

International Journal of Distributed Sensor NetworksVolume 2013 (2013), Article ID 385892, 12 pageshttp://dx.doi.org/10.1155/2013/385892
Research Article
FlexFT: A Generic Framework for Developing Fault-Tolerant Applications in the Sensor Web
Delano Medeiros Beder,1 Jó Ueyama,2 João Porto de Albuquerque,2 and Marcos Lordello Chaim3
1DC, Federal University of São Carlos (UFSCar), 13565-905 São Carlos, SP, Brazil2ICMC, University of São Paulo (USP), 13566-585 São Carlos, SP, Brazil3EACH, University of São Paulo (USP), 03828-000 São Paulo, SP, Brazil
Received 29 August 2012; Accepted 4 December 2012
Academic Editor: Yunghsiang Han
Copyright © 2013 Delano Medeiros Beder et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract.
Fault-tolerant systems are expected to operate in a variety of devices ranging from standard PCs to embedded devices. In addition, the emergence of new software technologies has required these applications to meet the needs of heterogeneous software platforms. However, the existing approaches to build fault-tolerant systems are often targeted at a particular platform and software technology. The objective of this paper is to discuss the use of
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
—a generic component-based framework for the construction of adaptive fault-tolerant systems that can integrate and reuse technologies and deploy them across heterogeneous devices. Furthermore,
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 provides a standardized and interoperable interface for sensor observations by relying upon the “Sensor Web” paradigm established by the Open Geospatial Consortium (OGC). We have implemented a Java prototype of our framework and evaluated the potential benefits by carrying out case studies and performance measurements. By implementing and deploying these case studies in standard PCs as well as in sensor nodes, we show that
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 can cope with the problem of a wide degree of heterogeneity with minimal resource overheads.

1. Introduction
At present, a number of software development technologies (e.g., component-based approach, aspect-oriented programming, and web services) can be employed for building systems that can be run on a variety of hardware platforms ranging from standard PCs to networked embedded devices. This scenario is also valid for reliable systems which are often required to run on a variety of hardware platforms including embedded devices. In this paper we are concerned with examining two types of heterogeneity:(i)Device Heterogeneity. Fault-tolerant systems are often deployed with heterogeneous devices which can range from PCs to embedded devices. However, this heterogeneity is expected to be adversely affected by the emergence of new hardware platforms.(ii)Software Language/Middleware Heterogeneity. There are currently a large number of fault-tolerant policies, each of which requires a particular procedure and strategy. They are normally based on heterogeneous programming languages and technologies (e.g., publish-subscribe systems, web service applications, tuple spaces, and message-oriented toolkits).
The aim of this paper is to investigate approaches that can lead to the development of middleware solutions that require different programming models in different environments. For this purpose, we introduce
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
, a generic framework for constructing reliable systems that can deal with both hardware and software heterogeneity. This consists of a minimal policy-free microkernel where fault tolerance policies are incremented as demanded. Furthermore, it provides a standardized and interoperable interface for sensor observations, by relying on the “Sensor Web” paradigm [1] established by the Open Geospatial Consortium (OGC).

The policy is deployed in the form of component plugins, which are destroyed when no longer required.
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 also supports dynamic adaptation, as these plugins can be reconfigured at runtime. The key feature of
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 is the provision of a unique tool for constructing reliable systems based on a wide range of software technologies targeted at a variety of hardware platforms. We evaluate
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 by means of case studies and performance measurements; these show the following important benefits.(i)Flexibility. Fault-tolerant systems can be developed and deployed independently of target platforms. The kernel can plug in the targeted platforms of a particular abstraction or behavior that is implemented.(ii)Reusability/Modularity. The developers can reuse the existing components and processes that are employed for particular platforms.(iii)Transference of Skills. The employment of different technologies to build applications for each targeted device and applicability do not allow for the transfer of skills across different tools. Skill sets and areas of expertise are rarely transferable when they rely on different technologies. A generic approach can bring about the transference of skills because the developers only utilize a single tool for developing applications based on a variety of technologies.(iv)Technology Independency.
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 allows heterogeneous components to be reconfigured, for example, both COM and Java components.(v)Interoperability.
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 provides an interface that follows the “Sensor Web” paradigm and makes it easy for developers to export sensor observations in accordance with the OGC standard Sensor Observation Service (SOS) (http://www.ogcnetwork.net/swe). In this manner,
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 provides interoperability with a variety of end-user applications that are able to consume data via web services that comply with the SOS standard.
The paper is structured in the following way: we set out by discussing the basic concepts and research challenges in Section 2. Section 3 reviews selected works related to the topics discussed in this paper. Following this, Section 4 outlines the generic framework for fault-tolerant system development; this includes an in-depth examination of the benefits obtained. Together with this section, Sections 5 and 6 examine some case studies which draw on the constructed prototype to show that the proposed approach attains an acceptable standard of performance and adequate resource consumption overhead. Finally, Section 7 concludes the paper and adds some comments about ongoing work.

