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Accelerated growth of urban population in the world put incremental stresses on metropolitan cities. Smart city centric strategies are
expected to comprise solutions to sustainable environment and urban life. Acting as an indispensable role in smart city, IoT (Internet
of Things) connects the executive ability of the physical world and the intelligence of the computational world, aiming to enlarge the
capabilities of things in real city and strengthen the practicality of functions in cyber world. One of the important application areas
of IoT in cities is food industry. Municipality governors are withstanding all kinds of food safety issues and enduring the hardest
time ever due to the lack of sufficient guidance and supervision. IoT systems help to monitor, analyze, and manage the real food
industry in cities. In this paper, a smart sensor data collection strategy for IoT is proposed, which would improve the efficiency and
accuracy of provenance with the minimized size of data set at the same time. We then present algorithms of tracing contamination
source and back tracking potential infected food in the markets. Our strategy and algorithms are evaluated with a comprehensive

evaluation case of this IoT system, which shows that this system performs well even with big data as well.

1. Introduction

As urban population and corresponding needs of living
necessities keep expanding in modern cities, much higher
requirements are set for municipality governors to manage all
aspects in urban living. The performance of cities currently
depends on not only the city’s endowment of hardware
infrastructure, but also on the availability and quality of
knowledge communication and social infrastructure [1].
Smart city mainly focuses on applying the next-generation
information technology to all fields oflife, embedding sensors
to all physical objects in every corner of the world [2],
and forming the Internet of Things (IoT) via the Internet.
Then, we can integrate the internet of things through super
computers and cloud computing [3, 4].

IoT refers to uniquely identifiable objects and their virtual
representations in an Internet-like structure. It gives the
researchers on smart cities a wider platform and much more
possibilities [5] and is expected to substantially support sus-
tainable development of future smart cities [6]. The aim of IoT

is to create a distributed network of intelligent sensor nodes
which can measure many parameters to manage the city more
efficiently [7]. The term, Internet of Things, was firstly used
by Kevin Ashton in 2011 [8]. With the rapid development of
Radio-frequency Identification (RFID), people and objects
in the physical world are equipped with all kinds of sensors
and radio tags to authenticate their identity and status [9].
The introduction of IoT makes people’s daily life easier, safer,
and more interesting. Business may no longer run out of
stock or generate waste products, as involved parties would
know which products are required and consumed. Traffic
conditions can be achieved directly via cell-phones or GPS,
so that we can safely keep away from traffic jams or even
accidents. All kinds of data are collected and analyzed to
entertain people on the internet, for example, constellation
interpretation or social hotspots.

Provenance, which was originally used in works of arts,
refers to the chronology of the ownership or location of a
historical object [10]. With the rapid development of IoT and
cloud computing, provenance has been studied in plenty of



areas beyond arts, among which tracing the provenance of
an object or entity is a major aspect. The main purpose of
tracing the provenance is to provide contextual and circum-
stantial evidence for its original production or discovery, by
establishing, as far as practicable, its later history, especially
the sequences of its formal ownership, custody, and places of
storage.

Industrialization and rapid growth of human demands
have made food supply chain in modern cities move beyond
regional and include global participation in importing and
exporting. According to the US. Census, the imported
proportion of U.S. food consumption has grown from 7.9%
t0 9.6% between 1997 and 2005, roughly a 22% gain [11]. The
momentum of changes grows even faster nowadays. The scale
and heterogeneity of food supply chain make the capacity of
existing regulations and approaches limited. At this point, IoT
is a must for us as a platform to monitor and manage food
supply chain.

In this paper, we discuss a case in tracing provenance of
food supply chain, which is a feasible application of IoT in
smart cities. Our major contributions are as follows.

We propose Self-adaptive Dynamic Partition Sampling
(SDPS) Strategy to collect data from sensors, which would
mitigate the workload with minor loss of tracing accuracy.
Without loss of performance, our strategy needs only a small
portion of end markets’ samples from huge volume of raw
materials and products along all levels in the food supply
chain form. This would be an interesting discovery as smart
sampling is not explored intensively to manage data in IoT
systems for food supply chains though data collection and
modeling have been studied in IoT domain before.

