
International Journal of Distributed Sensor Networks
Manuscript Submission

FlexFT: A Generic Framework for Developing
Fault-tolerant Applications in the Sensor Web

Delano Medeiros Beder · Jó Ueyama ·

João Porto de Albuquerque · Marcos Lordello Chaim

Received: date / Accepted: date

Abstract Fault-tolerant systems are expected to op-
erate in a variety of devices ranging from standard PCs

to embedded devices. In addition, the emergence of new

software technologies has required these applications to

meet the needs of heterogeneous software platforms.

However, the existing approaches to build fault-tolerant
systems are often targeted at a particular platform and

software technology. The objective of this paper is to

discuss the use of FlexFT — a generic component-based

framework for the construction of adaptive fault toler-
ant systems that can integrate and re-use technologies

and deploy them across heterogeneous devices. Further-

more, FlexFT provides a standardized and interopera-

ble interface for sensor observations by relying upon

the “Sensor Web” paradigm established by the Open
Geospatial Consortium (OGC). We have implemented

a Java prototype of our framework and evaluated the

potential benefits by carrying out case-studies and per-

formance measurements. By implementing and deploy-
ing these case studies in standard PCs as well as in

sensor nodes, we show that FlexFT can cope with the

problem of a wide degree of heterogeneity with minimal

resource overheads.

Keywords Fault Tolerance, Middleware, Sensor Web

Delano Medeiros Beder
DC, Federal University of São Carlos (UFSCar)
São Carlos, 13565-905, Brazil
E-mail: delano@dc.ufscar.br

Jó Ueyama & João Porto de Albuquerque
ICMC, University of São Paulo(USP)
São Carlos, 13566-585, Brazil
E-mail: {joueyama,jporto}@icmc.usp.br

Marcos Lordello Chaim
EACH, University of São Paulo (USP)
São Paulo, 03828-000, Brazil
E-mail: chaim@usp.br

1 Introduction

At present, a number of software development technolo-
gies (e.g. component-based approach, aspect-oriented

programming, web services) can be employed for build-

ing systems that can be run on a variety of hardware

platforms ranging from standard PCs to networked em-

bedded devices. This scenario is also valid for reliable
systems which are often required to run on a variety

of hardware platforms including embedded devices. In

this paper we are concerned with examining two types

of heterogeneity:

– Device heterogeneity. Fault-tolerant systems are
often deployed with heterogeneous devices which

can range from PCs to embedded devices. However,

this heterogeneity is expected to be adversely af-

fected by the emergence of new hardware platforms.

– Software language/middleware heterogene-
ity. There are currently a large number of fault-

tolerant policies each of which requires a particular

procedure and strategy. They are normally based

on heterogeneous programming languages and tech-
nology (e.g. publish-subscribe systems, web service

applications, tuple spaces, message-oriented toolk-

its).

The aim of this paper is to investigate approaches

that can lead to the development of middleware so-

lutions that require different programming models in
different environments. For this purpose, we introduce

FlexFT, a generic framework for constructing reliable

systems that can deal with both hardware and software

heterogeneity. This consists of a minimal policy-free mi-
crokernel where fault tolerance policies are incremented

as demanded. Furthermore, it provides a standardized

and interoperable interface for sensor observations, by

2 D. Beder, J. Ueyama, J. P. de Albuquerque & M. Chaim

FlexFT

Java component

RPC−based

...

...

...

Multithreaded
component

binding

based on a variety of technologies
unique tool for building applicationsFlexFT −

developer

Sensor Web

(a)

applications in multiple devices
unique tool for building

...

...

mobile
phones

PDAs

sensors

etc.

FlexFT −

FlexFT
developer

Sensor Web

(b)

Fig. 1 FlexFT: Research Challenges

relying on the “Sensor Web” paradigm [4] established

by the Open Geospatial Consortium (OGC).

The policy is deployed in the form of component

plugins, which are destroyed when no longer required.