2. Background and Research Challenges
Before examining the
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 architecture in detail, we will first discuss the determining factors underlying this new approach to reliable software development.

Sophisticated applications must now take account of a wide range of software technologies and middleware platforms to meet a large number of requirements. As illustrated in Figure 1(a), a reliable system may have to use an implementation that has already been developed as Java or XPCOM (https://developer.mozilla.org/en/XPCOM) components, and a multithreaded component technology may also be necessary. In addition, multiple distribution abstractions may be required for example, a publish-subscribe binding when the application is operating over ad hoc wireless networks, along with Web Service middleware when the application needs to interact with a legacy service in the established infrastructure.

	
		
	

(a)

	
		
	

(b)
Figure 1:
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
: research challenges.

Furthermore, end users currently rely on a variety of devices ranging from PCs to smartphones. They are also often interested in accessing data from a number of sources including sensor motes (e.g., data coming from urban rivers, such as temperature and depth levels). Since these different sources have heterogeneous sensor protocols and interfaces, this scenario requires a good deal of effort on the part of application developers. Moreover, information systems that rely on sensors (e.g., information systems for disaster management) usually depend on integrating and composing several services, where each service handles different sensors that monitor and collect specific contextual information. Since typically the services are developed in an independent way, it is important to do adhere to a standardized interface to ensure interoperability.
Against this backdrop,
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 offers a generic approach to help application developers mitigate the effects of this heterogeneity so as to ensure that end users can read data from sensors using a wide range of devices (e.g., PCs, smartphones, and tablets). Rather than treat these as individual technologies that must be understood and integrated in an ad-hoc manner,
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 provides a single unified tool to allow developers to build applications to deal with the current heterogeneous environments which rely on the Sensor Web standards referred to above.
Reliable systems are also built on a diverse range of hardware platforms, as illustrated in Figure 1(b). Instead of depending on porting applications across these platforms with the aid of the software technologies that are available,
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 offers a tool where the application can be developed independently of the target; the system then ensures that the appropriate implementation is deployed. Finally, since change is an essential feature of current systems, a uniform approach is required to provide dynamic software reconfiguration as well as to tackle the problem of heterogeneity.
The
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 framework provides mechanisms that make it easier for application designers to undertake the task of constructing reliable component-based systems. The construction of reliable systems is not a simple task; it requires the use of appropriate techniques during the whole software development cycle. In general, these techniques are based on the provision of redundancy (i.e., they make use of design diversity), both for error detection and error recovery.
Design diversity [2] means that multiple functionally equivalent software components are independently generated from the same initial specification. Two or more versions of the software component are independently developed from this specification, each by a group that does not interact with any other, and, whenever possible, employs different algorithms.
However, the provision of software redundancy involves the following: (i) an increase in the cost of creating the software and (ii) a greater degree of complexity in the system, caused by the addition of redundant components. Ideally, the added software redundancy should be incorporated into the original system in a structured and nonintrusive manner to enable the application designers to construct dependable systems.
2.1. Recovery Block
Recovery block [3] is a technique devised by Randell [4] from what, to some extent, was observed to be the practice at that time. The description outlined here has been slightly changed from the original description so that it is in accordance with the approach for component-based systems development. In a system with recovery blocks [3], the design of the system is broken down into fault recoverable blocks/modules (i.e., reliable system components). Each critical system component requires the separate development of alternative variants (modules of differing design aimed at a common specification) and one adjudicator to check the results produced by the variants (by means of an acceptance test). On entry to a recovery block, the state of the reliable system component (or of the whole system) must be saved to permit backward error recovery, that is, to establish a checkpoint.
The primary alternate is executed, and then the acceptance test is evaluated to provide an assessment of its outcome. If the acceptance test is passed, the outcome is regarded as successful and the recovery block can be exited. The information on the state of the component system obtained on entry (i.e., at the checkpoint) can be discarded. However, if the test fails or if any errors are detected by other means during the execution of the alternate, an exception is raised and backward error recovery is invoked. This restores the state of the component system to what it had been on entry. After this recovery, the next alternate is executed and then the acceptance test is applied again. This sequence continues until either an acceptance test is passed or all of the alternates have failed it. If all the alternates either fail the test or result in an exception (due to an internal error being detected), a failure exception will be signaled to the environment of the recovery block.
2.2. N-Version Programming Technique
Among the design diversity techniques, it is worth highlighting the N-version programming technique [2]. In an N-version software system, each module is formed of up to N different implementations. Each variant carries out the same task, but it is hoped in a different way. Each version then submits its answer to a voter or decider which determines the correct answer (e.g., the majority of the votes) and returns this as the result of the N-version component system.
There are few differences between the recovery block and the N-version techniques, but they are important. In traditional Recovery Blocks, each alternative would be executed serially until an acceptable solution is found as determined by the adjudicator. The N-version technique has always been designed to be executed in parallel. In a serial N-version system, the cost in time of trying out multiple alternatives may be too expensive, especially for a real-time system. Another important difference between the two methods is the distinction between the roles of an adjudicator and decider. The recovery block technique requires each fault recoverable block (reliable system component) to build a specific adjudicator; in the N-version technique, a single default decider (e.g., the majority) may be used. On the basis of the assumption that the programmer can create a sufficiently simple adjudicator, the recovery block technique will create a system which is very unlikely to enter into an incorrect state. The engineering tradeoffs, especially monetary costs, involved with developing either type of system have both benefits and drawbacks, and it is important for the engineer to explore the space so as to be in a position to decide on what the best solution for his project should be.
2.3. State-Based Variant Execution
The ability of dynamic reconfiguration—for example, to replace faulty components and/or to change the computation performed in fault situations—is a crucial factor in the development of reliable systems. When account is taken of the diversity of designs (components and their different variants), ideally the selection of the variant that will be executed should depend on the system and/or state of the component.

