
Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2013, Article ID 267935, 10 pages
http://dx.doi.org/10.1155/2013/267935

Research Article
Segmental Dynamic Duty Cycle Control for Sampling
Scheduling in Wireless Sensor Networks

Lufeng Mo,1,2 Yujia Jiang,2 Guoying Wang,1,2 and Jizhong Zhao1

1 School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
2 School of Information Engineering, Zhejiang Agricultural and Forestry University, Lin’an 311300, China

Correspondence should be addressed to Jizhong Zhao; zjz@mail.xjtu.edu.cn

Received 5 July 2013; Accepted 13 September 2013

Academic Editor: Yuan He

Copyright © 2013 Lufeng Mo et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Wireless sensor networks for environment monitoring are usually deployed in the fields where electric or manual intervention
cannot be accessed easily. Therefore, we hope to minimize the times of sampling to reduce energy consuming. Energy-efficient
sampling scheduling can be realized using compressive sensing theory on the basis of temporal correlation of the physical process.
However, the degree of correlation of neighboring data varies over time, which may lead to different reconstructive quality for
different parts of data if constant duty cycle is used. We proposed SDDC, a segmental dynamic duty cycle control method, for
sampling scheduling in wireless sensor networks based on compressive sensing. Using a priori knowledge obtained by means of
analysis on earlier sensing data, dynamic duty cycle is determined according to the linear degree of data in each segment. The
experimental results using data from soil respiration monitoring sensor networks show that the proposed SDDC method can lead
to better reconstructive quality compared to constant duty cycle of the same average sampling rate.That is to say, the SDDCmethod
needs smaller sampling rate if the reconstructive error threshold is given and consequently saves more energy.

1. Introduction

Wireless sensor networks for environment monitoring are
usually deployed in the fields where electric or manual
intervention cannot be accessed directly.Therefore, the entire
system must be energy efficient, so that the sensor networks
could run unattended as long time as possible. Processing,
sensing, and radio are main operations that consume energy
in wireless sensor networks [1]. In this paper, we focus on
the second operation: sensing. To collect detailed information
of physical process which changes with time, the ideal
sampling scheduling strategy is sampling at a very high
frequency. However, somemeasurement operations are time,
and energy-exhaustive processes, such as soil respiration
speed measurement operation in the soil respiration moni-
toring sensor networks. Therefore, the main objective of this
paper is to design appropriate sampling scheduling policy
for the environment monitoring sensor network nodes with
energy exhaustive measurement process, so as to reduce the
duty cycle of sensor nodes and save energy.

To achieve required reconstructive quality of soil respi-
ration process using as less duty cycle as possible, we can
usually use methods like interpolation or fitting. In this
paper, we achieve sparse sampling using compressive sensing
theory: real values to the physical world can be sparsified on
the basis of temporal correlation of soil respiration carbon
flux, and soil respiration carbon flux of time series data can
be reconstructed using sparse sample data with accuracy
requirement.

When compressive sensing theory is used for sparse
sampling and data reconstruction, it is needed to determine
two matrices: the representation basis matrix Ψ, used to the
sparse of true value of soil respiration, and the measurement
matrix 𝜙, used to indicate the sampling scheduling policy,
which is usually a random or uniform sampling with certain
duty cycle.

Duty cycle in the measurement matrix determines the
number of measurement on soil respiration for the nodes,
namely, determines the energy-saving effect compared with
dense measurement, and also affects the accuracy of the data
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reconstruction. Intuitively, the lower the sampling rate is,
the better energy-saving effect of the sampling scheduling
policy will be, but this may lead to larger reconstructive
error. So there is a contradiction between sampling rate and
the accuracy of reconstructed data. In designing of sampling
scheduling policy, we should find the balance which is based
on the demanded accuracy of data reconstruction. On the
other hand, the degree of correlation of neighbouring data
varies over time, which may lead to different reconstructive
quality for different parts of data if constant duty cycle is
used.

In this paper, we proposed SDDC, a segmental dynamic
duty cycle control method based on compressive sensing.
According to SDDC, dynamic sampling rates are adopted
when constructing measurement matrix on the basis of
data changes over time: higher sampling rates for drastically
changing physical stages but lower sampling rates for slightly
changing stages. This method can lead to a dynamic trade-
off between energy-saving effect and accuracy of data recon-
struction. Because we cannot know the true data in advance,
the earlier measurement data are analyzed to find a priori
knowledge, according to which segmental dynamic sampling
rates are obtained. And we analyzed SDDC method with
real data from wireless sensor networks for soil respiration
monitoring.

The remaining contents of this paper are arranged as
following. The temporal sampling scheduling problem is
analyzed and modeled based on compressive sensing in
Section 2. Section 3 presents the SDDC sampling scheduling
method we proposed. Section 4 introduces the experimental
data and the design of experimental process, evaluates the
SDDC method using measured data from soil respiration
monitoring sensor networks, and analyzes the measurement
performance of SDDC through the comparison of experi-
mental results. The last section is a summary of this paper
and also analyzes future directions so that we may continue
our study.

