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Tone-independent orthogonalizing lattice per tone equalizer (TOL-PTEQ) is introduced and its convergence is analyzed. Cyclic-
prefix redundancy, one of the major drawbacks of orthogonal frequency division multiplexing (OFDM), can be reduced by TOL-
PTEQ. Fast convergence and low computational complexity of TOL-PTEQ are also suitable properties for packet-based wireless
communications and detections in which OFDM is widely deployed for their modulation technique.

1. Introduction

PTEQ was originally proposed for optimizing bit rate of dis-
crete-multitone (DMT) modem in wired communications
such as digital subscriber lines (DSLs), where SNR of each
tone can be independently maximized [1–4]. In these litera-
tures, computational complexity is amajor issue because they
should cover a large number of tones, for example, DMTs
with 512, 1024, or 2048 tones. Several types of stochastic-
gradient algorithms for PTEQ have been proposed to reduce
the computational complexity [1, 2]. But convergence rate is
considered as a minor issue for DSLs because various DSLs
have long training sequences in their initial set-up process.

Wireless broadband communication technology is
becoming more important for pervasive healthcare solutions
as healthcare applications [5–7] are extending their coverage
up to global scale as shown in Figure 1 [8]. According to [8],
researches on more fast and reliable wireless infrastructures
are conducted in order to improve the healthcare services
in remote location. Candidate wireless technologies are as
follows: IEEE 802.11x, IEEE 802.16x, ETSI HiperLAN, ETSI
HiperMAN, and so on. A common feature of the candidates
is that they use OFDM as their modulation method which
is the promising technology because it is easy to handle the
multipath channel problem by using fast Fourier transform.
It is also widely utilized for multiple-access method, say

OFDMA. It gives multiuser diversity taking advantage of
channel frequency selectivity and good scalability over wide
range of bandwidth that is achieved just by adjusting FFT
size, where FFT stands for fast Fourier transform [9]. OFDM
can also be utilized in the field of radar technologies as shown
in Figure 2, where the multitone technique can be applied to
enhance the radar scanning performance [10]. In this case,
various OFDM technologies are essential to the multitone
based radar systems. As shown in Figure 2, the radar
transmits and receives the radar signal through the antennas.
The received signal contains various reflection signals
generated by the interfaces between two different layers. To
obtain the high-resolution reflection signals, the radar system
should use the ultrawideband signal, which can be created by
composing several narrowband signals as shown in Figure 2.
The multitone based radar system uses the multitone signal
as the narrowband signal, in which we can utilize various
existing advanced technologies of OFDM such as the
channel estimation and the computationally efficient and fast
implementation architectures.

Two major drawbacks of OFDM are the peak-to-average
power ratio and cyclic-prefix (CP) redundancy. To cope with
the CP redundancy problem that decreases spectral effi-
ciency, several approaches have been proposed [11, 12]. In [11],
iterative cancellation method was used to cancel interfer-
ences due to the insufficient CP, where terrestrial HDTV
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Figure 1: Overview of a simple WSN application scenario for healthcare (this figure is quoted from Figure 1 in [8]).
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Figure 2: Multitone based radar technology.

broadcasting scenario was considered as its application. As
mentioned in page 1598 of [11], computational burdens of
iterations are very big because 2𝐼 + 2 FFT operations are
needed for 𝐼 iterations. In [12], precompensation was used to
avoid differential group delay of optical OFDM systems. This
precompensation of delay can ensure zero intersymbol inter-
ference while reducing CP length. To do this, channel state
information is fed back from receiver to transmitter.

PTEQ technique can be applied to the CP reduction
problem of the OFDM-based wireless communication sys-
tems because PTEQ is the frequency-domain version of
the time-domain channel-shortening equalizer (TEQ) which
shortens channel impulse response length [13, 14]. Thus, this
shortening property can be applied to the problem thatmakes
CP length less than the channel impulse response length.
Almost all wirelessOFDMsystems are based on packet-based
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transmissions and a quasistatic environment is assumed,
where a packet consists of a preamble and a payload. A new
channel estimation should be performed in every packet; thus
fast convergence of PTEQ is needed not to slow down the
overall transmission throughput.

