac{0,1,2,...,C}.

Based on (26) and (25), the blocking probability for
the service request arrival states (i.e, (s;,5,,...,50,A,) and
(8182, -+>5¢c, A ¢)) in one service provisioning domain can
be obtained and denoted as Pp, and Pf,,, respectively.

The high values of Pp, and Pf, do not only mean the
loss of the whole system reward but also the decrease of the
QoS of the service provisioning domain. Thus, the blocking
probabilities Pp, and Pf, are very important metrics to
measure the capability and QoS of a service provisioning
domain. In the next section, we will illustrate the relationships
between the blocking probability (i.e., Pp, and Pf,) and the
parameters (suchas A » A £l and K) based on the simulation
results.
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TaBLE 3: Resource allocation decision table for each state of paid
service (/\P =72, Af =24,u=66,K=10,s; =0).

s;\s, 0 1 2 3 4

0 3 3 3 3 1

1 3 3 3 2 1 —
2 3 3 3 1 0 —
3 3 3 2 1 — —
4 3 2 1 0 — —
5 3 2 1 — — —
6 2 1 0 — — —
7 2 1 — — — —
8 1 0 — — — —
9 1 — — — — —
10 0 — — — — —

6. Performance Evaluation

In this section, we evaluate the performance of the proposed
economic MCC model based on SMDP by using an event
driven simulator compiled by Matlab [20] and compare our
proposed model with the traditional greedy algorithm. Since
the paid service demands a higher QoS level compared with
other free services, thus our simulation mainly focuses on the
performance of paid service.

In our simulation, the maximal number of VMs is C = 3,
and the scheme that allocates ¢; = 1,¢, = 2,and ¢; = 3
VMs to a service is denoted as allocation scheme ¢;. The time
to process an application service by the Cloud is assumed
as a linear function of the number of VMs allocated to the
service, which can be denoted as &(c) = 1/c. Thus, the

1

TABLE 4: Resource allocation decision table for each state of paid
service ()LP =60, /\f =24,u=66,K=10,s; =0).

si\s, 0 1 2 3 4

0 3 3 2 1 1

1 3 3 2 1 1 —
2 2 2 1 1 0 —
3 2 2 1 1 — —
4 2 1 1 0 — —
5 1 1 1 — — —
6 1 1 0 — — —
7 1 1 - — — -
8 1 0 — — — —
9 1 — — — — —
10 0 — — — — —

value of &(¢)), &(c,) and &(c;) can be obtained as &(¢;) = 1,
&(q) = 1/2, and &(c;) = 1/3. The total resource capability
of the service provisioning domain is up to K = 10 VMs.
Unless otherwise specified, the arrival rates of the paid and
Jfree service request are A, = 7.2 and Ay = 2.4, respectively,
and the departure rate of finished service occupying one VM
is 4 = 6.6. Since the time to process the application service
occupying one VM is 1/, then the departure rate of finished
service occupying multiple VMs is pt/&(c) which is described
in Section 3. Thus, the departure rates of finished service
occupying one, two, and three VMs are i, = 6.6, y, = 13.2,
and p., = 19.8, respectively. To assure reward computation
convergence, the continuous-time discounting factor « is
set to be 0.1. The simulation results are collected with each
experiment running 18000 s, and each experiment runs 1000
rounds. The other parameters used in this simulation are
listed in Table 2.

6.1. Optimal Actions. Tables 3 and 4 illustrate the actions of
optimal resource allocation at each system state with different
arrival rates of the paid service A ,. The numbers in the tables
represent the optimal decisions made on state (s;,s,, s3,€).
The symbol “—” in the tables denotes that the state does not
exist. When no user is in the service provisioning domain,
3 VMs (which implies that the action a = 3 is made) are
allocated to the paid service in both two scenarios, when a
paid service request arrives. If there are s, = 3 services in the
service provisioning domain, which means that the number
of the occupied VMs is 6, thus, there are 4 unoccupied VMs
available in the service provisioning domain. Our proposed
model allocates 3 VMs (a = 3) to the paid service request
when the arrival rate of paid service requests is low (A p= 7.2)
and allocates 2 VMs (a = 2) to the paid service request
when the arrival rate of paid service requests is high (1, =
60), which implies that when the arrival rate of paid service
requests increases, our model becomes more conservative to
allocate resources to the paid service requests. The reason
is, for example, for the state (0,3,0, A ), the corresponding
lump incomes w(s,a) for ¢, ¢,, and ¢; are 8, 14, and 16,
respectively. Due to the small variance between the lump
incomes obtained by allocating ¢, and ¢; VMs to the paid
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FIGURE 6: System reward of paid service compared between SMDP
model and greedy method, varying with the number of VMs (K)
(A, =72,1; =24, =66).

service request, when the arrival rate of paid service requests
increases (i.e., A »= 60), our model prefers action a = 2 other
than action a = 3, since action a = 2 can accommodate more
paid services to gain higher rewards of the MCC system than
action a = 3, which consumes more Cloud resources of the
service provisioning domain.