2. Sampling Scheduling Based on
Compressive Sensing

2.1. Compressive Sensing. We can obtain a large amount of
data through dense, periodic sampling strategy. However, is
this the best way to recognize the real physical process? The
increase in data volumes does not really mean the increase
of the amount of information. On the contrary, too much
redundant noisy data may cover up the valid data which
contains main structure (the principal components), and
at the meantime it increases the difficulty of sampling and
sample price.

Compressive sensing mainly relies on data sparseness
characteristic and low rank characteristic of original data.
Under the condition of less than the Nyquist sampling rate,
we get a small amount of discrete samples and then recon-
struct the signal and algorithm through nonlinear method
[2, 3]. This theory has been applied to data compression [4],
channel coding [5], analog signal perception [6], routing [7],
data collection [8], and other aspects.

For the discrete signal which is represented by a vector
𝑥 (‖𝑥‖

0
≪ 𝑁) whose size is𝑁, the measurement of 𝑥 can be

represented as amatrixΦwith a size of𝑀×𝑁, which is called
as measurement matrix, and then we can get vector 𝑦 with a
size of𝑀:

𝑦 = Φ𝑥. (1)

So the question is: how many times of measurement are
needed at least to reconstruct the signal 𝑥? According to
linear algebra, to have existent and unique solutions of (1),
𝑀 ≥ 𝑁 is necessary, which means at least 𝑁 times of
measurement are needed. However, if 𝑥 is sparse (‖𝑥‖

0
≪

𝑁), there is probability to reduce the observation volume𝑀,
theoretically.

In practice, 𝑥may not be sparse, while it is likely to have
sparse expression in another domain. Specifically, using a
matrix Ψ with the size of𝑁 ×𝑁, 𝑥 can be written as

𝑥 = Ψ𝑠. (2)

Here, 𝑠 is a𝑁×1 sparse vector fromΨ, ‖𝑠‖
0
= 𝐾𝐾 ≪ 𝑁.

Matrix Ψ is also referred to as the representation basis. So,
sampling vector can be written as

𝑦 = ΦΨ𝑠. (3)

Consequently, there are three main problems in the
research and application of compressive sensing: (1) before
sampling, designing a representation basis matrix Ψ which
is required for the sparsification of 𝑥 according to the char-
acteristics of 𝑥. (2) When sampling, design a measurement
matrix Φ in the size of 𝑀 × 𝑁, where 𝑀 is as small as
possible. (3) when reconstructing a signal, using the given 𝑦

and known matrix Φ and Ψ, we determine the 𝑠 according
to reconstructive m A (the reconstructive algorithms like LP,
MP, OMP, ROMP, and so on).Then the original signal can be
reconstructed with 𝑥 = Ψ𝑠.

For the first problem, the most important thing is to
choose the representation basis matrix Ψ which would
transform 𝑥 into a sparse matrix. Usually using the wavelet as
basis matrix can achieve approximate sparse for the smooth
data, most absolute value of expansion coefficients is small.

For the second problem, the measurement matrix Φ is
used in the third task, so it should be chosen seriously,
and it is necessary to meet the restricted isometry principle
(RIP) [5]. Currently, the measurement matrix usually adopts
Gaussian random measurement matrix or Fourier matrix,
such as Bernoulli matrix.

For the third problem, (3) is a nondetermined linear
system because𝑀 ≪ 𝑁; the solution of this system is widely
studied in recent years. The first way is to find 𝑠, who has the
minimum Paradigm 𝑙

0
:

min
𝑠∈R𝑁

‖𝑠‖0

s.t. 𝑦 = ΦΨ𝑠.

(4)

It is very difficult to solve directly [5, 9]. If 𝑁 is large,
there is no solution. But there are fast methods to smooth
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paradigm 𝑙
0
, for example, SL0 [10]. The second way is to use

theminimization of paradigm 𝑙
1
instead of paradigm 𝑙

0
which

can reduce the complexity of the algorithm; it is called basis
pursuit (BP) [11]:

min
𝑠∈R𝑁

‖𝑠‖1

s.t. 𝑦 = ΦΨ𝑠.

(5)

It can be solved using the linear programming (LP) method.
There exists the polynomial time algorithm to solve these
problems, including interior-point method, as well as some
fast algorithms for the large-scale systems [12, 13]. In addition
to the linear programming method, the commonly used
algorithms include matching pursuit (MP), the OMP [12],
and ROMP [13]. They are thought to be faster than the LP
method, but they are worse in quality, especially when the
signal is not sparse enough.

If𝑀meets the following equation:

𝑀 ≥ 𝐶𝜇
2
(Φ,Ψ)𝐾 log𝑁 (6)

there is very high possibility to reconstruct the 𝐾 sparse
signals from𝑀measurements using any of the above recon-
structive algorithm A. 𝐶 is a positive constant, 𝑁 is the size
of signal, and 𝜇

2
(𝜙, 𝜓) is the relevance between Φ and Ψ.

Given a heap of orthogonal basisΦ andΨ which rely on 𝑅𝑁,
coherence can be defined as

𝜇 (Φ,Ψ) = √𝑁 max
1≤𝑖,𝑗≤𝑁

󵄨󵄨󵄨󵄨󵄨
⟨𝜙
𝑖
, 𝜓
𝑗
⟩
󵄨󵄨󵄨󵄨󵄨
∈ [1, √𝑁] , (7)

and are column vectors of Φ and Ψ, respectively. When Φ

and 𝑥 are certain, we should select theΨ carefully.𝑋must be
expressed sparsely in the domain of Ψ, and at the meantime,
𝜇(Φ,Ψ)must be as small as possible.