FlexFT also supports dynamic adaptation, as these plu-
gins can be reconfigured at runtime. The key feature of

FlexFT is the provision of a unique tool for constructing

reliable systems based on a wide range of software tech-

nologies targeted at a variety of hardware platforms.
We evaluate FlexFT by means of case-studies and per-

formance measurements; these show the following im-

portant benefits:

– Flexibility. Fault-tolerant systems can be devel-

oped and deployed independently of target plat-

forms. The kernel can plugin the targeted platforms
of a particular abstraction or behavior that is im-

plemented.

– Reusability/modularity. The developers can

reuse the existing components and processes that

are employed for particular platforms.
– Transference of skills. The employment of differ-

ent technologies to build applications for each tar-

geted device and applicability does not allow the

transfer of skills across different tools. Skill sets and
areas of expertise are rarely transferable when they

rely on different technologies. A generic approach

can bring about the transference of skills because

the developers only utilize a single tool for develop-

ing applications based on a variety of technologies.
– Technology independency. FlexFT allows hetero-

geneous components to be reconfigured e.g. both

COM and Java components.

– Interoperability. FlexFT provides an interface
that follows the “Sensor Web” paradigm, and makes

it easy for developers to export sensor observations

in accordance with the OGC standard Sensor Ob-

servation Service (SOS)1. In this manner, FlexFT

provides interoperability with a variety of end-user
applications that are able to consume data via web

services that comply with the SOS standard.

The paper is structured in the following way: we set

out by discussing the basic concepts and research chal-

lenges in Section 2. Section 3 reviews selected works
related to the topics discussed in this paper. Follow-

ing this, Section 4 outlines the generic framework for

fault-tolerant system development; this includes an in-

depth examination of the benefits obtained. Together

with this section, Sections 5 and 6 examine some case
studies which draw on the constructed prototype to

show that the proposed approach attains an accept-

able standard of performance and adequate resource

consumption overhead. Finally, Section 7 concludes the
paper and adds some comments about ongoing work.

2 Background and Research Challenges

Before examining the FlexFT architecture in detail, we

will first discuss the determining factors underlying this

new approach to reliable software development.

Sophisticated applications must now take account of

a wide range of software technologies and middleware
platforms to meet a large number of requirements. As

illustrated in Fig. 1(a), a reliable system may have to

use an implementation that has already been developed

as Java or XPCOM2 components and a multi-threaded

component technology may also be necessary. In addi-
tion, multiple distribution abstractions may be required

e.g. a publish-subscribe binding when the application

is operating over ad-hoc wireless networks, along with

Web Service middleware when the application needs to

1 http://www.ogcnetwork.net/swe
2 https://developer.mozilla.org/en/XPCOM

FlexFT: A Generic Framework for Developing Fault-tolerant Applications in the Sensor Web 3

interact with a legacy service in the established infras-

tructure.

Furthermore, end users currently rely on a variety
of devices ranging from PCs to smartphones. They are

also often interested in accessing data from a number of

sources including sensor motes (e.g. data coming from

urban rivers, such as temperature and depth levels).
Since these different sources have heterogeneous sen-

sor protocols and interfaces, this scenario requires a

good deal of effort on the part of application developers.

Moreover, information systems that rely on sensors (e.g.

information systems for disaster management) usually
depend on integrating and composing several services,

where each service handles different sensors that mon-

itor and collect specific contextual information. Since

typically the services are developed in an independent
way, it is important do adhere to a standardized inter-

face to ensure interoperability.

Against this backdrop, FlexFT offers a generic ap-
proach to help application developers mitigate the ef-

fects of this heterogeneity so as to ensure that end users

can read data from sensors using a wide range of devices

(e.g. PCs, smartphones and tablets). Rather than treat

these as individual technologies that must be under-
stood and integrated in an ad-hoc manner, FlexFT pro-

vides a single unified tool to allow developers to build

applications to deal with the current heterogeneous en-

vironments which rely on the Sensor Web standards
referred to above.