In this paper, we analyze convergence properties of the
existing PTEQ algorithms. It will be shown that their conver-
gence properties are related to eigenvalue spread of PTEQ-
input signals especially in the initial training period.

We then show a stochastic-gradient lattice-typed PTEQ
algorithm, TOL-PTEQ, with fast convergence rate while
maintaining a low computational complexity, where its con-
vergence rate is fast enough for packet-based wireless com-
munications. As opposed to the existing transversal filter-
based PTEQs, TOL-PTEQhas lattice feature to orthogonalize
a portion of its input signals with low computational com-
plexity. To the best of our knowledge, there is no approach
in which the lattice-typed PTEQ is applied to the OFDM
technology before. We also provide the convergence model
of TOL-PTEQ, where the accuracy of the model is shown by
comparing the model with numerical simulation results.

The rest of this paper is organized as follows. In Section 2,
problem setup for PTEQ is described and one existing PTEQ
algorithm, RLSLMS-PTEQ, is analyzed. In Section 3, TOL-
PTEQ is shown in detail. In Section 4, simulation results and
comparisons of the various PTEQ algorithms are provided.
Finally, conclusion is provided in Section 5.

2. Problem Setup and RLSLMS-PTEQ

2.1. Problem Setup. Signal vector x(𝑘) at block time 𝑘 is trans-
mitted and propagated through the (𝐿+𝑘+1)th-order channel
h. Then, the received signal vector y(𝑘) is written as

y(𝑘) = [O | Τ ([ℎ𝐿 01𝑋(𝐿+𝐾)]
𝑇
, [h 01𝑋(𝐿+𝐾)]) | O]

⋅ x(𝑘) + n(𝑘),
(1)

where the superscript 𝑇 is the transpose operator, Τ(a, b) is
the Toeplitz matrix of which first column and row vector are
a and b, 𝐿 and𝐾 are the length of post- and precursors, and
n(𝑘) is the white Gaussian noise vector.

According to [1], (1) is equalized by the 𝑇th-order PTEQ
k𝑖 of the 𝑖th subcarrier and its output can be written as

𝑍
(𝑘)

𝑖 = k𝑇𝑖 [
I𝑇−1 O(𝑇−1)𝑋(𝑁−𝑇−1) −I𝑇−1

01𝑋(𝑇−1) 𝐹𝑁 (𝑖, :)
] y(𝑘) = k𝑇𝑖 u

(𝑘)
,

(2)

where 𝐹𝑁(𝑖, :) is the 𝑖th row vector of 𝑁-point FFT matrix,
u(𝑘) = [d(𝑘)𝑇 𝑌(𝑘)

𝑖
] is the input vector, 𝑌(𝑘)

𝑖
is the Fourier

transform of y(𝑘), and d(𝑘) ≡ [𝑑(𝑘)0 ⋅ ⋅ ⋅ 𝑑
(𝑘)

𝑇−2
] is the difference

vector of which element is written as𝑑(𝑘)
𝑙
≡ −𝑦(𝑘+1)𝑠−𝑙+𝑦𝑘𝑠+]−𝑙.

k̂
opt
𝑖 is hereby the estimated optimal vector that minimizes
the expectation of |𝑍(𝑘)

𝑖
− 𝑋
(𝑘)

𝑖
|
2
, where𝑋(𝑘)

𝑖
is the training or

pilot subcarrier signal.