	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 supports dynamic adaptation, as these components and/or variants can be reconfigured at runtime, by implementing a slight variant of the state design pattern [5], a well-known pattern that has been used in various applications. Its purpose is to allow an object to change its behavior when its internal state changes.
Consider the following example of motivation: components
	
		
			
				𝖲
				𝖾
				𝗇
				𝗌
				𝗈
				𝗋
			

		
	
 which represent individual sensors in a sensor network system and component
	
		
			
				𝖢
				𝗈
				𝗇
				𝗇
				𝖾
				𝖼
				𝗍
				𝗂
				𝗈
				𝗇
			

		
	
 which provide the communication infrastructure for this system. For the sake of simplicity, we restrict
	
		
			
				𝖢
				𝗈
				𝗇
				𝗇
				𝖾
				𝖼
				𝗍
				𝗂
				𝗈
				𝗇
			

		
	
 to two variants: Bluetooth and Wi-Fi. Depending on the current state of the system, it can respond in a different way to the client’s (sensors) requests. For example, the implementation of a
	
		
			
				𝗌
				𝖾
				𝗇
				𝖽
				𝖬
				𝖾
				𝗌
				𝗌
				𝖺
				𝗀
				𝖾
			

		
	
 operation depends on the state of the system: if the system is in its “normal” state, the communication should be carried out by using Bluetooth (cheaper); otherwise, the Wi-Fi should be used. Moreover, the
	
		
			
				𝖢
				𝗈
				𝗇
				𝗇
				𝖾
				𝖼
				𝗍
				𝗂
				𝗈
				𝗇
			

		
	