Reliable systems are also built on a diverse range

of hardware platforms, as illustrated in 1(b). Instead
of depending on porting applications across these plat-

forms with the aid of the software technologies that

are available, FlexFT offers a tool where the application

can be developed independently of the target; the sys-

tem then ensures that the appropriate implementation
is deployed. Finally, since change is an essential feature

of current systems, a uniform approach is required to

provide dynamic software reconfiguration as well as to

tackle the problem of heterogeneity.

The FlexFT framework provides mechanisms that

make it easier for application designers to undertake

the task of constructing reliable component-based sys-
tems. The construction of reliable systems is not a sim-

ple task; it requires the use of appropriate techniques

during the whole software development cycle. In gen-

eral, these techniques are based on the provision of re-
dundancy (i.e. they make use of design diversity), both

for error detection and error recovery.

Design diversity [2] means that multiple functionally
equivalent software components are independently gen-

erated from the same initial specification. Two or more

versions of the software component are independently

developed from this specification, each by a group that

does not interact with any other, and, whenever possi-

ble, employs different algorithms.

However, the provision of software redundancy in-

volves the following: (i) an increase in the cost of creat-
ing the software, and (ii) a greater degree of complexity

in the system, caused by the addition of redundant com-

ponents. Ideally, the added software redundancy should

be incorporated into the original system in a structured
and non-intrusive manner to enable the application de-

signers to construct dependable systems.

2.1 Recovery Block

Recovery Block [23] is a technique devised by Ran-
dell [22] from what, to some extent, was observed to

be the practice at that time. The description outlined

here has been slightly changed from the original de-

scription so that it is in accordance with the approach
for component-based systems development. In a system

with Recovery Blocks [23], the design of the system

is broken down into fault recoverable blocks/modules

(i.e. reliable system components). Each critical system

component requires the separate development of alter-
native variants (modules of differing design aimed at a

common specification) and one adjudicator to check the

results produced by the variants (by means of an accep-

tance test). On entry to a recovery block, the state of
the reliable system component (or of the whole system)

must be saved to permit backward error recovery, i.e.

to establish a checkpoint.

The primary alternate is executed and then the ac-

ceptance test is evaluated to provide an assessment of
its outcome. If the acceptance test is passed, the out-

come is regarded as successful and the recovery block

can be exited. The information on the state of the com-

ponent system obtained on entry (i.e. at the checkpoint)
can be discarded. However, if the test fails or if any er-

rors are detected by other means during the execution

of the alternate, an exception is raised and backward

error recovery is invoked. This restores the state of the

component system to what it had been on entry. After
this recovery, the next alternate is executed and then

the acceptance test is applied again. This sequence con-

tinues until either an acceptance test is passed or all of

the alternates have failed it. If all the alternates either
fail the test or result in an exception (due to an in-

ternal error being detected), a failure exception will be

signaled to the environment of the recovery block.

4 D. Beder, J. Ueyama, J. P. de Albuquerque & M. Chaim

2.2 N-Version programming technique

Among the design diversity techniques, it is worth high-

lighting the N-Version programming technique [2]. In an

N-Version software system, each module is formed of up

to N different implementations. Each variant carries out

the same task, but it is hoped in a different way. Each
version then submits its answer to a voter or decider

which determines the correct answer (for example, the

majority of the votes) and returns this as the result of

the N-Version component system.

There are few differences between the Recovery

Block and the N-Version techniques, but they are im-

portant. In traditional Recovery Blocks, each alterna-

tive would be executed serially until an acceptable so-
lution is found as determined by the adjudicator. The

N-Version technique has always been designed to be ex-

ecuted in parallel. In a serial N-Version system, the cost

in time of trying out multiple alternatives may be too

expensive, especially for a real-time system. Another
important difference in the two methods is the distinc-

tion between the roles of an adjudicator and decider.