The most powerful algorithm to obtain k̂
opt
𝑖 is the recur-

sive least squares (RLS). The performance of RLS-PTEQ [15]
will be shown in Section 3, in which it outperforms other
PTEQs. In case that the number of subcarriers is large,
stochastic-gradient-based algorithms such as NLMS-PTEQ
and RLSLMS-PTEQ [2] are preferred because the computa-
tional complexity of RLS-PTEQ is too big to be implemented.
However, convergence rates of the stochastic-gradient-based
PTEQs are so slow that theymay slow down the transmission
throughput of packet-based wireless communications. The
convergence of these stochastic-gradient PTEQs is highly
related to the eigenvalue spread of their input autocorrelation
matrix 𝑅uu = 𝐸[u(𝑘)u(𝑘)𝐻], where superscript 𝐻 denotes the
Hermitian. u(𝑘) is highly correlated because its elements
consist of the combination of received signals. With high
eigenvalue spread, it is well known that NLMS-PTEQ has
poor performance in the sense of convergence rate and
steady-state misadjustment; this can be also seen through
simulations in Section 3.

RLSLMS-PTEQ which combines NLMS-PTEQ with
RLS-PTEQ has effectively low computational complexity
compared with that of RLS-PTEQ, where RLS is not used
for k𝑖 update but for only d(𝑘) calculations. Main purpose of
RLSLMS-PTEQ is the decorrelation of d(𝑘) with computa-
tionally complex RLS, and this decorrelation result is com-
monly utilized to all subcarriers’ PTEQ in which the equal-
ization of each subcarrier is performed by simple NLMS.The
steady-state misadjustment of RLSLMS-PTEQ is close to that
of RLS-PTEQ. However, its convergence rate is much slower
than that of RLS-PTEQ as shown in [2], and it will be further
discussed in the next section.

2.2. Analysis of RLSLMS-PTEQ. The autocorrelation 𝑅lu of
RLSLMS-PTEQ has, approximately, (𝑇 − 2) eigenvalues of
1/𝑊 and two eigenvalues of (1 ± 𝑑)/𝑊 with 𝑑 as

𝑑 = √
𝑊
2

𝑒
(𝑘+1)

𝑖

𝐸 [𝑌
∗
𝑖
d(𝑘+1)𝑇] S(𝑘+1)𝑇S(𝑘+1)𝐸 [d(𝑘+1)𝑌𝑖], (3)

where 𝑑,𝑊, l, S𝑖, and 𝑒(𝑘+1) are defined in [2]. Equation (3)
can be written as

𝑑 = √
𝑊
2

𝑒
(𝑘+1)

𝑖

𝐸 [𝑌
∗
𝑖
d(𝑘+1)𝑇] 𝐸 [k

(𝑘+1)
𝑌𝑖]

= √
𝑊
2

𝑒
(𝑘+1)

𝑖

𝐸 [𝑌
∗
𝑖
𝑌𝑖d(𝑘+1)𝑇k

(𝑘+1)
]

≈ √𝑊𝐸[d(𝑘+1)𝑇k
(𝑘+1)
],

(4)
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Figure 3: Structure of TOL-PTEQ.

where k
(𝑘+1)

= S𝑇Sd(𝑘+1). Conversion factor is defined as

𝛾
(𝑘+1)

= 1 − d(𝑘+1)𝑇k
(𝑘+1)
. (5)

Using (4) and (5), we can write

𝑑 ≈ √𝑊(1 − 𝐸 [𝛾
(𝑘+1)
]). (6)

On initial transient phase in training period of RLS, 𝐸[𝛾(𝑘)]
starts with very small value, and then it converges to 1 accord-
ing to the inverse law: 𝐸[𝛾(𝑘)] ≈ 1 − ((𝑇 − 1)/𝑘) [16]. Hence,
in case of RLSLMS-PTEQ, the large eigenvalue spread of 𝑅lu
induced by the small value of 𝐸[𝛾(𝑘)] on the initial transient
phase causes the convergence rate to be slow. Thus, it can be
said that RLS property of RLSLMS-PTEQ is helpful in the
steady-state phase but is not too much effective in the initial
transition phase.