2.2. Modeling the Sampling Scheduling Problem in Time-
Domain. In the real physical world, carbon flux of soil
respiration in the sample point is continuous in the time.
It can be treated as discrete while the time unit is small
enough compared with the time scale of the changes in
soil respiration. In reality, no matter how high sampling
frequency is, the operations of the measuring equipment
are discrete, and the carbon flux data on soil respiration is
obviously discrete.

We use the discrete timemodel in modeling the sampling
schedule of soil respiration monitoring sensor network [14].

(a) Time-series data of soil respiration carbon flux over
a period of time in the sampling location can be
expressed as 𝑋 = {𝑥

𝑡
}, (𝑡 = 1, 2, . . . , 𝑁), 𝑡 is for time,

with a total of𝑁 times.
(b) The sampling scheduling policy 𝜋 is expressed

as 𝑇𝜋 = {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑛
}, (𝑡
𝑖
∈ {1, 2, . . . , 𝑁}, 1 ≤ 𝑖 ≤

𝑛), that is a subset of the real time series, and we will
sample at those moments.

(c) Assuming that there is no measurement error and
noise, after several times ofmeasurement which relies

on the sampling scheduling policy 𝜋, we will get the
sample data sequence 𝑋𝜋 = {𝑥

𝑡1
, 𝑥
𝑡2
, . . . , 𝑥

𝑡𝑛
} that is

part of the real physical world time-series data.
(d) In order to understand the real process of soil res-

piration, it is necessary to measure several times
according to the sampling scheduling policy 𝜋 and
then reconstruct the time-series data of whole process
of soil respiration carbon flux with the sampling data.
That is to say, generate estimation of the original
sequence 𝑋

𝜆
= {𝑥
𝑡
}, (𝑡 = 1, 2, . . . , 𝑁) according

to the estimation function 𝜆 and the sample data
sequence 𝑋𝜋. If 𝑡 ∈ 𝑇

𝜋, then 𝑥
𝑡
equals 𝑥

𝑡
; otherwise,

𝑥
𝑡
equals the value of the estimation function, 𝑥𝜆

𝑡
(𝑥
𝜋
).

(e) Basing on the above description, the goal of sampling
scheduling policy is to select the best sampling strat-
egy 𝜋 and estimate function 𝜆, so as to minimize
the evaluated error between the reconstructed soil
respiration data sequence 𝑋

𝜆 and the original real
physical world soil respiration data sequence 𝑋, and
the average sampling rate should be in a certain range.
Namely,

min
𝜋,𝜆

Err (𝑋,𝑋𝜆 (𝑋𝜋)) ,

s.t. 𝑛

𝑁
≤ 𝛼.

(8)

Err is a specific errormetrics, and𝛼 is themaximumsampling
rate threshold value.

2.3. Model of Sampling Scheduling Based on Compressive
Sensing. In the application of sensor network for soil respi-
ration monitoring, we design the sampling scheduling policy
using the compressive sensing theory, namely, to design
according to the original data sequence 𝑋, the sampling
scheduling policy 𝜋, sampling data 𝑋

𝜋, the reconstructed
estimate sequences 𝑋𝜋, and the error metrics Err which are
presented in Section 2.2 with compressive sensing theory.

We model sampling scheduling based on compressive
sensing as follows.

(a) The raw data sequence 𝑋: we express it with a vector
𝑋 = {𝑥

𝑡
, 𝑡 = 1, 2, . . . , 𝑁} whose size is 𝑁 × 1, which

is the 𝑥 in the compressive sensing equation (1).
(b) The sampling scheduling policy 𝜋: we express the

sampling scheduling policy measurement matrix
Φ
𝑀×𝑁

from the equation of compressive sensing. 𝑀
is the row number of the matrix, and it is the times
of sampling. The columns of the matrix mean the
sampling time, and each row contains a design of a
sampling time. If the value of the matrix 𝜙 in row 𝑚

and column 𝑛 is 1, that means the 𝑚th measurement
takes place at time 𝑛.

(c) Sample data sequence𝑋𝜋: according to the Sampling
scheduling policy 𝜋 = Φ

𝑀×𝑁
, if the valueΦ(𝑚, 𝑛) is 1,

then the measured data is 𝑥
𝑛
, the whole sample data

sequence is Φ𝑋, it can be recorded as 𝑦 in (1).
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(d) Reconstructed data sequence 𝑋
𝜋 according to the

given 𝑦, Φ, and Ψ, we can get 𝑠 through a certain
method based on the compressive sensing, namely,
Ψ𝑠.

(e) Reconstructed error metrics Err: we can evaluate the
quality of reconstruction through the average error
‖Ψ𝑠 − 𝑥‖

1
/𝑁 or the mean square error ‖Ψ𝑠 − 𝑥‖

2
/𝑁

between Ψ𝑠 and 𝑥.

