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This paper presents a novel energy-based target localization method in wireless sensor networks with selected sensors. In this
method, sensors use Turbo Product Code (TPC) to transmit decisions to the fusion center. TPC can reduce bit error probability if
communication channel errors exist. Moreover, in this method, thresholds for the energy-based target localization are designed
using a heuristic method. This design method to find thresholds is suitable for uniformly distributed sensors and normally
distributed targets. Furthermore, to save sensor energy, a sensor selection method is also presented. Simulation results showed
that if sensors used TPC instead of Hamming code to transmit decisions to the fusion center, localization performance could be
improved. Furthermore, the sensor selection method used can substantially reduce energy consumption for our target localization
method. At the same time, this target localizationmethod with selected sensors also provides satisfactory localization performance.

1. Introduction

With the advancement of hardware and software, industrial
control systems (ICSs) have been widely used in many indus-
trial areas. ICSs can use sensors to gather information about
the environment or the condition of machines, and based on
the information from sensors to monitor and control remote
devices. Research efforts have focused on different areas of
ICSs. For example, in [1], the authors discussed the security
problem in ICSs. Research in [2] focused on the architecture
and scheduling problem in ICSs while the authors in [3]
presented an innovative control system for the industrial
environment.

Inmany ICSs, a wireless sensor network (WSN) is laid out
to control the robotics [4–6] or to track human motion [7].
Target position estimation is an essential part in these appli-
cations.There aremany target localizationmethods available,
such as direction of arrival (DOA) methods [8, 9], time-
delay of arrival (TDOA) methods [10, 11], and energy-based
target localization methods [12, 13]. The energy-based target
localization method which uses quantized data in WSNs
was presented in [12]. Compared with DOA methods and
TDOA methods, energy-based target localization methods

do not require sensors to have the ability to measure the
direction of arrived signals, such as in DOA methods, or
require accurate synchronization among sensors, such as in
TDOA methods. Therefore, energy-based target localization
methods are easier to implement than the DOA methods or
TDOA methods [12]. This paper focuses on energy-based
target localization methods.

In energy-based target localization methods, sensors
measure the signals from the target and send the measure-
ment information to the fusion center, which uses informa-
tion from the sensors to estimate the target position [12].
Usually, sensors used in WSNs have limited sources, such
as energy and communication bandwidth. Therefore, saving
energy and communication bandwidth are very important in
WSNs.

To save energy, sensors can quantize the information
about the signals from the target before sending it to the
fusion center [12, 14]. There are many quantization methods,
such as the nonuniform quantization method in [15] and
the vector quantization method in [16]. Interested readers
can refer to [17]. In the quantization scheme, thresholds
are the most important parameters. In [12], a heuristic
method to determine the optimum quantization thresholds
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Figure 1: Sensor field (fired sensors are sensors having decisions
other than 0).

was presented to calculate the optimum thresholds if sensor
positions follow uniformdistributions and the target position
also follows uniform distributions. However, if the target is
mostly present in a small area, Gaussian distribution can
better describe the distributions of the target position. Our
heuristic method can calculate optimum thresholds if the
sensors are uniformly distributed and the target position
follows Gaussian distributions (Figure 1).

In many applications, energy can also be saved by using
a sensor selection scheme. In target tracking, [18] used an
energy function and posterior Cramer-Rao lower bound
(PCRLB) to select sensors. In [19], the authors used a
modified Riccati equation approach to select sensors. In [20],
a combination of PCRLB and sensor range was used to select
sensors. In [21], the authors considered sensor selectionwhen
the detection probability of sensors was less than 1. More
research in this area can be found in [22–25].

In target detection, [26] used a Kullback-Leibler (K-L)
based approach to select sensors to maximize the K-L dis-
tance. In [27], an optimal sensor selection method in binary
heterogeneous sensor networks was presented. In this paper,
the K-L distance is maximized subject to cost constraints. In
[28], the authors presented robust sensor selection methods
to deal with uncertainties of the distribution mean.

In target estimation, if MLE is used, the Cramer-Rao
lower bound (CRLB) or PCRLB can be used as the perfor-
mance criterion. Then, sensors can be selected to maximize
CRLB or PCRLB. In [29], sensors are selected based on
PCRLB. However, in [29], several sensors were selected from
all sensors. The computation cost of this selection method
may be prohibitive if the total number of sensors is too large.
To alleviate the computation cost, we propose a new sensor
selection method in this paper.