3. TOL-PTEQ

3.1. Algorithm and Architecture. We show the TOL-PTEQ
of which structure is depicted in Figure 3. There is no
RLS in TOL-PTEQ. As mentioned in Section 2.2, RLSLMS-
PTEQ suffers from slow convergence in its initial transition
phase. Two different optimization criteria in one recursive
algorithm may work poorly in the initial transition phase.
Therefore, decorrelation of d(𝑘) in TOL-PTEQ is performed
by stochastic-gradient algorithm. In general, convergence
performance of adaptive algorithm using stochastic-gradient
decorrelation method lies in between those of LMS and RLS,
which is also applied to TOL-PTEQ as shown in simulation
results in Section 3. As TOL-PTEQ operates entirely in a
stochastic-gradient criterion, its misadjustment in a steady
state is worse than that of RLS-PTEQ. But, as in our simu-
lation results, TOL-PTEQ reach a certain steady-state error

level faster than RLSLMS-PTEQ. TOL-PTEQ also inherits
lattice features such as easily implementedmodular structure,
computational efficiency, and numerical stability. Complete
algorithm of TOL-PTEQ and complexity analysis is written
in the rest of this subsection.
Algorithm: TOL-PTEQ.The algorithm is as follows.

Tone independent:
For 𝑛 = 0, 1, . . . , 𝑇 − 2

𝑓
(𝑘)

0 (𝑛) = 𝑏
(𝑘)

0 (𝑛) = 𝑑
(𝑘)

0 .
(7)

For𝑚 = 0, 1, . . . ,min(𝑛, 𝑇 − 3)

𝑓
(𝑘)

𝑚+1 (𝑛) = 𝑓
(𝑘)

𝑚 (𝑛) + 𝐾
(𝑘)

𝑚 (𝑛) 𝑏
(𝑘)

𝑚 (𝑛 − 1) ,

𝑏
(𝑘)

𝑚+1 (𝑛) = 𝑏
(𝑘)

𝑚 (𝑛 − 1) + 𝐾
(𝑘)

𝑚 (𝑛) 𝑓
(𝑘)

𝑚 (𝑛) ,

𝐸
(𝑘)

𝑚 (𝑛) = (1 − 𝛽) 𝐸
(𝑘)

𝑚 (𝑛 − 1)

+ 𝛽 (𝑓
(𝑘)2

𝑚 (𝑛) + 𝑏
(𝑘)2

𝑚 (𝑛 − 1)) ,

𝐾
(𝑘)

𝑚 (𝑛) = 𝐾
(𝑘)

𝑚 (𝑛 − 1) + 𝜇(𝑎 + 𝐸
(𝑘)

𝑚 (𝑛))
−1

⋅ (𝑓
(𝑘)

𝑚 (𝑛) 𝑏
(𝑘)

𝑚+1 (𝑛)

+ 𝑏
(𝑘)

𝑚 (𝑛 − 1) 𝑓
(𝑘)

𝑚+1 (𝑛)) .

(8)

Tone dependent:

𝐶
(𝑘)

𝑖 = (1 − 𝛽)𝐶
(𝑘)

𝑖 + 𝛽
󵄨󵄨󵄨󵄨󵄨
𝑌
(𝑘)

𝑖

󵄨󵄨󵄨󵄨󵄨

2
,

k(𝑘+1)𝑖 = k(𝑘)𝑖 + 𝜇c
(𝑘)

𝑖 𝑒
(𝑘)∗

𝑖 ,

(9)



International Journal of Distributed Sensor Networks 5

Table 1: Computational complexity for PTEQs.