As a case of SDPS applications, we introduce tracing and
backtracking algorithms to achieve provenance reasoning in
food supply chain. These methods can pinpoint the con-
tamination source in the network and identify the potential
problematic products in the markets. We are able to sample a
small portion of food only in the end markets and maintain
sufficient accuracy of provenance tracing over the whole IoT
system at the same time.

We further visualize the data flow and contamination
conditions for intuitive analysis. Some work on provenance
reasoning has already been realized and well modeled [12],
but no one has ever explicitly modeled contamination condi-
tions in cities.

The rest of the paper is organized as follows. In Section 2,
we will present existing related works. Section 3 briefly gives a
view of the system’s hierarchy. Section 4 raises the algorithms
and approaches in detail. Results evaluation is presented in
Section 5 and conclusion is drawn in Section 6, respectively.

2. Related Work

Provenance issues have been studied by researchers in the
areas of computer systems as well as management appli-
cations in diversified information systems, which comprise
part of the information technology (IT) infrastructure of
smart city management. Wikipedia on smart city [1] proposed
a prototype of Provenance-Aware Storage System (PASS)
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which could automatically collect provenance at the oper-
ating system level. Hasan et al. [13] focused on a thorough
analysis of threats to provenance systems. Both of their
methods are metadata models of provenance, but they have
not explained how to exploit and process these data model to
draw informative conclusions. In the context of food safety
management, information systems are important to assist
decision making in a short time frame, potentially allowing
decisions to be made in real time.

In smart city management domain, food safety issues
caused by contamination have not been studied adequately
in terms of modeling and visualization. McMeekin et al. [14]
introduced the technique of information systems used in the
safety management of food supply chain. A stochastic state
transition simulation model [15] as described to simulate the
spread of Salmonella from multiplying through slaughter,
with special emphasis for critical control points to prevent
or reduce Salmonella contamination. Wein and Liu [16]
developed a mathematical model of a cows-to-consumers
supply chain associated with a single milk-processing facility
that is the victim of a deliberate release of botulinum toxin.
Qin established a quality management model for food supply
chain based on game theory [17].

We have modeled and discussed about traceability in food
supply chain in [18]. In the current work, algorithms are
further optimized for big data and self-correction strategies
are applied to make sampling and the whole scheme adaptive.
Also, contamination conditions can be visualized to make the
IoT system more intuitive.

Sampling strategies in IoT systems have attracted inten-
sive studies [19-21]; however, some issues still remain
unsolved; for example, how to exploit a small sampling size
from huge volume of food supplies without loss of accuracy.

3. Modeling IoT System Structure for
Food Supply Chains

With the growing size and demands of modern cities, the
structure of food supply chain has become huge and compli-
cated. Moreover, due to huge volume of sensors attached to
items travelling along it, it is usually infeasible to collect and
process sensing data from all the food in every level. Based on
those concerns, to speed up provenance solutions, we only
gather a small part of sensor data on the end nodes in the
chain. So, how to reckon on this small portion of sensor data
to figure out contamination source appears to be a pending
issue in our strategy. Additional concerns also arise from
this problem regarding loss of accuracy due to small sample
volume and performance of tracing scheme. We will propose
our heuristic approach and algorithms to tackle this problem
later in this paper with additional thoughts on algorithm
complexity.

3.1 Physical Structure of IoT Systems for Food Supply Chains.
We have sensors at every end node in the supply chain, which
provide us comparable information to determine whether the
product is safe or not. With the sensor data and their physical
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FIGURE 1: An illustration of IoT system’s physical structure modeled for food supply chain.

connection, food supply chain forms an internet of things
(IoT) network.

In reality, real-time decision making is critical in food
safety issues. If contamination source is unknown for one
more hour, more people will be exposed to danger. Besides,
in food industry, examination is more or less material-
consuming. We cannot take part of every piece of food in
every stage of the chain, no matter there are problems or not,
to the sensors for physical and chemical check, as it would
bring food companies a great economical loss. As a result,
we would like to sample food only in the end markets with
a small portion.

After that, with this small part of products, we manipulate
these data to get a whole picture over contamination condi-
tions in the entire network, such as the contamination source
and the other involved foods that need to be recalled.

The Physical structure of the system is shown in Figure 1.

3.2. Modeling of Food Supply Chain. Generally, food supply
chain can be divided into seven stages: plantation/cultivation,
slaughtering, transportation, inventory, wholesale, retailing,
and customers. Although the chain is heterogeneous, we can
view it as the flow through the combination and repetition of
those stages based on certain rules.