 component can change its current state when an event occurs or when a condition is satisfied (e.g., after error detection or fault treatment procedures).
2.4. Sensor Web Enablement
As well as the issues referred to above, one of the main challenges for the application developer is how to integrate data that has been acquired from different types of sensors. Existing sensors use a large variety of sensor protocols (e.g., Sun SPOT ZigBee protocol, XBee/ZigBee, and GumStix Wi-Fi) and sensor interfaces (e.g., nesC), and most applications are still dealing with this by integrating sensor resources through their own mechanisms. However, this manual bridging of the gap between sensor resources and applications leads to an extensive adaptation effort and is considered to be a key cost factor in large-scale deployment scenarios [6].
This challenge to address the diversity of protocols, interfaces, and sensor devices was addressed by the Open Geospatial Consortium (OGC) which in 2003 began to lay down a set of standards (http://www.ogcnetwork.net/swe) with the aim of establishing the “Sensor Web” [1]. This can be defined as an infrastructure that allows for the interoperable usage of sensor resources by ensuring that their discovery, access, tasking, and eventing and alerting are carried out in a standardized way. Thus, the Sensor Web conceals the underlying layers, the network communication details, and heterogeneous sensor hardware from the applications built on top of it and thus allows users to share sensor resources more easily [6]. In the Sensor Web paradigm, all the sensors report their position and are available in the worldwide web; in addition, their metadata is registered so that they can all be uniformly accessed (and some of them even controlled) via the internet [1].
The realization of the vision of sensor webs and networks is being pursued by the Sensor Web Enablement (SWE) working group of OGC through the establishment of several (XML-based) encodings for describing sensor resources and sensor observations and through several standard interface definitions of web services. The first generation of SWE includes standards for [1] (a) description of sensor data; (b) description of sensor metadata including properties and the behavior of the sensors; (c) access to observations and sensor metadata based on standardized data formats and appropriate query and filter mechanisms; and (d) setting of tasks for sensors to obtain measurement data.
FlexFT adopts OGC SWE standards to provide standardized access to sensor observations. The most important standard in this context is the Sensor Observation Service [7], which consists of a pull-based service for querying as well as inserting measured sensor data and metadata.
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 relies upon the existing open source SOS implementation from the
	
		
			
				5
				2
			

			

				∘
			

		
	
 North Sensor Web framework (http://52north.org/swe) to provide the application developer with a service-oriented, standardized interface for sensor observations.
3. Related Work
This section presents the related work on component-based building system technology. We first review each platform and highlight their main features and contributions. Then, we outline how our work contributes towards the state of the art.
SaveCCM [8, 9] is a component model designed to develop vehicular real-time systems. Within this domain, SaveCCM addresses the safety-critical subsystems responsible for controlling vehicular dynamics which includes power-train, steering, and braking. However, SaveCCM only supports RTXC OS [10] and Microsoft Windows OSs and thus is only deployable in environments where they are supported. Reconfiguration at runtime is not achieved in SaveCCM, and hence, all the configurations are carried out at compile time. This prevents the use of SaveCCM in systems that need a dynamic configuration such as a scenario in which new functionalities have to be deployed at runtime.
RUNES (Reconfigurable, Ubiquous, Networked Embedded Systems) [11, 12] is a software platform aimed at providing the software fabric for developing networked embedded systems. It is based on a component model which encapsulates the characteristics of the devices and also allows for the dynamic reconfiguration of the network of embedded systems. The component model is carried out by implementing a runtime API and the components themselves for particular devices. To support reconfiguration, the RUNES architecture employs metamodels which are updated by the API runtime whenever a component is created or destroyed. Although RUNES is able to handle changes occurring in the network of devices, fault tolerance techniques can only be supported at device level whereas the
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 middleware allows it to be handled at architecture level. In addition,
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 has an interface which makes sensor data available as a service in the Web in compliance with the OSG Sensor Web Enablement (SWE) standard [1].
The Loosely coupled Component Infrastructure (LooCI) [13] is designed to support embedded Java ME (microedition) platforms such as Sun SPOT or Java ME smartphones. LooCI comprises an easy-to-use component model and a simple yet extensible networking framework. Each LooCI node is connected via a common event-bus communication substrate. Like other embedded component platforms, such as RUNES [12] or OpenCOM [14], LooCI components support runtime reconfiguration, concrete interface definitions, and introspection and support for the rewiring of bindings. LooCI was recently ported to a number of sensor devices and Android platforms and is thus capable of creating component-based platforms in a heterogeneous environment. Unlike
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
, LooCI does not include a framework to create component-based runtime reconfigurable fault-tolerant systems. Hence, it cannot create fault-tolerant systems in a natural and explicitly supported way.
The component-based operating system (OS) Lorien [15] allows users to experiment freely with software at any system level (e.g., MAC, drivers, routing, scheduling, etc.), and code can be (un)loaded dynamically during experiment runtime without resetting the nodes. The OS can also be used as a boot manager to run other Wireless Sensor Network (WSN) OSs of the user’s choice. Lorien runs on T-Mote class devices and provides all the benefits of OpenCOM while running on resource-constrained devices. It is particularly targeted at providing runtime reconfiguration (flexibility) for OSs that runs on WSNs. While it provides flexibility on WSN OSs, Lorien does not provide a generic framework for constructing reconfigurable fault-tolerant systems. Furthermore, Lorien does not provide an implementation that can ensure there will be an interaction with the Sensor Web paradigm.
The middleware developed in the context of the MORE project (Network-centric Middleware for GrOup communication and Resource Sharing across Heterogeneous Embedded Systems) [16] targets heterogeneous embedded systems in the Service-Oriented Architecture (SOA) context. MORE middleware allows XML-based information (e.g., SOA data, XML-based policies) to be transferred to embedded services nodes in an efficient manner. The idea is to reduce consumption of resources (e.g., battery, processing time) in the devices. To achieve such a goal, the
	