Multiplications Square-root operations Divisions
TOL-PTEQ 3𝑇

2
+ (4𝑁 − 2)𝑇 + 5 0 𝑇 − 2

RLS-PTEQ 3𝑇
2
+ (20𝑁 + 1)𝑇 + 10𝑁 − 4 𝑇 + 𝑁 − 1 0

RLSLMS-PTEQ 3𝑇
2
+ (4𝑁 + 1)𝑇 + 12𝑁 − 4 𝑇 − 1 0

NLMS-PTEQ (𝑇 − 1) + (4𝑇 + 8)𝑁 0 1

where 𝑓(𝑘)𝑚 (𝑛) and 𝑏
(𝑘)
𝑚 (𝑛) are 𝑚th-order forward and back-

ward prediction error, 𝐾(𝑘)𝑚 (𝑛) is the partial correlation coef-
ficient, 𝑒(𝑘)

𝑖
≡ 𝑋
(𝑘)

𝑖
− k(𝑘)𝐻
𝑖

c(𝑘)
𝑖
, and c(𝑘)

𝑖
≡ [b(𝑘)𝑇 𝑌(𝑘)

𝑖
/𝐶
(𝑘)

𝑖
]
𝑇
.

Tone-independent part of the algorithm consists of lattice
modules, in which the update equations for partial correla-
tion coefficients in (8) are based on gradient adaptivemethod
[17]. Equation (9) in the tone dependent part is the computa-
tionally efficient LMS algorithm

The whole algorithm requires 3𝑇2 + (4𝑁 − 2)𝑇 + 5 mul-
tiplications and 𝑇 − 2 divisions. Computation complexities
of PTEQs are written in Table 1. RLS-PTEQ and RLSLMS-
PTEQ require 3𝑇2 + (20𝑁 + 1)𝑇 + 10𝑁 − 4 and 3𝑇2 + (4𝑁 +
1)𝑇+ 12𝑁−4multiplications, respectively. They also require
𝑇 +𝑁 − 1 and 𝑇 − 1 square-root operations. Compared with
the two PTEQs, TOL-PTEQ reduces (16𝑁 + 1)𝑇 + 5𝑁 −
4 and 𝑇 + 12𝑁 + 1 multipliers, respectively. In the sense
that square-root operations and division are performed by
Newton’s method, it is considered that they require the same
order of multiplications.Thus, it can be said that TOL-PTEQ
saves 𝑁 + 1 multiplications and one square-root operation
compared with RLS-PTEQ and RLSLMS-PTEQ, respectively.
NLMS-PTEQ has the smallest number of multiplications;
however the performance of this algorithm is lower than that
of the other algorithms.

3.2. Convergence Analysis. We extend convergence model
described in [17] to TOL-PTEQ. Convergence model for
TOL-PTEQ consists of three parts; one is the model for
forward and backward predictors as described in [17], and the
other two parts are the learning-curve models of 𝐸[k(𝑘)

𝑖
] and

𝐸[|𝑒
(𝑘)

𝑖
|
2
] which are written here as follows. Equation (9) can

be written as

k(𝑘+1)𝑖 = (I − 𝜇c(𝑘)𝑖 c(𝑘)𝐻𝑖 ) k(𝑘)𝑖 + 𝜇c
(𝑘)

𝑖 𝑋
(𝑘)∗

𝑖 . (10)

By taking expectation of both sides of (10), we can write

𝐸 [k(𝑘+1)𝑖 ] = 𝐸 [(I − 𝜇c(𝑘)𝑖 c(𝑘)𝐻𝑖 ) k(𝑘)𝑖 ] + 𝜇𝐸 [c
(𝑘)

𝑖 𝑋
(𝑘)∗

𝑖 ]

≈ (I − 𝜇𝐸 [c(𝑘)𝑖 c(𝑘)𝐻𝑖 ]) 𝐸 [k(𝑘)𝑖 ] + 𝜇𝐸 [c
(𝑘)

𝑖 𝑋
(𝑘)∗

𝑖 ] .