6.2. System Rewards and Blocking Probability. To evaluate the
performance of the proposed dynamic resource allocation
model, we compare the long-term reward and blocking
probability of the paid service between our model and greedy
method in Figures 3, 4, and 5. In Figure 3, the reward of
paid service of our model increases at the beginning, then
falls down with the increase of the arrival rate of paid
service requests (A,), while the reward of paid service using
the greedy method declines always. It can be seen in this
figure that the reward of the paid service of our proposed
model performs much better than that of greedy method.
In Figure 4, with the increase of the arrival rate of the paid
service requests, our model would rather to allocate more
¢ and ¢, VMs to the paid service request other ¢ VM;
thus, the dropping probability of our model is lower than
that of the greedy method which can be seen in Figure 5 as
well. As the rejection has more impact on the system lump
income compared with acceptance (in our simulation, the
lump income w(s,a) or fine of rejection is —70, while the
corresponding lump incomes w(s, a) for ¢, ¢,, and ¢; are 8,
14, and 16, resp.), thus the lower dropping probability of our
model gains more rewards of paid service than the greedy
method. We can also see in Figure 4 that when the arrival
rate of the paid service requests is over 7, the probabilities to
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FIGURE 7: Probabilities for each action of paid service using SMDP
model, varying with the number of VMs (K) (AP =72, Af =24,
Y = 6.6).

allocate ¢; and ¢, VMs (especially the probability of ¢, VM)
exceed the probability to allocate ¢; VM, which explains the
reason why the reward of paid service of our proposed model
falls down when the arrival rate of paid service requests
exceeds 7 as shown in Figure 3. In a word, our model can
achieve higher reward of paid service while keeping lower
dropping probability of paid service requests at the same
time comparing with the greedy method, which are shown
in Figures 3 and 5, respectively. Thus, our model outperforms
the greedy method with the increase of arrival rate of paid
service requests.

To further illustrate the performance of our model,
we compare the reward of paid service and the blocking
probability with the greedy method under the scenario of
different number of VMs (K). In Figure 6, the rewards of both
our model and greedy method increase with the increase of
the number of total VMs in the service provisioning domain.

When the number of VMs (K) is less than 2, the rewards
of both our model and greedy method are negative. This is
because the absolute value of rejection cost (-70) is much
higher than the net lump rewards of acceptance (8, 14, and
16 for ¢, ¢,, and ¢, resp.) in our simulation.

When the number of total VMs in the service provision-
ing domain is low (1 and 2), the rejection probability of paid
service requests is as high as 30% as shown in Figures 7 and 8,
which results in the negative rewards for both our model and
greedy algorithm. We also observed that when K is less than
3, the reward of paid service of our model is lower than that
of the greedy method.

The reason is that our model does not only consider the
instant and future long-term income but also the cost of
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resource occupation of all running services in the service
provisioning domain when deciding to allocate the Cloud
resources to the paid service request, while the greedy
method only considers the current income of paid service
of the service provisioning domain. Then, when the Cloud
resource of the service provisioning domain is less than 3
VMs, our model is more conservative than the greedy method
to allocate Cloud resources to the paid service request.

In Figure 6, we can also see that when the number of
VMs (K) is less than 7, the reward of paid service of our
model increases rapidly with the increase of K, while when
K is greater than 7, the reward of paid service of our model
increases slowly with the increase of K, which implies that
when the Cloud resource of the service provisioning domain
exceeds the threshold, for the given arrival rate and departure
rate, it has limited impact to increase the reward of paid
service through increasing the Cloud resource of the service
provisioning domain. Comparing the rewards of paid service
between our model and the greedy method in Figure 6, it
can be seen that our model outperforms over 50% averagely
than the greedy method. Meanwhile, as shown in Figure 8,
the dropping probability of paid service requests of our model
is lower than that of the greedy method over 50% averagely as
well, which proves that our model performs better than the
greedy method with the increase of the total number of VMs
(or Cloud resources) of the service provisioning domain as
well.

Figure 9 shows the total rewards (rewards of paid service
plus free service) of different arrival rates of free service
requests of our proposed model, varying with the increase of
arrival rate of paid service requests in the service provisioning
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domain. It can be seen that when the values of the arrival
rates between paid service request and free service request are
comparable, the total reward of our model increases with the
increase of arrival rate of free service requests. On the other
hand, when the arrival rate of free service requests is much
larger than that of paid service requests, the total reward
decreases rapidly, which results from the large increase of the
arrival rate of free service requests which may cause more
rejections for the following service requests.

7. Conclusion

In this paper, we propose an SMDP-based model to adaptively
allocate Cloud resources in terms of VMs based on requests
from mobile users. By considering the benefits and expenses
of both Cloud and mobile devices, the proposed model is able
to dynamically allocate different numbers of VMs to mobile
applications based on the Cloud resource status and system
performance, thus to obtain the maximal system rewards and
to achieve various QoS levels for mobile users. We further
derive the Cloud service blocking probability and the proba-
bilities of different Cloud resource allocation schemes in our
proposed model. Simulation results show that the proposed
model can achieve a higher system reward and a lower service
blocking probability compared with the traditional greedy
resource allocation algorithm. In the future, we will study a
more complex decision making model with different types
of mobile application services, for example, the mobile appli-
cation services which require different serving priorities. We
will also investigate the optimal Cloud resource planning by
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determining the minimal Cloud network resources to achieve
the maximal system rewards under given QoS constraints.
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