The Recovery Block technique requires each fault re-

coverable block (reliable system component) to build a
specific adjudicator; in the N-Version technique, a sin-

gle default decider (for example, the majority) may be

used. On the basis of the assumption that the program-

mer can create a sufficiently simple adjudicator, the

Recovery Block technique will create a system which
is very unlikely to enter into an incorrect state. The en-

gineering tradeoffs, especially monetary costs, involved

with developing either type of system have both bene-

fits and drawbacks, and it is important for the engineer
to explore the space so as to be in a position to decide

on what the best solution for his project should be.

2.3 State-based Variant Execution

The ability of dynamic reconfiguration — for exam-

ple, to replace faulty components and/or to change the
computation performed in fault situations — is a cru-

cial factor in the development of reliable systems. When

account is taken of the diversity of designs (components

and their different variants), ideally the selection of the

variant that will be executed should depend on the sys-
tem and/or state of the component.

FlexFT supports dynamic adaptation, as these com-

ponents and/or variants can be reconfigured at runtime,

by implementing a slight variant of the State design pat-
tern [13], a well known pattern that has been used in

various applications. Its purpose is to allow an object

to change its behavior when its internal state changes.

Consider the following example of motivation: com-

ponents Sensor which represent individual sensors in

a sensor network system and component Connection

which provide the communication infra-structure for

this system. For the sake of simplicity, we restrict Con-
nection to two variants: Bluetooth and Wi-Fi. Depend-

ing on the current state of the system, it can respond in

a different way to the client’s (sensors) requests. For ex-

ample, the implementation of a sendMessage operation
depends on the state of the system: if the system is in

its ‘normal’ state, the communication should be carried

out by using Bluetooth (cheaper), otherwise, the Wi-Fi

should be used. Moreover, the Connection component

can change its current state when an event occurs or
when a condition is satisfied (for example, after error

detection or fault treatment procedures).

2.4 Sensor Web Enablement

As well as the issues referred to above, one of the main

challenges for the application developer is how to inte-
grate data that has been acquired from different types

of sensors. Existing sensors use a large variety of sensor

protocols (e.g. Sun SPOT ZigBee protocol, XBee/Zig-

Bee, GumStix Wi-Fi) and sensor interfaces (e.g. nesC),
and most applications are still dealing with this by in-

tegrating sensor resources through their own mecha-

nisms. However, this manual bridging of the gap be-

tween sensor resources and applications leads to an ex-

tensive adaptation effort, and is considered to be a key
cost factor in large-scale deployment scenarios [5].

This challenge to address the diversity of proto-

cols, interfaces and sensor devices was addressed by the
Open Geospatial Consortium (OGC) which in 2003 be-

gan to lay down a set of standards3 with the aim of

establishing the “Sensor Web” [4]. This can be defined

as an infrastructure that allows the interoperable us-
age of sensor resources by ensuring that their discov-

ery, access, tasking, as well as eventing and alerting,

are carried out in a standardized way. Thus, the Sensor

Web conceals the underlying layers, the network com-

munication details, and heterogeneous sensor hardware,
from the applications built on top of it, and thus allows

users to share sensor resources more easily [5]. In the

Sensor Web paradigm, all the sensors report their posi-

tion and are available in the worldwide web; in addition,
their metadata is registered so that they can all be uni-

formly accessed (and some of them even controlled) via

the Internet [4].

The realization of the vision of sensor webs and net-

works is being pursued by the Sensor Web Enablement

3 http://www.ogcnetwork.net/swe

FlexFT: A Generic Framework for Developing Fault-tolerant Applications in the Sensor Web 5

(SWE) working group of OGC through the establish-

ment of several (XML based) encodings for describing

sensor resources and sensor observations, and through

several standard interface definitions of web services.