Firstly, it is often impossible for us to know in advance
which physical position (e.g., vehicle or warehouse) a piece of
food would be in. In other words, the trend of food is almost
random.

Secondly, food can access a particular location more
than once, and a location can play different roles in the
manufacturing of one food product. For instance, pork can
be carried by the same vehicle before and after slaughtering,
which will generate a circle if we view the chain as a flow.

Thirdly, not all the food in the contamination source will
be infected. The percentage of infection is determined by

the type of epidemic disease, temperature, density, and other
objective aspects.

Finally, other locations which are not the contamination
sources may also generate new contaminated food due to
cross contamination. The classic Reed Frost Model has
become a standard to model cross contamination conditions
[22]. Based on explicit contamination discussed in this
model, we introduce implicit infection to get the average
infection possibility, P, in certain batch and stage location by

o1 (1-n) (R O

We will use # as the mark of number in this paper. In (1),
Py, represents the possibility that infection happens if two
pieces of food touch each other directly and one of them
has been explicitly infected, and #exp is the number of food
products that have been explicitly infected. P,,, and #imp
mean the same, respectively, in implicit infection cases. Food
that has been implicitly infected will not infect the others
but it will be counted as contaminated ones according to its
physical and chemical characteristics. As implicit infection
has been considered here, the model is much more realistic.
Some scholars have published several extension models based
on Reed Frost Model [23]; however, we only take implicit
infection into consideration since (1) can describe our case
better with sufficient accuracy.

Food supply chain is viewed as a Directed Acyclic Graph
(DAG), in which each node stands for one location keeping or
processing some batches of food for a period. DAG constructs
the relationship within the internet of things based on the
order and dependency among all the sensor data. The graph
is acyclic since we use batch number working as a time
stamp that can distinguish stages in the chain. In this way,
although food may be carried by the same vehicle in more
than two stages, they have different batch numbers which will
be regarded as two nodes in a DAG.
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(2) Output: sample set
(3) //Training Phase:

(6) //Sampling Phase:

(7) Sample a small portion #;
(8) BEST = oo

(9) while n < BEST do

)  PBIlA)=Ga1-a)™
(12) P(A;|B)=

(1) Input: type of foodborne disease: T
(4) Look up contamination probability p according to T;

(5) Configuration: Topology information, #(contamination intervals), p;

(10)  //Compute posterior probability based on Bayesian Estimation;

P(B| Aj)P(A))

15) BEST = P.interval;;
(16) end if

(17)  end for

(18)  If BEST < 80% then

T YL, P(BIA)P(A))
(13)  for i = 1:#(contamination intervals) do
(14) if P.interval, > BEST then

(19) Find the best sample rate according to its relationship with BEST;

(20) If n < BEST then

(21) Sample (BEST-#) products;
(22) else

(23) break;

(24) end if

(25) endif

(26) end while

ALGoORITHM l: Sampling algorithm.

Records of each location and product are documented,
respectively. Location records include batch numbers, the
number of sampled products labeled as GOOD (uninfected)
or BAD (infected) in this batch, and the IDs of polluted
samples in this batch. Product records contain the informa-
tion of examination result for a piece of food, the orders of
batches and locations the product passed, and the pointers to
these location records. The pointers serve as the connection
between those two data structures.

3.3. Logic Structure of IoT System for Food Supply Chains.
As shown in Figure 2, the hierarchy of this IoT system
contains four layers: data collection and management layer,
intelligent processing layer, graphic representation layer, and
self-correction layer. Specific approaching methods and algo-
rithms will be discussed in the following sections.

4. Heuristic Provenance Approach and
Tracing and BackTracking Algorithms

In this section, detailed approaches and algorithms to solve
provenance issues in food supply chain are introduced.
Firstly, we present a Self-adaptive Dynamic Partition Sam-
pling (SDPS) Strategy to improve the efficiency and intel-
ligence of sensor data collection and management. Then,
tracing and backtracking algorithms are discussed, respec-
tively, to catch the contamination source and dig out potential
infected food products still circulating in the markets. Finally,
we introduce Self-Correction Method to maintain and update

‘ Sample I
more?