3. The Segmental Dynamic Duty Cycle
Control Method

To estimate one soil respiration carbon flux data, it is
necessary to measure the soil temperature, humidity, air
pressure in the closed chamber, and CO

2
concentration using

the soil respiration measurement instrument. The measure-
ment of temperature, humidity, and air pressure is of low
energy consumption, while the measurement of changes in
CO
2
concentration is a complicated and energy-consuming

process.
A soil respiration carbon flux value measuring cycle

is three minutes, and in this period it measures the CO
2

concentration every three seconds and the chamber keeps
closed.Then the chamber opens automatically for ventilation
with the outside world for one minute. This procedure
ensures the following measurement to reflect the real process
of soil respiration. In the measurement period, there are
60 CO

2
concentration data. Firstly, use the linear fitting

method on these data and then calculate the slope, and
thus get the change rate of CO

2
concentration during the

measurement period. Then combining with parameters such
as soil temperature, humidity, air pressure in the closed
chamber, soil respiration flux data are obtained through
carbon flux calculation formula. Soil respiration measure-
ment is large in energy consumption; reducing the sampling
frequency through compression perception theory can effec-
tively extend the life span of the equipments.

Using compressive sensing theory to carry on the sam-
pling schedule of the sensor network for soil respiration
monitoring, we should confront several problems of the
compressive sensing research and application which are
described in Section 2.1.We focus on the second one, namely,
the design of the measurement matrix.

As described in Section 2.3, the rows count 𝑀 in the
measurement matrix 𝜙

𝑀×𝑁
that we designed represents the

number of samples; every sampling time is represented by
the nonzero elements of the column number 𝑛 in the same
row. Because measuring soil respiration can only measure
data of one point in time in each sampling, every row in
measurement matrix 𝜙 has a nonzero element, and every
column has no more than one nonzero element. Therefore,
the design of measurement matrix comprises two parts: (1)
row number 𝑀, that is, sampling frequency; (2) column
number 𝑛 of the nonzero element in every row, that is, every
sampling point in time.

This paper mainly focuses on the former one in the
design of measurement matrix, which is the determination of
sampling times𝑀. According to the original data sequence𝑋

in real physical world, determining the number of samples
equals determining the sampling rate 𝑀/𝑁. If the data in
the sequence 𝑋 changes linearly with time, we can get the
sparse matrix through the appropriate linear transformation
of basis matrix Ψ; thus we can get a good reconstruction
result through a lower sampling frequency. But data sequence
𝑋 does not change linearly in the real physical world, and
it is necessary to increase the sampling rate in order to get
abundant data change information, so that the reconstructed
data sequence can meet needs of overall accuracy.

Although 𝑋 does not change linearly, it is possible to get
approximate linear change in some parts of the 𝑋 through a
further decomposition of𝑋. In the whole measuring process,
if we use the fixed sampling rate to design the measurement
matrix, we may get better reconstruction results in the
approximate linear change part, but in the nonlinear change
part it is bad. If we increase the sampling rate in order to
improve the reconstruction results in nonlinear part, there
will be a certain redundancy in a linear change part of
the sampled data. This paper studied SDDC, a segmental
dynamic sampling scheduling policy, in which dynamic
sampling rate is used to construct the measurement matrix
in different time interval according to the trends of𝑋. Under
the condition of meeting the required accuracy, we lower
the sampling rate of the linear change part, and increase the
sampling rate of the nonlinear change part so that we can
reduce the sampling rate as far as possible. Soil respiration
measurement is an energy-consuming and time-consuming
process, and the reduction of sampling rate can reduce the
energy consumption of the whole monitoring system and
thus extend the field working time of the system.

Studies show that soil respiration relates to the change
of time. Soil respires slowly in the day but respires relatively
quickly in the night. This is because one of the causes for soil
respiration is the respiring effect of plant root system. There-
fore, the changes of soil respiration are influenced by plant
physiological processes [15]. Plant conducts photosynthesis
to sequestrate carbon in the noon when it is the best time.
Carbon is transported to the root several hours later and is
released through root respiration in the night [15, 16]. And
root respiration lags behind photosynthesis for 7–12 hours
[17]. In addition, temperature is higher than that of soil at
noon and the gas pressure is also stronger, which restrains
the spread and release of soil CO

2
, so value of soil respiration

is relatively low in this period [18]. The intensity for the
respiring effect of plant root system relates to the location
and season.During the summerwhen plant grows vigorously,
rate of soil respiration attains peak value at night when rate
of soil respiration is higher than that in the day. But during
the winter when plant grows slowly, rate of soil respiration at
night is a little higher than that in the day without apparent
peaks and valleys [19].

There is regularity and similarity in the soil respiration,
changes over time by day cycle. And there is little difference
among neighboring days on the temperature in a day which
caused by the sun as well as the difference of plant growth
caused by the season. The trend on the change of soil
respiration can be estimated by the soil respiration datawhich
is measured a few days before. So we proposed a SDDC
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method based on a priori knowledge. Everyday sampling
time is divided according to the observation and analyses
of the experimental data or the reconstructed data. Then
sampling rate of each segment is differed according to the
historical data curve. In the time period of which the data
sequence is highly nonlinear, the sampling rate is increased;
on the contrary, the sampling rate is reduced.