The first generation of SWE includes standards for [4]:
a) description of sensor data; b) description of sensor

metadata including properties and the behavior of the

sensors; c) access to observations and sensor metadata

based on standardized data formats and appropriate
query and filter mechanisms; and d) setting of tasks for

sensors to obtain measurement data.

FlexFT adopts OGC SWE standards to provide
standardized access to sensor observations. The most

important standard in this context is the Sensor Ob-

servation Service [18], which consists of a pull-based

service for querying as well as inserting measured sen-

sor data and metadata. FlexFT relies upon the existing
open source SOS implementation from the 52◦ North

Sensor Web framework4 to provide the application de-

veloper with a service-oriented, standardized interface

for sensor observations.

3 Related Work

This section presents the related work on component-

based building system technology. We first review each

platform and highlight their main features and contri-

butions. Then, we outline how our work contributes to-

wards the state of the art.

SaveCCM [15,1] is a component model designed

to develop vehicular real-time systems. Within this
domain, SaveCCM addresses the safety-critical sub-

systems responsible for controlling vehicular dynamics

which includes power-train, steering and braking. How-

ever, SaveCCM only supports RTXC OS [21] and Mi-

crosoft Windows OSs, and thus is only deployable in
environments where they are supported. Reconfigura-

tion at runtime is not achieved in SaveCCM and hence,

all the configurations are carried out at compile-time.

This prevents the use of SaveCCM in systems that need
a dynamic configuration such as a scenario in which new

functionalities have to be deployed at runtime.

RUNES (Reconfigurable, Ubiquous, Networked Em-
bedded Systems) [9,10] is a software platform aimed at

providing the software fabric for developing networked

embedded systems. It is based on a component model

which encapsulates the characteristics of the devices

and also allows the dynamic reconfiguration of the net-
work of embedded systems. The component model is

carried out by implementing a runtime API and the

4 http://52north.org/swe

components themselves for particular devices. To sup-

port reconfiguration, the RUNES architecture employs

meta-models which are updated by the API runtime

whenever a component is created or destroyed. Al-

though RUNES is able to handle changes occurring in
the network of devices, fault tolerance techniques can

only be supported at device level whereas the FlexFT

middleware allows it to be handled at architecture level.

In addition, FlexFT has an interface which makes sen-
sor data available as a service in the Web in compliance

with the OSG Sensor Web Enablement (SWE) stan-

dard [4]

The Loosely-coupled Component Infrastructure

(LooCI) [16] is designed to support embedded Java
ME (micro edition) platforms such as Sun SPOT or

Java ME smart-phones. LooCI comprises an easy-

to-use component model and a simple yet extensi-

ble networking framework. Each LooCI node is con-
nected via a common event-bus communication sub-

strate. Like other embedded component platforms, such

as RUNES [10] or OpenCOM [12], LooCI components

support runtime reconfiguration, concrete interface def-

initions, introspection and support for the re-wiring of
bindings. LooCI was recently ported to a number of sen-

sor devices and Android platforms, and is thus capable

of creating component-based platforms in a heteroge-

neous environment. Unlike FlexFT, LooCI does not in-
clude a framework to create component-based runtime

reconfigurable fault tolerant systems. Hence, it cannot

create fault tolerant systems in a natural and explicitly-

supported way.

The component-based operating system (OS) Lo-
rien [19] allows users to experiment freely with soft-

ware at any system level (e.g. MAC, drivers, routing,

scheduling, etc.), and code can be (un)loaded dynami-

cally during experiment runtime without resetting the
nodes. The OS can also be used as a boot manager to

run other Wireless Sensor Network (WSN) OSs of the

users’s choice. Lorien runs on T-Mote class devices and

provides all the benefits of OpenCOM while running

on resource constrained devices. It is particularly tar-
geted at providing runtime reconfiguration (flexibility)

for OSs that runs on WSNs. While it provides flexibility

on WSN OSs, Lorien does not provide a generic frame-

work for constructing reconfigurable fault-tolerant sys-
tems. Furthermore, Lorien does not provide an imple-

mentation that can ensure there will be the interaction

with the sensor web paradigm.