		
			

				𝜇
			

		
	
SOA approach is proposed to reduce the message size and parsing overhead. According to the authors, a
	
		
			

				𝜇
			

		
	
SOA message requires 2.5% of a standard SOAP message. In contrast,
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 is a middleware system supporting the development of fault-tolerant components with a service-oriented interface. It does not address the question of internode communication.
In summary, we argue that
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 provides a framework for constructing runtime reconfigurable component-based fault tolerant systems. Given that the
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 kernel itself is minimal, it is deployable in a variety of devices including the sensor motes. We also argue that none of the platforms discussed above adopt SWE standards to ensure that data from the sensor nodes are accessible via the web to any end user interested in this kind of information.
4.
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 Framework
The
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 framework architecture can be decomposed into two layers, and a rough draft of its structure is illustrated in Figure 2(a):(i)Fault-Tolerant Component Frameworks. This layer is responsible for providing mechanisms for developing reliable component-based systems. These mechanisms are implemented in the form of component frameworks. Component Framework (CF) has been defined as “collections of rules and interfaces that govern the interaction of a set of components “plugged into” them” [17]. A CF embodies rules and interfaces that make sense in a specific application domain.(ii)Component Runtime Kernel Layer. This layer provides support for the development of component-based reliable systems. That is, this layer provides the inherent component model operations of
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 such as (i) loading components and instantiation, (ii) definition of receptacles, and (iii) definition of bindings.

	
	
		
			
				
				
					
				
				
					
				
			
		
	
	
	
		
			
				
				
					
				
				
					
				
			
		
	
	
	
		
			
				
				
					
				
				
					
				
			
		
	
	
		
			
				
				
					
				
				
					
				
			
		
	
	
		
			
				
				
					
				
				
					
				
			
		
	
	
		
			
	
	

	
		
			
			
			
			
			
			
		
	
	
		
			
				
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
				
			
		
	
	
		
			
				
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
				
			
		
	
	
		
			
				
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
				
			
		
	
	
		
			
				
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
					
				
			
		
	

(a)
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 architecture

	
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
	

	
		
			
			
				
			
		
	

	
		
			
			
				
			
		
	

	
		
			
				
			
				
			
		
	

(b)
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 reliable component
Figure 2:
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 Framework.

4.1.
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
: Component Model
The
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 framework provides mechanisms (implemented as Component Frameworks) that make easier the task of constructing reliable component-based systems by application designers. Figure 2(b) shows the
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 component approach that is employed to implement the reliable (redundant) components and their respective variants.(i)The
	
		
			
				𝖥
				𝗂
				𝗋
				𝗌
				𝗍
				𝖵
				𝖺
				𝗋
				𝗂
				𝖺
				𝗇
				𝗍
			

		
	
,
	
		
			
				𝖲
				𝖾
				𝖼
				𝗈
				𝗇
				𝖽
				𝖵
				𝖺
				𝗋
				𝗂
				𝖺
				𝗇
				𝗍
			

		
	
, and
	
		
			
				𝖳
				𝗁
				𝗂
				𝗋
				𝖽
				𝖵
				𝖺
				𝗋
				𝗂
				𝖺
				𝗇
				𝗍
			

		
	
 components consist of variants (multiple functionally equivalent software components that are independently generated from the same initial specifications).(ii)The component
	
		
			
				𝖱
				𝖾
				𝗅
				𝗂
				𝖺
				𝖻
				𝗅
				𝖾
				𝖢
				𝗈
				𝗆
				𝗉
				𝗈
				𝗇
				𝖾
				𝗇
				𝗍
			

		
	
 is a controller that is responsible for coordinating the execution of the variants and invoking the inherent operations (acceptance test, adjudication, and so on) of different design diversity techniques.(iii)The
	
		
			
				𝖡
				𝗂
				𝗇
				𝖽
				𝗂
				𝗇
				𝗀
			

		
	
 mechanism connects both the provided and required interfaces. It is worth pointing out that the granularity of this connection is N provided interfaces (
	
		
			
				𝖨
				𝖱
				𝖾
				𝗅
				𝗂
				𝖺
				𝖻
				𝗅
				𝖾
			

		
	
) to 1 required interface (
	
		
			
				𝖨
				𝖵
				𝖺
				𝗋
				𝗂
				𝖺
				𝗇
				𝗍
			

		
	
).
4.2.
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 Framework Classes
Figure 3 shows the classes and interfaces that comprise the
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 implementation of three different design diversity techniques. Fault-tolerant systems designers must extend these classes and/or implement these interfaces to build reliable systems. When the
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 prototype was implemented, it was based on the OpenCOMJ—the OpenCOM [14, 18] implementation in Java. OpenCOM is a lightweight, efficient, and reflective component model.