In order to get the sampling time fragmented, piecewise
function can be fitted and subdivided completely according
to the changing trend of historical data. It is aimed for the
nonlinear degree of data in each piecewise function so as
to reduce the sampling rate at the extreme in the context
of reconstructing quality. However, considering the situation
of soil respiration monitoring sensor network, except for
measurement, each sensor node can communicate. And this
requires that each sensor node should coordinate mutually
when communicating with other nodes. It will result in
the difference of different fragmented length in a node if
fragmented by data changing trend. Moreover, due to the
spatial heterogeneity of soil, the temporal segmental results
by sensor nodes at different sampling locations are likely to be
different, whichmakes it difficult for the cooperation between
measurement and communication of sensor nodes.

This paper will employ the fixed segmentation method
which segments the sampling time evenly. On the one hand,
with the same segmentation, the original physical world data
sequence 𝑋 can be divided into the subsequence 𝑋

𝑖
with

the same number of data, which is described in Section 2.3.
Assume that each subsequence𝑋

𝑖
has an element number of

𝑁, we can use the same basis matrix Ψ
𝑁×𝑁

. On the other
hand, the same time segmentation method is good for the
synchronous communication among different nodes. Each
node uses the same communication scheduling method, for
example, transfer the measurement data of the former period
at the beginning of subsection sampling period.

On the basis of fixed segmentation, this paper presents
a segmental dynamic duty cycle method based on a priori
knowledge, as shown in Algorithm 1. When we get the
segmental dynamic measurement matrix Φ

𝑖
, soil respiration

measurement instrument will measure with different mea-
surement matrix according to different sampling segment.

In Algorithm 1, we choose 𝑅
2 as the evaluation index

of the linear degree of each data sequence. Determination
coefficient 𝑅

2 is often used to evaluate the fitting degree
between fitting results and the corresponding real data; the
numerical values range between 0 and 1. When 𝑅2 equals 1 or
close to 1, there is high correlation between those data, on the
contrary, the correlation is low.

The 𝛽 in line 10 is incremental adjustment factor, the
higher it is, the larger the difference of sample rate between
different segments with different nonlinear degree will be.
According to the expression in line 10, the larger in 𝑅

2

𝑖
for

a certain segment means a higher linear degree of changes
in soil respiration of that segment; thus, there will be smaller
sampling rate, and conversely, there will be larger sampling
rate.

Algorithm 1 uses the data derived from the soil respiration
data sequence 𝑋

𝑃𝑖
(1 ≤ 𝑃

𝑖
≤ 𝑃
𝑑
) just 𝑃

𝑑
days before, and this

leads to certain timeliness for the calculation results. There-
fore, in the long-term process of soil respiration monitoring,
soil respiration monitor needs to (the period can usually
be set in three days to a week) repeat the above algorithm
periodically so as to update the segmental sampling rate. As
there is no a priori data at the beginning of the measurement,
we adopt a static scheduling policy with the same sampling
rate for each segment.

4. Simulation Experiment

As is mentioned in Section 2.1, the reconstruction quality of
compressive sensing is influenced by three factors, measure-
ment matrix Φ, basis matrix Ψ, and the reconstructive algo-
rithm A. The following paper, respectively, introduced the
design and choice on these three factors in the experiment,
as well as the experimental data and solution.

4.1. Experimental Data. We have made dense measurement
outside for 10 days with the self-designed soil respiration
measurement instrument and got the original data sequence
in the real physical world.

As mentioned above, there is one soil respiration carbon
flux data every 4 minutes. So there are 3600 data in the
dataset which we used in this experiment. The dataset is
divided into several subsequences evenly, and thenwe sample
and reconstruct on each sequence which is treated as an
experimental data.

Evenly segment the sampling time as is mentioned in
Section 3, then the data sequence 𝑋 is divided into several
subsequence, and sample and reconstruct on each subse-
quence. According to the model in Section 2.3, the element
number in each sequence is𝑁, so the number of subsequence
is 𝑑 = 3600/𝑁, and then record the 𝑖th subsequence as
𝑋
𝑖
(1 ≤ 𝑖 ≤ 𝑑).

4.2.TheConstruction ofMeasurementMatrix. As is described
in Section 3, the design of measurement matrix includes
aspects: the determination of the row number of 𝑀 and the
column numbers of 𝑛 where the value is nonzero. Section 3
put forward SDDC method which solves the first problem
completely. The policy determines the sampling frequency
SR
𝑖
of the subsequence𝑋

𝑖
in the 𝑖th time segment, by the time

interval of the sampling frequency is 𝑀 = (SR
𝑖
× 𝑁), so the

measurement matrix is the matrix of (SR
𝑖
× 𝑁) rows and𝑁

columns.
For the second aspect, determine the column number𝑁

of non-zero element in all rows, namely, sampling time of
concrete measure of 𝑀 times; this problem does not belong
to this research. In the experiment, two simple but RIP con-
straint solution schemes are chosen: the periodic sampling
(PS) and pseudorandom sampling (RS). Periodic sampling
means that the nodes are measured𝑀 times according to the
cycle of𝑁/𝑀, this measurement matrix noted asΦ

𝑃
. Pseudo

random sampling means that the sampling time segment is
distributed according to the uniform randomprobability, this
measurement matrix noted as Φ

𝑅
.
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Require:𝑋
𝑃𝑖
, 𝑁, SRbase

(1)𝑋
𝑃𝑖
= soil respiration data reconstructed by the sampling data of last 𝑃

𝑑
days,

everyday data consists of𝑁
𝑑
elements ((1 ≤ 𝑃

𝑖
≤ 𝑃
𝑑
)).