The main contribution of this paper is a novel energy-
based target localization method in WSNs with selected

sensors. In this method, sensors use Turbo Product Code
(TPC) to transmit decisions to the fusion center. More-
over, the thresholds used in our target localization method
are determined using a new heuristic method specifically
designed for sensor position following uniform distributions
and target position following Gaussian distributions. Fur-
thermore, a sensor selection method is presented, and this
selectionmethod can significantly save sensor energywithout
substantially sacrificing localization performance.

The rest of this paper is organized as follows. In Section 2,
an energy-based target localizationmethod using TPC is pre-
sented. A heuristicmethod to determine optimum thresholds
is given in Section 3, and a novel sensor selection method is
presented in Section 4. The analysis of performance loss and
energy saving due to sensor selection is given in Section 5.
The simulation setup is presented in Section 6, and the
results and analysis are provided in Section 7.The concluding
remarks are made in Section 8.

2. Energy-Based Target Localization Method
Using TPC

The energy-based target localizationmethod using quantized
data was presented in [12]. Our energy-based target localiza-
tion method is based on the method in [12]. However, in our
method, TPC code and sensor selection are used. Also, we
only estimate two parameters.

Following the derivation in [12], acoustic signal from a
target decays as distance from the target to the measurement
location increases. The relation can be determined by
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sensors is denoted by𝑁. Experiments showed that 𝑛 = 2 [12].
Therefore, (1) can be simplified as
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Because of the presence of noise in the environment, the sig-
nal that arrived at the 𝑖th sensor will be inevitably corrupted
by noises. The process can be modeled and expressed as

𝑠
𝑖
= 𝑎
𝑖
+ 𝑤
𝑖
, (4)

where 𝑤
𝑖
is a Gaussian noise following the distribution

𝑁(0, 𝜎
2
). To save communication bandwidth and sensor
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energy, 𝑠
𝑖
is quantized [12]. In the quantization process, the

𝑖th sensor quantizes the measured signal 𝑠
𝑖
into𝑚

𝑖
according

to a set of thresholds:
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The probability that the transmitted decision 𝑚
𝑖
by the 𝑖th

sensor takes value𝑚 can be calculated by

𝑝 (𝑚
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= 𝑚 | 𝜃) = ∫

(𝜂𝑖+1−𝑎𝑖)/𝜎

(𝜂𝑖−𝑎𝑖)/𝜎

1

√2𝜋

𝑒
−𝑡
2
/2
𝑑𝑡. (7)

The channel-aware target localization method was presented
in [14]. However, the authors did not use any coding method
to counter communication channel errors. In our method,
to minimize the effect of communication channel errors,
sensors use TPC to transmit decisions to the fusion center.
Previous research has focused on using Hamming code
to encode decisions from sensors to the fusion center for
distributed detection [30–33]. In our method, sensors use
TPC to transmit decisions to the fusion center. TPC is a
category of Turbo codes and can provide an efficient way
to construct long codes from short linear block ones with
relatively high code rates [34–36].

In TPC, BCH code is used as the component codes and
iterative soft-input soft-output algorithm is used to decode
rows and columns code words. Then, we can determine the
relation between 𝑚̃

𝑖
and 𝑚. If the relation between 𝑚̃

𝑖
and 𝑚

can be determined, we can incorporate the transition relation
into the MLE framework using an approach similar to that
used in [14]. The system diagram is shown in Figure 2. After
the transition probabilities from𝑚 to 𝑚̃

𝑖
are determined, the

probability that 𝑚̃
𝑖
assumes the value𝑚 is given by
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The maximum likelihood estimator (MLE) tries to find ̂
𝜃 to

maximize

̂
𝜃 = max

𝜃

ln𝑝 (
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Figure 2: Symbol coding and decoding.

If an unbiased estimate ̂
𝜃 exists, the CRLB of the estimate can

be calculated by

𝐸 {[
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(11)

The J matrix corresponding to our two parameters esti-
mation problem can be denoted as a 2 by 2 matrix. The
process to derive the Jmatrix is similar to the process in [14].

First, J(1, 1) is derived:
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Because the expectation of the second term of (12) is 0, the
expectation of (12) is
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Other elements of J can be calculated similarly.