(11)

The (𝑚, 𝑛)th element of 𝐸[c(𝑘)
𝑖
c(𝑘)𝐻
𝑖
] in (11) can be com-

puted as

𝐸[c(𝑘)𝑖 c(𝑘)𝐻𝑖 ]
(1,1)
= 𝐸 [

󵄨󵄨󵄨󵄨𝑌𝑖
󵄨󵄨󵄨󵄨

2
] ,

𝐸[c(𝑘)𝑖 c(𝑘)𝐻𝑖 ]
(1,𝑛 ̸= 1)

= 𝐸[

[

𝑌𝑖(𝑑
(𝑘)

𝑛 −

𝑇−2

∑

𝑗=𝑛+1

𝑓
(𝑘)

𝑏,𝑗
𝑑
(𝑘)

𝑗 )
]

]

≈ 𝐸 [𝑌𝑖𝑑
(𝑘)

𝑛 ] −

𝑇−2

∑

𝑗=𝑛+1

𝑓
(𝑘)

𝑏,𝑗
𝐸 [𝑌𝑖𝑑

(𝑘)

𝑗 ] ,

𝐸[c(𝑘)𝑖 c(𝑘)𝐻𝑖 ]
(𝑚 ̸= 1,1)

= 𝐸[c(𝑘)𝑖 c(𝑘)𝐻𝑖 ]
∗

(1,𝑛 ̸= 1)
,

𝐸[c(𝑘)𝑖 c(𝑘)𝐻𝑖 ]
(𝑚 ̸= 1,𝑛 ̸= 1)

= 𝐸[

[

(𝑑
(𝑘)

𝑚 −

𝑇−2

∑

𝑗=𝑚+1

𝑓
(𝑘)

𝑏,𝑗
𝑑
(𝑘)

𝑗 )(𝑑
(𝑘)

𝑛 −

𝑇−2

∑

𝑝=𝑛+1

𝑓
(𝑘)

𝑏,𝑝
𝑑
(𝑘)

𝑝 )
]

]

≈ 𝐸 [𝑑
(𝑘)

𝑚 𝑑
(𝑘)

𝑛 ] −

𝑇−2

∑

𝑝=𝑛+1

𝑓
(𝑘)

𝑏,𝑝
𝐸 [𝑑
(𝑘)

𝑚 𝑑
(𝑘)

𝑝 ]

−

𝑇−2

∑

𝑗=𝑚+1

𝑓
(𝑘)

𝑏,𝑗
𝐸 [𝑑
(𝑘)

𝑗 𝑑
(𝑘)

𝑛 ]

+

𝑇−2

∑

𝑗=𝑛+1

𝑇−2

∑

𝑝=𝑛+1

𝑓
(𝑘)

𝑏,𝑗
𝑓
(𝑘)

𝑏,𝑝
𝐸 [𝑑
(𝑘)

𝑗 𝑑
(𝑘)

𝑝 ] ,

(12)

and𝑚th element of 𝐸[c(𝑘)
𝑖
𝑋
(𝑘)∗

𝑖
] can be computed as

𝐸[c(𝑘)𝑖 𝑋
(𝑘)∗

𝑖 ]
𝑚=1
= 𝐸 [𝑌

(𝑘)

𝑖 𝑋
(𝑘)∗

𝑖 ] ,

𝐸[c(𝑘)𝑖 𝑋
(𝑘)∗

𝑖 ]
𝑚 ̸= 1

= 𝐸[

[

(𝑑
(𝑘)

𝑚 −

𝑇−2

∑

𝑗=𝑚+1

𝑓
(𝑘)

𝑏,𝑗
𝑑
(𝑘)

𝑗 )𝑋
(𝑘)∗

𝑖
]

]

≈ 𝐸 [𝑑
(𝑘)

𝑚 𝑋
(𝑘)∗

𝑖 ] −

𝑇−2

∑

𝑗=𝑚+1

𝑓
(𝑘)

𝑏,𝑗
𝐸 [𝑑
(𝑘)

𝑗 𝑋
(𝑘)∗

𝑖 ] ,

(13)
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Figure 4: Trajectories of 𝐸[V(𝑘)𝑖,𝑗 ]; dashed line is for convergence model, and solid line is for averaged simulation result. (a) 𝑗 = 3; (b) 𝑗 = 12.