(2)𝑋 = the mean data sequence calculated according to the corresponding time for𝑋
𝑃𝑖
;

(3) for 𝑖 = 1 to 𝑑 = ⌜𝑁
𝑑
/𝑁⌝ do

(4) 𝑋
𝑖
= subsequences with a length of𝑁 segmented from𝑋;

(5) 𝑅
2

𝑖
= determination coefficient of linear fitting of𝑋

𝑖
;

(6) end for
(7) 𝑅2mean = ∑

𝑑

𝑖=1
𝑅
2

𝑖
/𝑑;

(8) SRbase = a given sampling rate base, which is the sampling rate
while the determination coefficient of the linear fitting equals to 𝑅2mean;

(9) for 𝑖 = 1 to 𝑑 do
(10) SR

𝑖
= SRbase + (𝑅

2

mean − 𝑅
2

𝑖
) 𝛽;

(11) Φ
𝑖
= the dynamic measurement matrix constructed according to SR

𝑖

for the present segment
(12) end for
(13) returnΦ

𝑖
, (1 ≤ 𝑖 ≤ 𝑑);

Algorithm 1: Segmental dynamic duty cycle method based on a priori knowledge (SDDC).

4.3. The Selection of Basis Matrix Ψ and the Reconstructive
Algorithm A. The change of soil respiration in the physical
world is smooth, so the raw data sequence 𝑋

𝑖
can be sparse

according to the correlation between the adjacent sampling
data. This paper adopts two schemes to express the basis
matrix Ψ [14].

(1)The difference matrix

𝑀
𝐷
=
(
(

(

−1 1 0 ⋅ ⋅ ⋅ 0 0

0 −1 1 ⋅ ⋅ ⋅ 0 0

0 0 −1 ⋅ ⋅ ⋅ 0 0

...
...

... d
...

...
0 0 0 ⋅ ⋅ ⋅ −1 1

0 0 0 ⋅ ⋅ ⋅ 0 −𝛾

)
)

)

. (9)

The last element 𝛾 should be 0 < 𝛾 < 1, so as to make sure
that𝑀

𝐷
is reversible. In this experiment 𝛾 is 0.001. Project𝑋

𝑖

on 𝑀
𝐷
, then 𝑠 = 𝑀

𝐷
𝑋
𝑖
is a vector that contains a number

of 0 elements and small absolute value elements. If so, the
original signal 𝑥 can be sparsely expressed as 𝑥 = 𝑀

−1

𝐷
𝑠.

Therefore, in this paper we use𝑀−1
𝐷

as a basis matrix, which
is recorded asΨ

𝐷
. (2)TheHaar wavelet transform𝑀

𝐻
can be

used to sparsification of smooth data, so we use 𝑀−1
𝐻

as the
basis matrix, which is recorded as Ψ

𝐻
.

Algorithm SL0 and BP (the LP) mentioned in Section 2.1
are used as the reconstructive algorithm. Based on the study
ofWu and Liu [14], in this paper, when the basis matrix isΨ

𝐷
,

reconstructive algorithm SL0 is adopted, and when the basis
matrix is Ψ

𝐻
, reconstructive algorithm LP is adopted. Code

of algorithm LP is acquired from SparseLab [20], SL0 is from
[21].

4.4. Experimental Scheme. Based on themeasurementmatrix
Φ (Φ

𝑃
and Φ

𝑅
) which is obtained by periodic sampling

and pseudo random sampling, when the basis matrix Ψ (Ψ
𝐷

and Ψ
𝐻
) and reconstructive algorithm A (SL0 and LP) are

confirmed, we can analyze the dynamic changes of sam-
pling rate and the reconstruction results on soil respiration
measurement data using the SDDC method described in
Section 3.The experimental scheme is shown in Algorithm 2.

As mentioned above, the equipment can collect 15 data
per hour. The value range is 30, 60, 90, 120, 180, and 360,
which is the length of the subsequence 𝑁; they correspond
to the segmental cycle of time as 2, 4, 6, 8, 12, and 24
hours, respectively. We adopted the average error to evaluate
the reconstructed results. Its calculation method is shown
in Algorithm 2, line 16. Where 𝑅 is the times of random
experiment, it is set as 20.There is scheduling mechanism for
the random factors in the experiment.

4.5. Experimental Results and Analysis. Firstly, we analyzed
the dynamic sampling rate calculated by the dynamic sam-
pling strategy. In SDDC method, use experimental data of
the first five days and get its mean value according to the
corresponding relation with time, using Algorithm 1; the
results are shown in Figure 1. Secondly, segmental linear
fitting on these data, get the determination coefficient 𝑅2 of
each segment; results are shown in Figure 2. Finally, calculate
the dynamic sampling rate for each segment according to
Algorithm 1, line 10. The results are shown in Figure 3.
The referencing sampling rate SRbase is 10% and incremental
adjustment factor 𝛽 is 0.2.