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
			
			
				
			
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
			
				
				
				
			
		
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
			
			
				
			
		
	

	
		
			
			
			
		
	
	
	
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
	

Figure 3:
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 Framework classes.

The abstract class
	
		
			
				𝖮
				𝗉
				𝖾
				𝗇
				𝖢
				𝖮
				𝖬
				𝖢
				𝗈
				𝗆
				𝗉
				𝗈
				𝗇
				𝖾
				𝗇
				𝗍
			

		
	
 includes generic source code for OpenCOM components (OpenCOMJ API). The abstract class
	
		
			
				𝖥
				𝖳
				𝖢
				𝗈
				𝗆
				𝗉
				𝗈
				𝗇
				𝖾
				𝗇
				𝗍
			

		
	
 extends the
	
		
			
				𝖮
				𝗉
				𝖾
				𝗇
				𝖢
				𝖮
				𝖬
				𝖢
				𝗈
				𝗆
				𝗉
				𝗈
				𝗇
				𝖾
				𝗇
				𝗍
			

		
	
 class and is the root of the reliable (redundant) components hierarchy and implements the basic life-cycle operations (creation, destruction, connection, and disconnection) of reliable OpenCOM components. Moreover, this class has a reference to the interface
	
		
			
				𝖱
				𝖾
				𝖼
				𝖾
				𝗉
				𝗍
				𝖺
				𝖼
				𝗅
				𝖾
			

		
	
 (OpenCOMJ implementation of required interfaces).
	
		
			
				𝖥
				𝖳
				𝖢
				𝗈
				𝗆
				𝗉
				𝗈
				𝗇
				𝖾
				𝗇
				𝗍
			

		
	
 subclasses use different implementations of this interface and take into account the inherent characteristics of each fault tolerance technique (N-version programming, recovery blocks, and state-based execution).
The
	
		
			
				𝖥
				𝖳
				𝖨
				𝗇
				𝗍
				𝖾
				𝗋
				𝖿
				𝖺
				𝖼
				𝖾
			

		
	
 provides the operation execute (
	
		
			
				𝖲
				𝗍
				𝗋
				𝗂
				𝗇
				𝗀
				𝗆
				𝖾
				𝗍
				𝗁
				𝗈
				𝖽
				𝖭
				𝖺
				𝗆
				𝖾
			

		
	
,
	
		
			
				𝖮
				𝖻
				𝗃
				𝖾
				𝖼
				𝗍
			

		
	

	
		
			
				[
]
			

		
	

	
		
			
				𝗉
				𝖺
				𝗋
				𝖺
				𝗆
				𝗌
			

		
	
). This operation is implemented by
	
		
			
				𝖥
				𝖳
				𝖢
				𝗈
				𝗆
				𝗉
				𝗈
				𝗇
				𝖾
				𝗇
				𝗍
			

		
	
 subclasses:
	
		
			
				𝖱
				𝖡
				𝖢
				𝗈
				𝗆
				𝗉
				𝗈
				𝗇
				𝖾
				𝗇
				𝗍
			

		
	
 (recovery blocks technique),
	
		
			
				𝖭
				𝖵
				𝖢
				𝗈
				𝗆
				𝗉
				𝗈
				𝗇
				𝖾
				𝗇
				𝗍
			

		
	
 (N-Version Programming technique), and
	
		
			
				𝖢
				𝗈
				𝗇
				𝗍
				𝖾
				𝗑
				𝗍
				𝖢
				𝗈
				𝗆
				𝗉
				𝗈
				𝗇
				𝖾
				𝗇
				𝗍
			

		
	
 (state-based variant). The
	
		
			
				𝖾
				𝗑
				𝖾
				𝖼
				𝗎
				𝗍
				𝖾
			

		
	
 operation is responsible for executing the variants (using the reference to the interface
	
		
			
				𝖱
				𝖾
				𝖼
				𝖾
				𝗉
				𝗍
				𝖺
				𝖼
				𝗅
				𝖾
			

		
	