where 𝑚, 𝑛 ∈ {1, 2, . . . , 𝑇 − 2} and the computation of
𝐸[𝑑
(𝑘)
𝑚 𝑑
(𝑘)
𝑛 ] and 𝑓

(𝑘)

𝑏,𝑚
in the above equations are provided in

[17]. Mean square error, 𝐸[|𝑒(𝑘)
𝑖
|
2
], can be computed as

M.S.E = 𝐸 [󵄨󵄨󵄨󵄨󵄨𝑋
(𝑘)

𝑖

󵄨󵄨󵄨󵄨󵄨

2
− k(𝑘)𝑇𝑖 𝑋

(𝑘)

𝑖 c(𝑘)∗𝑖

−k(𝑘)𝐻𝑖 𝑋
(𝑘)

𝑖 c(𝑘)𝑖 + k
(𝑘)𝐻

𝑖 c(𝑘)𝑖 c(𝑘)𝐻𝑖 k(𝑘)𝑖 ]

≈ 𝐸 [
󵄨󵄨󵄨󵄨󵄨
𝑋
(𝑘)

𝑖

󵄨󵄨󵄨󵄨󵄨

2
] − k(𝑘)𝑇𝑖 𝐸 [𝑋

(𝑘)

𝑖 c(𝑘)∗𝑖 ]

− k(𝑘)𝐻𝑖 𝐸 [𝑋
(𝑘)

𝑖 c(𝑘)𝑖 ] + k
(𝑘)𝐻

𝑖 𝐸 [c(𝑘)𝑖 c(𝑘)𝐻𝑖 ] k(𝑘)𝑖 ,

(14)

where 𝐸[𝑋(𝑘)
𝑖
c(𝑘)
𝑖
] and 𝐸[c(𝑘)

𝑖
c(𝑘)𝐻
𝑖
] can be obtained by the

same manner as in (11). We obtained two learning curve
models as the equalizer tap-weight model (11) and the mean
square error model (14).

For example, trajectories of 𝐸[V(𝑘)
𝑖,𝑗
] for 𝑗 = 3 and 𝑗 = 12 at

𝑖 = 100 are depicted in Figures 4(a) and 4(b). In the figures,
it is also shown that the equalizer tap-weight model (11)
coincides with that of simulation results, where simulation
results are obtained by averaging over 1000 independent
trials. Detailed simulation setup will be seen in the first
paragraph of the next section. Figure 5 shows the trajectories
of the mean square error, 𝐸[|𝑒(𝑘)

𝑖
|
2
] (𝑖 = 100). The mean

square error (M.S.E) model (14) also accurately tracks the
mean square error of the simulation results. From Figure 4,
it can be said that the convergence model of TOL-PTEQ is
accurate with small 𝛽; it is also mentioned in [17] that small
𝛽 results in accurate convergence model.

Cumulative distribution function of eigenvalues for u(𝑘)

and c(𝑘) is depicted in Figure 6. This shows that TOL-PTEQ
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Figure 5: M.S.E trajectories with 𝑇 = 16; dashed line is for
convergence model, and solid line is for averaged simulation result.

effectively decorrelates u(𝑘) to c(𝑘) that helps TOL-PTEQ
speed up the convergence.

4. Simulation Results

This section provides simulation results of learning curves of
four PTEQs and further detailed simulations for analysis of
convergence rate according to SNR and order of PTEQ tap
weights.



International Journal of Distributed Sensor Networks 7

0
0

50

100

1
0

0.5

1

1.5

2

cdf
0.2 0.4 0.6 0.8

×105

Ei
ge

nv
al

ue
 sp

re
ad

 o
fc

(k
)
(s

ol
id

 li
ne

)

Ei
ge

nv
al

ue
 sp

re
ad

 o
fu

(k
)
(d

as
he

d 
lin

e)

Figure 6: Cumulative distribution function of eigenvalue spread
(solid line: u(𝑘), dashed line: c(𝑘)).
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Maximum scalable OFDMA downlink of mobile
WiMAX [18] is considered for this simulation, where signal
bandwidth is 20MHz, the FFT size is 2048, the number of
pilot subcarriers is 240, and the number of data subcarriers
𝑁𝑢 is 1440. Extended ITU Vehicular A channel model [19]
with additive white Gaussian noise is considered. The
number of cyclic prefix is set to 64, where it is set to 256 in
the standard [18]. This enhances spectral efficiency of about
10 percent compared with the standard in [18].