Observing the fitting coefficient 𝑅2 of each segment in
Figure 2, the relatively high 𝑅

2 happens in the fifth segment
(time is 8 to 10) where 𝑁 = 30, the ninth segment (time
is 16 to 18) and the tenth segment (time is 18 to 20) where
𝑁 = 30, and the fifth segment (time is 16 to 20) where𝑁 = 60.
This means that the sequential variation on soil respiration
carbon flux data of these segments has relatively high linear
degree. Moreover, the dynamic sampling rates of the four
segment are all below 5%, lower than half of the referencing
sampling rate, observed from Figure 3. According to Figure 3,
the highest sampling rate of the segments is the 12th segment
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(1)Φ 𝑚𝑒𝑡ℎ𝑜𝑑 = {Φ
𝑃
, Φ
𝑅
}; ⟨Ψ 𝑚𝑒𝑡ℎ𝑜𝑑, 𝐴 𝑚𝑒𝑡ℎ𝑜𝑑⟩ = {⟨Ψ

𝐷
, SL0⟩, ⟨Ψ

𝐻
, LP⟩};

(2)𝑁 = {30, 60, 90, 120, 180, 360};
(3) for each ⟨𝜓 𝑚𝑒𝑡ℎ𝑜𝑑, 𝑎 𝑚𝑒𝑡ℎ𝑜𝑑⟩ ∈ ⟨Ψ method, 𝐴 method⟩ do
(4) for each 𝜙 𝑚𝑒𝑡ℎ𝑜𝑑 ∈ Φ 𝑚𝑒𝑡ℎ𝑜𝑑 do
(5) for each 𝑛 ∈ 𝑁 do
(6) divide dataset𝑋 into subsequence𝑋

𝑖
(1 ≤ 𝑖 ≤ 𝑑 = ‖𝑋‖

0
/𝑛) with the size of 𝑛;

(7) 𝜓 = the 𝑛 × 𝑛 basis matrix constructed according to method 𝜓 𝑚𝑒𝑡ℎ𝑜𝑑;
(8) for 𝑖 = 1 to 𝑑 do
(9) SR

𝑖
= the sampling rate of𝑋

𝑖
using SDDC;

(10) 𝜙 = the ⌜SR
𝑖
∗ 𝑛⌝ × 𝑛measurement matrix constructed according

to method 𝜙 𝑚𝑒𝑡ℎ𝑜𝑑;
(11) 𝑦 = 𝜙𝑋

𝑖
;

(12) 𝑠 = 𝑎 𝑚𝑒𝑡ℎ𝑜𝑑(𝑦, 𝜙, 𝜓);
(13) 𝑋

𝑖
= Ψ𝑠;

(14) 𝐸𝑟𝑟
(𝜙 𝑚𝑒𝑡ℎ𝑜𝑑,𝜓 𝑚𝑒𝑡ℎ𝑜𝑑,𝑖)

=
󵄩󵄩󵄩󵄩󵄩
𝑋
𝑖
− 𝑋
𝑖

󵄩󵄩󵄩󵄩󵄩1
(15) end for
(16) 𝐸𝑟𝑟𝐴V𝑔

(𝜓 𝑚𝑒𝑡ℎ𝑜𝑑,𝜙 𝑚𝑒𝑡ℎ𝑜𝑑,𝑛)
= (1/𝑅)∑

𝑅

𝑟=1
(1/𝑑)∑

𝑑

𝑖=1
𝐸𝑟𝑟
(𝜙 𝑚𝑒𝑡ℎ𝑜𝑑,𝜓 𝑚𝑒𝑡ℎ𝑜𝑑,𝑖)

/𝑛

(17) end for
(18) end for
(19) end for
(20) return 𝐸𝑟𝑟𝐴V𝑔;

Algorithm 2: Experimental procedure experiment.
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Figure 1: Soil respiration carbon flux data of five days.

where𝑁 = 30 (time is 22 to 24); the 𝑅2 of the corresponding
segment in Figure 2 is about 0.16. In Figure 2, when𝑁 = 360

(time is 0 to 24), the whole segments have the lowest 𝑅2. But
these segments had adopted the referencing sampling rate
(Figure 3) rather than a high sampling rate. As there is only
one segment one day and there is no other good segment
which has a better linear degree to balance it, so it is equal to
the condition which has nonsegmental fixed sampling rate.

Figure 4 has shown the average error for the whole recon-
struction between SDDCmethod (SDDC) and constant duty
cycle (CDC) with a nonsegmental and fixed sampling rate.
We selected 10% (10CDC, 10SDDC in figure), 20% (20CDC,
20SDDC in figure) and 30% (30CDC, 30SDDC in figure), as
the fixed sampling of the constant sampling strategy and the
referencing sampling rate of dynamic sampling scheduling
policy. According to the expression of SR

𝑖
in Algorithm 1,

line 10, when using the SDDC method, the mean value of
the dynamic sampling rate SR

𝑖
for each segment is equal to

the referencing sampling rate SRbase. Therefore, as is shown
in Figure 4, the mean sampling rates under the condition of

10CDC and 10SDDC are 10%. Namely, the energy consumed
in sampling is the same.