‘ Training I ‘ LUT I | Sampling

Intelligent processing layer

Tracing Back-
origin tracking
Graphic representation layer
Data
visualization

Confidence Success
metric metric

FIGURE 2: Logic structure of IoT system model for food supply chain.

the system, which would make the system adaptive and
flexible to certain applications.

4.1. Self-Adaptive Dynamic Partition Sampling Strategy. As
we mentioned in Section 3.1, to improve the efficiency of
manipulating sensor data, Self-adaptive Dynamic Partition
Sampling Strategy (SDPS) is introduced which cuts down
the number of samples in a great deal. The pseudocode for
sampling algorithm is shown in Algorithm 1.
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4.1.1. Partition Strategy. Partition strategy makes samples
more general and representative. In this case, the system
divides the whole group of products into several parts
according to the batches they belong to in the end markets.
The sampled volume for batch #n of market m is determined

by
#prOduCtS (m,n)

M N :
Yoo Do #products,,
(2)

Here, M and N are the total number of end markets
and batches in network. Subscripts (1, n) and total mean the
number of samples or products in batch »n, market m, and in
all batches for all end markets, respectively.

#sample #sample, ., ¥

mmn) —

4.1.2. Dynamic Strategy. Dynamic strategy based on Bayesian
estimation is adopted to achieve minimal sample vol-
ume. According to the infection probability of a particular
pathogen determined by medical experiments, the model
can be trained to gain the distribution of total infection
probability within the whole food supply network, which is
the prior probability. The probability density function of the
distribution is presented as a function of infection probability
intervals.

On the other hand, after sampling a small part, the
infectious rate of the samples, the posterior probabilities,
can be obtained. If k infected products are found within »
samples, under a certain contamination percentage interval
with prior probability of a;%, conditional probability is
obtained by binomial distribution in the following:

n— ! n—
P(B|A)) = <Z>aik(1_ai) = maik(l_ai) ‘
(3)

Here, A; means the event that the contamination percent-
age of the whole products falls into the ith interval with a
prior probability of a;% and B means the event that we find k
contaminated products in n samples.

After that, Bayesian Formula, (4), is applied to combine
prior probabilities with posterior probabilities and get revised
probabilities, which describe the specific environment better
as follows:

P(B|A;)P(A;)

P(A;|B) = Y P(BIA)P(A) v

4.1.3. Self-Adaptive Strategy. The tracing algorithm which will
be discussed in the next section has some requirements for
its input sampling data. If the ratio of infected products to
uninfected ones is too high, the tracing algorithm performs
poorly as there are not enough healthy samples to exclude the
suspicions. On the contrary, if the ratio is too low, the noise
introduced by sampling process may dominate the result.
In these two extreme cases, more samples than other cases
should be tested to improve the accuracy. Hence, under each
sampling rate, there is a relationship between the best tracing
algorithm accuracy and pollution proportion interval for

a particular topology. Given all the relationships in a specific
interval, for economical reasons, this strategy picks up the
smallest sampling rate that achieves certain requirements
(e.g., 90% accuracy). Then, we sample the food in end market
again under that rate and update Bayesian Estimation to find
if the sampling rate has met the requirements.

4.2. Tracing Algorithm. Pseudocodes of tracing algorithm are
shown in Algorithm 2. After sampling and sensing, we add up
the number of infected and uninfected food products passing
every location and batch. They are stored in two variables:
GOOD and BAD for each place.

Supposing that the samples properly reveal the condition
of the whole products set, the criterion to find the suspect
sources is set as GOOD < ¢ and BAD > 0. It is feasible
because the contamination source would be the primary
spot generating polluted food and the number of uninfected
samples is limited there. ¢, regarded as the error factor,
is a small integer which enables the algorithm to remain
valid when not all the food passing the source is infected
or there is some disturbance caused by nonideal problems
(e.g., imperfect sampling). The specific ¢ value is decided by
the samples’ number and infection probability of pollutant
source, which can be roughly represented as follows:

. #samples x pollution_probability

(5)
#batches

This criterion is not strict enough to pinpoint only one
contamination source as the result. So, extra work should
be applied to eliminate these confusion suspects. First of all,
to improve the speed of the algorithm, suspects with small
BAD value will be excluded. Then, the system will generate a
Suspect Tree composed of the suspected locations and batches
according to their order in the food supply chain. After that,
traverse the Suspect Tree layer by layer and the first node that
meets the same criterion will be picked up as the root source
since the original contaminant is always on the top over cross
contaminant in the tree.