) and takes into account the inherent characteristics of each technique (sequential execution, parallel execution, and so on).
5. Case Study One: Design Diversity Techniques
This section provides some simple examples that illustrate how the
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 framework can be used to implement reliable components using different design diversity techniques [2].
5.1. N-Version Programming Technique
We examine the implementation of a simple reliable component based on the N-version programming technique [2] using the
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 framework.
Figure 4 shows the
	
		
			
				𝖬
				𝗎
				𝗅
				𝗍
				𝗂
				𝗉
				𝗅
				𝗒
				𝖭
				𝖵
			

		
	
 component (and its variants
	
		
			
				𝖠
				𝖽
				𝖽
				𝖵
				𝖺
				𝗋
				𝗂
				𝖺
				𝗇
				𝗍
			

		
	
,
	
		
			
				𝖬
				𝗎
				𝗅
				𝗍
				𝗂
				𝗉
				𝗅
				𝗒
				𝖵
				𝖺
				𝗋
				𝗂
				𝖺
				𝗇
				𝗍
			

		
	
, and
	
		
			
				𝖶
				𝗋
				𝗈
				𝗇
				𝗀
				𝖵
				𝖺
				𝗋
				𝗂
				𝖺
				𝗇
				𝗍
			

		
	
) that provides the functionality of returning the product of two integers. The
	
		
			
				𝖬
				𝗎
				𝗅
				𝗍
				𝗂
				𝗉
				𝗅
				𝗒
				𝖭
				𝖵
			

		
	
 class represents the
	
		
			
				𝖱
				𝖾
				𝗅
				𝗂
				𝖺
				𝖻
				𝗅
				𝖾
				𝖢
				𝗈
				𝗆
				𝗉
				𝗈
				𝗇
				𝖾
				𝗇
				𝗍
			

		
	
 (Figure 2) and extends the
	
		
			
				𝖭
				𝖵
				𝖢
				𝗈
				𝗆
				𝗉
				𝗈
				𝗇
				𝖾
				𝗇
				𝗍
			

		
	
 abstract class (Figure 3) that implements the execute method by taking into account the inherent features of the N-version programming technique. That is, this method is responsible for executing the variants and for obtaining the respective decision (
	
		
			
				𝖭
				𝖵
				𝖨
				𝗇
				𝗍
				𝖾
				𝗋
				𝖿
				𝖺
				𝖼
				𝖾
			

		
	
 decide method). It is worth mentioning that the
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 framework provides a default algorithm for the result decision (majority) through the
	
		
			
				𝖭
				𝖵
				𝖢
				𝗈
				𝗆
				𝗉
				𝗈
				𝗇
				𝖾
				𝗇
				𝗍
				𝖽
				𝖾
				𝖼
				𝗂
				𝖽
				𝖾
			

		
	
 method implementation. However,
	
		
			
				𝖭
				𝖵
				𝖢
				𝗈
				𝗆
				𝗉
				𝗈
				𝗇
				𝖾
				𝗇
				𝗍
			

		
	
 subclasses can reimplement this method and hence use a different result decision algorithm.

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
			
			
				
			
		
	

	
		
			
				
			
				
			
		
	

	
		
			
				
			
				
			
		
	

	
		
			
				
			
				
			
		
	

	
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
			
				
			
				
			
		
	

	
		
			
				
			
				
			
		
	

	
		
			
				
			
				
			
		
	

	
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
	

	
		
			
				
				
				
			
		
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	

Figure 4: N-version programming realization.

In addition, the
	
		
			
				𝖬
				𝗎
				𝗅
				𝗍
				𝗂
				𝗉
				𝗅
				𝗒
				𝖭
				𝖵
			

		
	
 class implements the
	
		
			
				𝖨
				𝖬
				𝗎
				𝗅
				𝗍
				𝗂
				𝗉
				𝗅
				𝗒
			

		
	
 interface (the functionality of returning the product of two integers). This implementation (Pseudocode 1) simply consists of invoking the execute method discussed earlier.
		public Integer multiply(Integer a, Integer b) {
	 Object
	
		
			
				[
]
			

		
	
 params = new Object
	
		
			
				[
]
				{
			

		
	
a, b};
	 return (Integer) this.execute(“multiply”, params);
	}

	Pseudocode 1: MultiplyNV: multiply method.