3. A Heuristic Quantization Method to
Determine Optimum Threshold

Before the MLE method can be used, we have to determine
an appropriate set of thresholds. Thresholds cannot be too
high; otherwise, sensors will make the same decision, 0,
and the MLE method cannot proceed. On the other hand,
thresholds cannot be too low; otherwise, all sensors will
report decision 𝐿 − 1 and the MLE method also cannot
be implemented. In our experiments, sensors are uniformly
distributed across the field. The 𝑋-coordinate of the target
follows Gaussian distribution 𝑁(0, 𝜎

2

𝑥
) and the 𝑌-coordinate

of the target follows Gaussian distribution 𝑁(0, 𝜎
2

𝑦
). Now

the detailed steps to determine the optimum threshold are
presented. The method is similar to the method used in [12].
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If we denote 𝑤 as 𝑤 = 𝑃
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[

[

[

∫

𝑃0/𝑤

0

1

4𝑎√𝜏

1

4𝑎√(𝑃
0
/𝑧
2
) − 𝜏

× (𝑄 (√𝜏 − 𝑎) − 𝑄 (√𝜏 + 𝑎))

× (𝑄(√
𝑃
0

𝑧
2
− 𝜏 − 𝑎)

−𝑄(√
𝑃
0

𝑧
2
− 𝜏 + 𝑎))𝑑𝜏

]

]

]

]

.

(34)

Now, we have the expression𝑓(𝑧). According to [8], optimum
threshold can be chosen so that sensors will make a decision
from 0 to 𝐿 − 1 with equal probability. The probability that a
sensor will make decision 𝑙 is

𝑃
𝑙
= ∫

√𝑃0/𝑑0

0

[𝑄(

𝜂
𝑙
− 𝑧

𝜎

) − 𝑄(

𝜂
(𝑙+1)

− 𝑧

𝜎

)]𝑓 (𝑧) 𝑑𝑧. (35)

Using (35), the optimum set of thresholds can be determined.

4. Sensor Selection Method

Energy is a precious resource in WSNs. Battery-powered
sensors may be deployed in a remote area and replacing

100

100

−100
−100

Figure 3: Sensor field divided into 25 sections (black points denote
anchor sensors).

batteries is infeasible in many situations. Therefore, saving
energy is very important in WSNs. The energy a sensor
uses can be divided into three parts. The first part 𝐸

1
is the

energy a sensor uses to measure the signal from the target.
The second part 𝐸

2
is the energy a sensor uses to maintain

essential functions, such as receiving information from the
fusion center and keeping itself awake. The third part 𝐸

3
is

the energy a sensor uses to send the decisions to the fusion
center. Because energy consumed in communication consists
of the majority part of energy consumption, reducing 𝐸

3

can significantly save sensor energy and greatly extend the
operation time of a sensor. A sensor selection scheme can
reduce energy consumption by choosing sensors containing
more useful information and allowing those sensors to send
the decisions to the fusion center while sensors containing
less useful information are not allowed to send decisions to
the fusion center.

In the target estimation method in [29], sensors are
selected based on PCRLB from all sensors. The computation
cost of this selection method may be prohibitive if the total
number of sensors is large.We propose a new sensor selection
method, which can alleviate the computation cost.

The steps of our method are as follows.

(1) Divide the whole sensor field into different regions.
Place 𝑁

0
number of anchor sensors. For example,

anchor sensors can be placed into a grid as shown in
Figure 3.

(2) Use anchor sensors and the weighted average method
to estimate a coarse target position.

(3) Use the coarse target position to choose all sensors in
the region where the estimated target is located. For
example, in Figure 4, region 1 will be chosen.

(4) If the target falls into region 𝑀
1
, sensors in the

neighboring region, region 2, will also be chosen. If
the target falls into the region 𝑀

2
, sensors in the

neighboring region, region 3, will also be chosen. If
the target falls into 𝑀

3
, sensors in all neighboring

regions, region 2, region 3, and region 4, will also be
chosen.
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Figure 4: Example of sensor regions.

(5) Chosen sensors will report decisions to the fusion
center. Sensors not in chosen regions will not report
decisions.

Our sensor selection method is easy to implement
and circumvents the computation problem in [29]. In our
method, the whole sensor field is divided into many smaller
regions and a coarse target position is used to select regions
in which sensors need to report their decisions to the fusion
center.Therefore, our method can greatly save sensor energy.

5. Performance Loss and Energy Saving

Although ourmethod can save sensor energy, the target local-
ization performance may suffer because the fusion center
does not have data from all sensors.Therefore, we alsowant to
know the performance loss and the amount of energy saved
due to sensor selection. Knowing the performance loss and
howmuch energy was saved can help us to make the decision
about when to use the sensor selection method.