4.3. BackTracking Algorithm. In order to judge the perfor-
mance of backtracking algorithm, Hit Rate and False Alarm
Rate are put forwards to denote the algorithm’s ability of
capturing infected products and the probability of reckoning
good products as infected ones by mistake. Supposing the
total number of products and infected products are N and I,
respectively, and the algorithm selected # potentially infected
products, including i infected ones, we define Hit Rate as i/,
and False Alarm Rate as (n—i)/(N—I). Although, theoretically,
both high Hit Rate and low False Alarm Rate are expected,
there is a tradeoff between them.

The backtracking algorithm is described in Algorithm 3.

4.4. Self Correction Method. Two metrics are defined to judge
the performance of the system and provide reference for latter
parameters’ settings.
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(1) Input: samples’ spatial information and examination results
(2) Output: contamination origin

(3) k=0;

(4) for i = I:#samples do

(5)  for j = I:#(locations/batches on sample;’s path) do

(6) if sample, is infected then

7) sample;.location j.batch - BAD++;
(8) else

9) samplei.location]-.batchj.GOOD++;
(10) end if

(11)  end for

(12) end for

(13) for m = 1:#(locations/batches in the entire chain) do

(14)  if location,, .batch,,.GOOD < & &&location,,.batch,,.BAD > 0 then

(15) Record location.batch into suspect[k];
(16) k++;
(17)  endif

(18) end for

(19) Exclude suspects w/small BAD;
(20) if #suspect > 1 then

(21)  Get food IDs passed all suspects;
(22) if #ID > 0 then

(23) Get food IDs passed at least one suspect;
(24) endif
(25) end if

(26) Construct “Suspect Tree” of batches according to the paths of these IDs.
(27) for n = 1:#(tree nodes) do
(28) if (suspect[n].location,,.batch,.GOOD < ¢ &&

(29) suspect[n]location,,.batch,.BAD > 0) then
(30) origin = suspect[n];

(31) endif

(32) end for

ALGoRITHM 2: Tracing algorithm.

(1) Input: contaminated samples set: {Re-check}

(2) Output: infected food products set: {Bad}

(3) while (1) do

(4)  Construct a tree of location/batch according to
(5)  the paths of contaminated products in {Re-check};
(6)  Traverse the tree DFS;

(7)  Record all nodes in Bad;

(8)  Empty {Re-check};

(9)  if node.location.batch is new then

(10) Find the food IDs passed these nodes;

11) Sensor them.

(12) if food is contaminated then
(13) Put its ID in {Re-check};
(14) end if

(15)  else

(16) break;

(17)  endif

(18) end while

ALGORITHM 3: Back tracking algorithm.
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FIGURE 3: Topology (DAG) of a food supply chain case for evaluation.

Confidence Metric (CM) is defined as the difference
between prior probability and posterior probability as fol-
lows:

P

CM:'P i

pri

ost

P pri

(6)

Pyo and P, are the posterior and prior possibilities,
respectively. If CM is small, we are more confident that the
dataset suits the model trained previously and vice versa.
Thus, we can correct (4) and combine prior and posterior
probabilities to get more reasonable infection probabilities,

P_ . of the entire network as follows:

P(A;|B)+CMxP(A))
1+CM '

7)

comb —

Success Metric (SM) measures the accuracy of the system
as follows:

#success

. 8
#total ®

It is defined as the ratio of successfully detected times to
total tested times. With lower SM, the criterion of sampling
would be set stricter and vice versa.

These two variables help to adjust sampling algorithm
slightly to fit it into certain environment and applications.

4.5. Timing and Space Complexities. Suppose there are m
samples, n stages, and [ batches for all locations in a food

supply chain, timing complexities of tracing, and back-
tracking algorithms are O(mn) + O(l) and O(m) + O(l),
respectively. There exists a tradeoft between tracing accuracy
and time consumption in SDPS. Obviously, more samples
mean longer time and better knowledge of the network.
Compared with the time spent on chemical testing and
sensing, time consumption in SDPS is negligible.

A piece of record is required for every location and every
food products, so space complexity of the whole IoT system
is O(a + b), where a is the number of food products and b is
the number of locations in the network.