According to Figure 4, when measurement matrix Φ

and Ψ choose different construction methods, there will be
smaller reconstruction error from the SDDC method than
from the constant sampling strategy under the same mean
sampling rate. Furthermore, as can be seen from the figure,
no matter which method (Φ

𝑃
or Φ
𝑅
) we choose to construct

the measurement matrix, the reconstruction error is always
smaller while using the basis matrix Ψ

𝐷
than using Ψ

𝐻
.

That means Ψ
𝐷
is more suitable for the processing of soil

respiration carbon flux data. Especially when the element
number of the subsequence is small (e.g., 30), it will have
larger reconstruction error if we use Ψ

𝐻
. In general, the

reconstruction error derived by using Ψ
𝐻
is almost three or

more times larger than using Ψ
𝐷
. When the basis matrix Ψ

is determined, there is little difference between the selecting
of measurement matrix Φ

𝑃
and Φ

𝑅
. This also indicates that

to optimize the sampling quantity scheduling strategy (the
construction of measurement matrix), the most effective way
is to lower the sampling rate. This is one of the reasons why
we focus on the study on dynamic sampling scheduling policy
but not on the construction of the measurement matrix.

Figure 4 also showed the difference on global recon-
struction effect between dynamic sampling schedule and the
constant sampling schedule. In Figure 4(a), under condition
that the size of segmental subsequence is 30 (namely, 2 hours)
and the constant sampling rate and the referencing sampling
rate are 10%, the mean reconstruction errors of these two
methods are about 0.182 and 0.101, respectively.

In order to analyze the reason that causes the difference,
we calculated the mean reconstruction error of the subse-
quence of each segment; the results are shown in Figure 5.
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Figure 2: 𝑅2 of segmental linear fitting.
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Figure 3: Segmental dynamic sampling rate.

As is seen from Figure 3, when segment with the 𝑁 = 30

(namely, 2 hours), in periods 1, 4, 6, 8, 11, and 12, the dynamic
sampling rate conducted by Algorithm 1 is higher than the
referencing sampling rate. That is to say the corresponding
subsequence of soil respiration carbon flux data is with high
nonlinear degree. We should increase the sampling rate to
get a better reconstruction effect. According to Figure 5,
in the periods corresponding to segment 1, 4, 6, 8, 11, and
12, the segmental reconstruction error calculated by the
fixed sampling rate is far large than the dynamic sampling
rate. In the other time segment 2, 3, 5, 7, 9, and 10, the
dynamic sampling rate is lower than the referencing sampling
rate, which means the linear degree is high in these data
sequences. We can get better reconstruction effect without
a high sampling rate. Although the high sampling rate of

constant sampling policy leads to a higher quality of the
reconstruction than the dynamic sampling rate, the increase
is not large. The reconstruction error acquired by the fixed
sampling rate is a little smaller than by the dynamic sampling
rate during the time segment 2, 3, 5, 7, 9, and 10 in Figure 5.

According to the segmented error which corresponds
to the two kinds of sampling rate, the difference on the
reconstruction error, which is calculated by the constant
sampling strategy, is relatively large. As the linear degree of
each time segment is different, there is bigger difference in
the reconstruction results when calculated with the indis-
criminate method. The reconstruction errors calculated by
dynamic sampling and scheduling policy in all segments were
similar. This is because we use different sampling rate in
different segments, so that we can balance the difference in
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Figure 4: Reconstructive performance comparison between SDDC and CDC.

reconstruction accuracy which is carried by the change of
linear degree.

5. Conclusion

On the energy-saving sampling issues of soil respiration
monitoring, we proposed a segmental dynamic sampling
scheduling policy based on compressive sensing (SDDC).We
found that SDDCmethod can adapt to the dynamic changing
of monitoring objects better so as to reduce the sampling rate
and save energy and achieve the effect of relatively uniform
segmental sampling error and better overall reconstructive
quality. Though SDDC needs the soil respiration instrument
to carry out extra sampling rate updating algorithm and
produce same energy, the energy saving of reducing sampling
times can far outnumber the energy consuming of updating
the sampling rate because the measurement of soil respira-
tion is a relatively energy-consuming and time-consuming
process. Although the SDDC sampling scheduling method

in this paper is proposed based on sensor networks for soil
respiration monitoring and the related performance analysis
is carried out using these measured data, SDDC can be
used commonly, and it is widely applicable for other sparse
sampling application scene with a priori regular pattern.

Soil respiration includes the root respiration, soil micro-
bial respiration, and heterotrophic respiration of soil ani-
mal. These respirations are affected by soil temperature
and humidity. Main environmental factors which affect
soil respiration rate are soil moisture and temperature, in
both spatial gradient and time level [22]. Soil respiration
measurement requires a dynamic-open box method and
other methods, including some time-consuming and energy-
consuming process likemovement of box, measurement after
the pumping of air. It is relatively easy on the measurement of
soil temperature and humidity. We plan to find the relevance
among temperature and humidity and these sensing data of
soil respiration, so as to optimize and adjust the dynamic
sampling policy for soil carbon flux, and to further reduce the
energy consumption.
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Figure 5: Segmental reconstruction performance comparison
between SDDC and CDC.
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