5.1. Performance Loss. In our method, only two parameters
are estimated. Therefore, J is a 2 by 2 matrix:

J = [

𝐽
11

𝐽
12

𝐽
21

𝐽
22

] . (36)

If the set of selected sensors is 𝑅
1
and the set of nonselected

sensors is 𝑅
2
, then every element of J can be divided into two

parts. For example,

J (1, 1) =

𝑁

∑
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= J1 (1, 1) + J2 (1, 1)

J = J1 + J2 = [
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1
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1
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1
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1
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+
[

[
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𝐽
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𝐽
2
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(37)

Similarly, other elements can also be expressed as two
parts: fisher information contributed by selected sensors and
fisher information contributed by nonselected sensors. The
performance loss is due to loss of Fisher information from
nonselected sensors. However, this method to determine
performance loss is valid only if the target is at a fixed
position. If the target is randomly distributed, root-mean-
square (RMS) estimation errors can be used to show the
performance loss.We can compare theRMSestimation errors
provided by the MLE method using data from all sensors
and the RMS estimation errors provided by theMLEmethod
using data only from chosen sensors.

5.2. Energy Saving. It is assumed that each region has the
same size and the same𝑀

1
,𝑀
2
, and𝑀

3
. We use𝐴 to denote

the area of each region, 𝐴
1
to denote the area of 𝑀

1
, 𝐴
2
to

denote the area of𝑀
2
, and𝐴

3
to denote the area of𝑀

3
. Also,

we assume that the fusion center is far away from the sensors.
Therefore, the difference in sensor positions is not important
and each sensor will consume the same amount of energy to
send decisions to the fusion center. This energy is denoted by
𝑒
1
, which can be calculated by

𝑒
1
(𝑚, 𝑑
𝑓,𝑖
) = 𝐸elec × 𝑚 + 𝜀amp × 𝑚 × 𝑑

2

𝑓,𝑖
, (38)

where 𝐸elec = 50 uJ/bit, 𝜀amp = 100 nJ/bit/m2, and 𝑑
𝑓,𝑖

is the
distance between the 𝑖th sensor and the fusion center [37].

The total number of sensors in the sensor field is 𝑁, and
we assume that each region has the same number of sensors,
𝑁region. Then, the probability that the target is located in
region 𝑀

1
is 𝐴
1
/𝐴, the probability that the target is located

in𝑀
2
is𝐴
2
/𝐴, and the probability that the target is located in

𝑀
3
is𝐴
3
/𝐴.We assume that the targetmostly concentrates in

the center of the field, and in the center of the field, the target
is almost uniformly distributed. In each region, there are two
𝑀
1
areas, two 𝑀

2
areas, and four 𝑀

3
areas. If the target

is located in 𝑀
1
, the neighboring region is also activated.

Similarly, If the target is located in𝑀
2
, the neighboring region

is also activated. If the target is located in𝑀
3
, the other three

neighboring regions are also activated. Therefore, the energy
sensors consume to transmit decisions can be expressed as

𝐸
4
= 𝑒
1
∗ 𝑁region

∗ (

𝐴 − 2𝐴
1
− 2𝐴
2
− 4𝐴
3

𝐴

+ 4

𝐴
1

𝐴

+ 4

𝐴
2

𝐴

+ 16

𝐴
3

𝐴

) .

(39)

Without sensor selection, the energy consumed by sensors to
transmit decisions is

𝐸
5
= 𝑁total ∗ 𝑁field ∗ 𝑒

1
. (40)
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Now, we know the performance loss and energy saved.
Using the information about the performance loss and energy
saved, we can strike the balance between performance loss
and energy saving. Also, a multi-objective optimization
method can be used to jointly optimize performance loss and
energy saving.

6. Simulation Setup

6.1. TPC Encoding and Decoding. If sensors use TPC to
transmit decisions to the fusion center, localization perfor-
mance can be improved due to lower bit error probability.
For comparison purposes, simulations were run to show the
localization performance when TPC code was used and the
localization performance when Hamming code was used. In
simulations, each sensor quantized the received signal into 3
bits data. In hamming code, we used (7, 4, 3) Hamming code.
In TPC, we used BCH (32, 26) codes as the component code,
so the rate of TPC was (26/32) × (26/32) = 0.67. A highly
efficient iterative decoding algorithm, ALD-FBBA, is used at
the receiver side. ALD-FBBA can provide good performance
with low complexity. If communication channel SNR was
7 dB, the bit error probability was 0.0077 for Hamming code
and 0.0002 for TPC code. We calculated the decision transi-
tion matrix using the bit error probability. Using the decision
transition matrix corresponding to Hamming code and the
decision transition matrix corresponding to the TPC, we
compared the effect of coding on localization performance.
We set (𝑥

𝑡
, 𝑦
𝑡
) = (0, 0), 𝑎 = 90, and 𝑃

0
= 8000. We used

480 sensors and varied 𝜎 to see the effect of signal noise on
localization performance. 100 Monte Carlo simulations were
used to calculate RMS errors. The thresholds were set to

𝛾
𝑖
= [−∞, 0.917, 1.017, 1.116, 1.25, 1.45, 1.79, 2.6,∞] .