5. Evaluation Results and Analysis

We set up two specific cases (Figures 3 and 4) to evaluate the
proposed system. The first case gives a general evaluation and
shows that our SDPS scheme outperforms other sampling
methods, while the second one focuses on the performance
on large system and big data.

5.1. Experimental Setup. In Figure 3, note that vehicles 1 and
2 serve as the transportation node both from farm to factory
and factory to market. This makes the model closer to reality
as some locations in the chain can act as different characters
in food procession.

The configuration of the two cases is listed in Table 1.
Every location in the chain holds 25 and 500 batches in case
of 1 and 2, respectively. Total of 60 and 800 thousand of food
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FIGURE 4: Topology (DAG) of a food supply chain case for evaluation (with big data).

products are circulating in the network. Which location a
piece of food will pass is absolutely random.

We build the simulator in C++, which reads in the
configuration files that describe supply chain topologies,
generates simulated contamination behavior, and senses data
along food supply chains. In simulation, the contamination
source and sampling volume can be set by the users explicitly.
Food contamination rules are set as that food can be infected
by passing (1) contamination source directly or (2) cross
infection spots indirectly according to our revised Reed Frost
Model.

To make this paper compact, we only show the training
process of the first model here. In the training process, we
get prior probabilities which highly depend on the topology
and configuration of the chain. Figure 5 shows the distribu-
tion of infected proportion under different contamination
probabilities after 300,000 tests. Under each contamination
probabilities (depend on contamination type), the actual
portion of pollution is almost Gaussian distributed, which is
the same as what we discussed in Section 4. Note that the
value of x axis (x) should be transferred to the pollution
proportion interval by the following function: [(x — 1) =
4%, x * 4%) since the total space is divided into 25 sections.
The relation between the products’ contamination percentage
and the tracing algorithm accuracy under different sample
rates is shown in Figure 6. For clarity, only 3 sampling
rates are tested: 3%, 5%, and 10%. To make sample strategy
more efficient, more rates can be evaluated in real situations.
Figure 6 confirms the hypothesis we proposed: the source is
difficult to be detected if only a small or too large part of food
is contaminated. In both ways, the flow path of contamination
is hidden easily.

TaBLE 1: Configuration of the two cases.

Case 1 Case 2
#batches/location 25 500
#total products 60,000 800,000
Flow rule Random Random

TABLE 2: Simulation results of back tracking algorithm.

Hit rate False alarm rate

96% 3%

5.2. Evaluation Results. Figure 7 shows the accuracy of the
tracing algorithm. In different probability of infection in the
whole chain, the accuracy can achieve no less than 80%. In
Figures 8 and 9, partition and dynamic strategy in SDPS
are tested, respectively. In all probabilities of infection cases,
partition strategy has higher tracing accuracies than that
of global sampling strategy (11.8%, 22.7%, 10.9%, and 4.1%
higher with the infection probabilities of 30%, 67%, 80%, and
90%). And compared with sampling in fixed rates (3%, 5%,
and 10%), dynamic method achieves higher tracing accuracy
even with a lower average sampling rate of 7.8%.

For backtracking part, the result of simulation is shown in
Table 2, Both Hit Rate and False Alarm Rate are satisfactory.

Case 2 has a large data scale. We also fetch a few each
times and let the system tell us the amount of samples to get
next time based on (4). System’s actual sampling rate turns
to be 7.8%. As in Figure 10, the accuracy of tracing algorithm
is higher than 80% as well, which shows that our proposed
approach works well with big data.
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5.3. Contamination Visualization. With the tool introduced
by [24] and the information we choose to record, SDPS
provides sampling data that can be represented visually after
being tested by sensors. The Figures 11 and 12 show the data
flow of infected and uninfected food products, respectively.
In this case, we use the configuration in Case 1 and set
the contamination source to be the 4th batch in factory in
advance.

100 -
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80 0—

70

Tracing accuracy (%)
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50 T T T 1
0 20 40 60 80 100

Probability of infection (%)

FIGURE 7: Accuracy of tracing algorithm with different probabilities
of infection.
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FIGURE 8: Simulation results of partition sampling strategy: tracing
accuracy under infection probabilities of 30%, 67%, 80%, and 90%.

The vertical lines marked with locations and batches
numbers represent the nodes in data flow. Lines going
through these nodes are the traces of food products. As shown
in those figures, most of the infected food while none of the
uninfected food passed the 4th batch of factory (the node
with a circle around it). So, it has a great chance to be the
source of contamination, which is also proven by our tracing
system.