TOL-PTEQ is compared with NLMS-PTEQ, RLS-PTEQ,
andRLSLMS-PTEQ.All simulations are performed over 1000
independent trials. All PTEQs have their order, 𝑇, as 16, step-
size parameter 𝜇 in NLMS part is 1, forgetting factor in RLS
part is 0.998, and 𝛽 of TOL-PTEQ is 0.1.

Learning curves of the four PTEQs are shown in Figure 7.
Among the four PTEQs, the convergence rate of RLS-PTEQ
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Figure 8: Comparison of 𝐶𝑟 versus SNR for PTEQs.

is the fastest and its steady-state M.S.E is the smallest at the
expense of the largest computational complexity as described
in Section 3.1. NLMS-PTEQ has the smallest computational
complexity, but its performance is the worst. RLSLMS-PTEQ
converges to the same M.S.E as RLS-PTEQ; however its
convergence rate is very slow which is undesirable to the
packet-based wireless communications. It can be seen that
TOL-PTEQ, in spite of its slightly higher steady-state M.S.E
compared with those of the two RLS-typed PTEQs, has
very fast convergence rate with the smaller computational
complexity than the two RLS-typed PTEQs.

To see the more specific behavior of the convergence, we
define the convergence rate 𝐶𝑟 as the number of symbols
that is required until the M.S.E reaches 98 percent of its
steady-state M.S.E. In this analysis, NLMS-PTEQ is excluded
because its convergence rate and steady-stateM.S.E are of too
low performance to be compared with other PTEQs.

Two factors, SNR and order of PTEQ tap-weights, are
considered in this simulation analysis. It is desirable that 𝐶𝑟
is maintained as small as possible regardless of these factors.
Figure 8 shows the 𝐶𝑟 depending on SNR, where SNR is
ranged from 10 dB to 25 dB.𝐶𝑟 of TOL-PTEQ andRLS-PTEQ
are small and independent of the variation of SNR,while𝐶𝑟 of
RLSLMS-PTEQ increases as SNR increases. This shows that
convergence rate of TOL-PTEQ does not deteriorate at low
SNR. In Figure 9, 𝐶𝑟 according to the variation of tap-weight
order 𝑇 are shown, where 2 ≤ 𝑇 ≤ 30. It is shown that TOL-
PTEQ keeps 𝐶𝑟 small with little dependency on 𝑇. Hence
TOL-PTEQmaintains small values of𝐶𝑟 over simulated SNR
and 𝑇 which is a desirable feature of PTEQ designs.

5. Conclusions and Future Works

We analyzed convergence of several existing PTEQs. Then,
we showed the TOL-PTEQ that has enhanced convergence
rate with small computational complexity. We also provided
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the convergence model of TOL-PTEQ, and it was shown to
be accurate by the comparison between the model and simu-
lation results. In the comparison of M.S.E learning curves of
the three PTEQs for the mobile WiMAX with the extended
ITU Vehicular A channel model, it was shown that TOL-
PTEQ has the slower convergence rate than RLS-PTEQ, but
its convergence was stabilized within the size of cyclic prefix.
It was also shown that TOL-PTEQ had desirable features that
its convergence rate was rarely dependent on either SNR or
tap-weight order 𝑇. TOL-PTEQ can be applied to the radar
channel estimation such as long impulse responses with short
cyclic prefix. In our future work, we will extend TOL-PTEQ
to the multitone based radar systems.
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