(41)
We define RMS location error as

Δ = RMS errors (𝑥
𝑡
− 𝑥
𝑡
) + RMS errors (𝑦

𝑡
− 𝑦
𝑡
) (42)

and used Δ as performance criterion.

6.2. Performance Loss and Energy Saving. We used random
target locations in the simulation. Therefore, we used Δ in
(42) as the performance criterion. Energy saving can be easily
calculated by comparing 𝐸

4
in (39) and 𝐸

5
in (40). In this

simulation, sensors were uniformly distributed in the sensor
field with 𝑎 = 90 and the target position followed Gaussian
distribution with 𝑥

𝑡
∼ 𝑁(0, 36

2
) and 𝑦

𝑡
∼ 𝑁(0, 36

2
). We

set 𝜎 = 1, 𝑃
0
= 8000, and assumed perfect communication

channels.Wedivided the sensor field into 25 regions as shown
in Figure 3 and set the 𝑙

󸀠 in Figures 2 to 4. The whole sensor
field had 480 sensors. Each sensor used the same amount
of energy, 𝐸

1
+ 𝐸
2

= 6𝑒 − 3 J, every second whether it
was selected or not. Selected sensors made 10,000 sets of
transmission every second. We assumed that the distances
from the sensors to the fusion center were the same, 1,000
meters. The optimum thresholds for this setting were

𝛾
𝑖
= [−∞, 0, 0.54, 0.96, 1.35, 1.76, 2.27, 3.31,∞] . (43)

The optimum thresholds were used in the simulations.
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Figure 5: RMS location errors as a function of the variance of signal
noise (RMS location errors were defined in (42), and the variance of
signal noise is 𝜎2).

7. Results and Analysis

7.1. TPC Encoding and Decoding. Figure 5 shows that RMS
location error as a function of the variance of signal noise.
The RMS location error increased as the variance of signal
noise increased. Moreover, the RMS location errors given
by the MLE method using TPC were lower than the RMS
location errors given by Hamming code. This means that
if the MLE method uses TPC, the localization performance
will be better. The threshold set used in this simulation
was presented in (41), which was an optimum threshold
set determined by the heuristic method. To determine the
optimum set of thresholds, we used 𝑎 = 90 and 𝜎

2

𝑥
=

𝜎
2

𝑦
= 0.001

2. The variance of 𝑥
𝑡
and the variance of 𝑦

𝑡
were

very small. That means the target rarely moved to another
position and was almost fixed at position (0, 0). Therefore,
the threshold set determined using these parameters was
valid for our simulation where (𝑥

𝑡
, 𝑦
𝑡
) = (0, 0). Moreover,

when the sensors used the optimum threshold set in (41),
the numbers of sensors making each particular decision
were almost the same (Figure 6). The results in Figure 6
validated the optimum set of thresholds calculated using
(35).

7.2. Performance Loss and Energy Saving. Simulation results
showed that using the setting described in Section 6.2, we
had Δwith selection = 8.3031 and Δwithout selection = 3.9825.
The difference between Δwith selection and Δwithout selection is
performance loss due to sensor selection. As for energy
saving, if our sensor selection method was used, the energy
consumption of all sensors was 𝐸selection = 28.4928 J per
second. If our sensor selection was not used, the energy
consumption of all sensors was 𝐸without selection = 483.12 J
per second. We can see that the sensor selection method
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Figure 6: Number of sensors as a function of decision value.

can greatly reduce energy consumption while sacrificing a
moderate degree of performance.

8. Conclusion

In this paper, a novel energy-based target localizationmethod
with selected sensors was presented. It is well known that
communication channel errors can degrade the energy-based
target localization methods. Our new target localization
method uses TPC to counter communication channel errors.
Simulation results showed that the target localizationmethod
using TPC can provide better localization performance
than the target localization method using hamming code.
Moreover, the sensor selection method used can save energy
without great performance degradation as demonstrated by
simulation results. Furthermore, if sensors use the optimum
thresholds determined by the heuristic method, there will be
about the same number of sensors making each particular
decision. Overall, the new energy-based target localization
method with selected sensors can achieve good localization
performance with less energy consumption.
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