SDPS makes data concise but still comprehensive, which
facilitates visualization tool displaying the useful informa-
tion.

Apart from aiding detecting contamination source, visu-
alization can also help to know contamination conditions
(e.g., contamination severity/distribution) of the whole IoT
system better. For example, a well-managed warehouse or a
city with lower temperature may lead to less contamination.
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FIGURE 10: Simulation results of tracing accuracy with big data under
different infection probabilities.

Information of these kinds can be directly read from visual-
ization images and help manufacturers to design their food
supply chain more scientifically.

Visualization of the contamination condition in IoT
system makes the provenance reasoning in food supply chain
intuitive and informative.

5.4. Performance Estimation in Real Situations. In reality,
food supply chain is more complicated. A lot of factors, such
as specific food type, environment, temperature, manufacture
process, and other parameters, could make the chain difficult
to predict. To implement our strategy into real situations,
those factors should be concerned and some parameters
should be adjusted accordingly.

The factor that influences the behavior of food supply
chain the most is the type of food. Different food has its
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own characteristics, which may dominate the model, the
provenance procedure, and expecting results. Firstly, food
type can decide the possible contamination source. In (1),
Py, and P, are related with the virus that spreads among
food. For example, avian influenza virus, which is a common
infectious disease among poultry, began to be contiguous
among human beings. After the mutation, infectious ability
of this virus grew significantly. As a result, P,,, and P,
of avian influenza virus in chickens would also increase.
Secondly, food type is a deciding factor for its storage
pattern and quality guarantee period. Some canned drinks are
stacked layer by layer separately, so they would not got cross
contaminated. However, raw meat is generally kept together,
which provides an easy environment for virus to spread.
Thirdly, the state of food is also dominant in provenance. One
piece of food in solid state can be seen as a unit, while liquid
food, like yogurt, could be ruined by only one deteriorated
drop. In this way, for yogurt, the sampling process could
be very different as spatial position should be taken into
consideration and virus’ behavior of liquid should also be
studied.

Besides food type, there are other factors playing impor-
tant roles in real situation. Food in summer is more likely
to turn rotten than winter; some manufacturing factories
are more hygienic than others; with time passing, food may
get easier to be infectious; and the types or dosages of
food addictives may make the contamination process slowed
down.

Although different food supply chain can behave var-
iously, our proposed strategy can cover most of the cases
because it obeys the general model of food supply network
and epidemiological principles.

6. Conclusion

In this paper, we present a heuristic approach to tracing
contamination sources in large IoT systems for complicated
food supply chains, which is a critical issue in metropoli-
tan life. In our approach, Self-adaptive Dynamic Partition
Sampling (SDPS) Strategy was proposed to collect data for
sensors, whose input is only a small portion of end market
samples from huge volume of samples along food supply
chains. The approach was illustrated with a case study of
IoT system about provenance in food supply chain, which
can efficiently stop the outbreaks of foodborne disease. With
the intelligent SDPS Strategy, objects tested by sensors are
the most reasonable portion of the entire products set. The
efficiency is highly improved and the accuracy stays almost
the same as sensing all the objects at the same time. SDPS
keeps the integrity of information and approaches a nearly
real-time examination. Also, we present a tracing algorithm
to find the contamination sources of food supply chains,
and a backtracing algorithm to provide strategy for recalling
problematical food undiscovered in the chain. It is indicated
in simulation results that our SDPS scheme can achieve up to
the tracing accuracy of 97.8% with a smaller average sampling
percentage compared with traditional global random sam-
pling. We managed to sample a small portion of food only
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FIGURE 11: Visualized data flow of infected food products in food supply chain.
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FIGURE 12: Visualized data flow of uninfected food products in food supply chain.

In this paper, we assume that all provenance information
of food products is hosted by a centralized repository and
these provenance metadata are organized in a uniform man-
ner. Our future work is to further make practical implemen-
tation of the provenance of food supply chain in a community
as our testing bed for megacity management.

in the end market without loss in accuracy of provenance
tracing over the whole IoT system. In addition, our analytic
data and visualized images can clearly model contamination
conditions in food supply chain within the context of IoT
system. This will give the clients an intuitive impression on
food supply networks in a city.
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