The
	
		
			
				𝖠
				𝖽
				𝖽
				𝖵
				𝖺
				𝗋
				𝗂
				𝖺
				𝗇
				𝗍
			

		
	
,
	
		
			
				𝖬
				𝗎
				𝗅
				𝗍
				𝗂
				𝗉
				𝗅
				𝗒
				𝖵
				𝖺
				𝗋
				𝗂
				𝖺
				𝗇
				𝗍
			

		
	
, and
	
		
			
				𝖶
				𝗋
				𝗈
				𝗇
				𝗀
				𝖵
				𝖺
				𝗋
				𝗂
				𝖺
				𝗇
				𝗍
			

		
	
 represent three implementations of the functionality of returning the product of two integer numbers (
	
		
			
				𝖨
				𝖬
				𝗎
				𝗅
				𝗍
				𝗂
				𝗉
				𝗅
				𝗒
			

		
	
 interface). The AddVariant class only uses addition operations (operator +) to implement this functionality, while the
	
		
			
				𝖬
				𝗎
				𝗅
				𝗍
				𝗂
				𝗉
				𝗅
				𝗒
				𝖵
				𝖺
				𝗋
				𝗂
				𝖺
				𝗇
				𝗍
			

		
	
 class uses the operation of multiplication (operator *). The
	
		
			
				𝖶
				𝗋
				𝗈
				𝗇
				𝗀
				𝖵
				𝖺
				𝗋
				𝗂
				𝖺
				𝗇
				𝗍
			

		
	
 class always returns the value 0 (no matter what the parameter values are). Thus, the result of this erroneous variant will always be disregarded because the other variants always return correct values.
5.2. Recovery Block Technique
This section gives an example that illustrates how the
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 framework can be used to implement reliable components based on the recovery block technique [3].
Figure 5 shows the
	
		
			
				𝖲
				𝗈
				𝗋
				𝗍
				𝖱
				𝖡
			

		
	
 component (and its
	
		
			
				𝖭
				𝗈
				𝗍
				𝗁
				𝗂
				𝗇
				𝗀
				𝖲
				𝗈
				𝗋
				𝗍
			

		
	
,
	
		
			
				𝖨
				𝗇
				𝗏
				𝖾
				𝗋
				𝗍
				𝗂
				𝗈
				𝗇
				𝖲
				𝗈
				𝗋
				𝗍
			

		
	
, and
	
		
			
				𝖰
				𝗎
				𝗂
				𝖼
				𝗄
				𝖲
				𝗈
				𝗋
				𝗍
			

		
	
 variants) which provide the functionality of sorting an array of integers in ascending order.

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
			
				
			
				
			
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
			
				
			
				
			
			
				
			
			
				
			
				
		
	

	
		
			
				
			
				
			
		
	

	
		
			
				
			
				
			
		
	

	
		
			
				
			
				
			
		
	

	
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
	

	
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
	

	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	

	
		
			
			
				
			
		
	

	
		
			
			
				
			
		
	

	
		
			
				
			
				
			
		
	

	
		
			
				
				
				
			
		
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
	

Figure 5: Recovery block realization.

The
	
		
			
				𝖲
				𝗈
				𝗋
				𝗍
				𝖱
				𝖡
			

		
	
 class represents the
	
		
			
				𝖱
				𝖾
				𝗅
				𝗂
				𝖺
				𝖻
				𝗅
				𝖾
				𝖢
				𝗈
				𝗆
				𝗉
				𝗈
				𝗇
				𝖾
				𝗇
				𝗍
			

		
	
 (Figure 2). This class extends the
	
		
			
				𝖱
				𝖡
				𝖢
				𝗈
				𝗆
				𝗉
				𝗈
				𝗇
				𝖾
				𝗇
				𝗍
			

		
	
 class (Figure 3) and implements the inherent recovery block operations: acceptance test, component state saving and restoration. In this example, the acceptance test has to check the following condition:
	
		
			

				𝑉
			

		
	
 is an array of integers,
	
		
			
				𝑉
				[
				𝑖
				+
				1
]
				≥
				𝑉
				[
				𝑖
]
			

		
	
, for
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				𝑛
				−
				1
			

		
	
. It is worth mentioning that the
	
		
			
				𝖥
				𝗅
				𝖾
				𝗑
				𝖥
				𝖳
			

		
	
 framework provides a default algorithm (based on object serialization) for the component state saving and restoration through the
	
		
			
				𝖱
				𝖡
				𝖢
				𝗈
				𝗆
				𝗉
				𝗈
				𝗇
				𝖾
				𝗇
				𝗍
				𝗌
				𝖺
				𝗏
				𝖾
		