The middleware developed in the context of

the MORE project (Network-centric M iddleware for
GrOup communication and Resource Sharing across

Heterogeneous Embedded Systems) [27] targets het-

erogeneous embedded systems in the Service Oriented

6 D. Beder, J. Ueyama, J. P. de Albuquerque & M. Chaim

Architecture (SOA) context. MORE middleware allows

XML-based information (e.g., SOA data, XML-base

policies) to be transferred to embedded services nodes

in an efficient manner. The idea is to reduce consump-

tion of resources (e.g., battery, processing time) in the
devices. To achieve such a goal, the µSOA approach is

proposed to reduce the message size and parsing over-

head. According to the authors, a µSOA message re-

quires 2.5% of a Standard SOAP message. In contrast,
FlexFT is a middleware system supporting the devel-

opment of fault-tolerant components with a service-

oriented interface. It does not address the question of

inter-node communication.

In summary, we argue that FlexFT provides a

framework for constructing runtime reconfigurable

component-based fault tolerant systems. Given that the

FlexFT kernel itself is minimal, it is deployable in a vari-
ety of devices including the sensor motes. We also argue

that none of the platforms discussed above adopt SWE

standards to ensure that data from the sensor nodes

are accessible via the web by any end user interested in

this kind of information.

4 FlexFT Framework

The FlexFT framework architecture can be decomposed

into two layers and a rough draft of its structure is
illustrated in Fig. 2(a):

– Fault-Tolerant Component Frameworks. This
layer is responsible for providing mechanisms for de-

veloping reliable component-based systems. These

mechanisms are implemented in the form of compo-

nent frameworks. Component Framework (CF) has

been defined as “collections of rules and interfaces

that govern the interaction of a set of components

‘plugged into’ them” [25]. A CF embodies rules and

interfaces that make sense in a specific application

domain.
– Component Runtime Kernel Layer. This layer

provides support for the development of component-

based reliable systems. That is, this layer provides

the inherent component model operations of FlexFT

such as: (i) Loading components and instantiation,
(ii) Definition of receptacles and (iii) Definition of

bindings.

4.1 FlexFT: Component Model

The FlexFT framework provides mechanisms (imple-

mented as Component Frameworks) that make eas-

ier the task of constructing reliable component-based

systems by application designers. Fig. 2(b) shows the

FlexFT component approach that is employed to im-

plement the reliable (redundant) components and their

respective variants.

– The FirstVariant, SecondVariant and ThirdVariant

components consist of variants (multiple function-

ally equivalent software components that are inde-

pendently generated from the same initial specifica-
tions).

– The component ReliableComponent is a controller

that is responsible for coordinating the execution

of the variants and invoking the inherent operations
(acceptance test, adjudication and so on) of differ-

ent design diversity techniques.

– The Binding mechanism connects both the provided

and required interfaces. It is worth pointing out that

the granularity of this connection is N provided in-
terfaces (IReliable) to 1 required interface (IVariant).

4.2 FlexFT framework classes

Fig. 3 shows the classes and interfaces that comprise the

FlexFT implementation of three different design diver-

sity techniques. Fault-tolerant systems designers must
extend these classes and/or implement these interfaces

to build reliable systems. When the FlexFT prototype

was implemented, it was based on the OpenCOMJ —

the OpenCOM [8][12] implementation in Java. Open-
COM is a lightweight, efficient and reflective component

model.

The abstract class OpenCOMComponent includes

generic source code for OpenCOM components (Open-
COMJ API). The abstract class FTComponent extends

the OpenCOMComponent class and is the root of the

reliable (redundant) components hierarchy and imple-

ments the basic life-cycle operations (creation, destruc-
tion, connection, disconnection) of reliable OpenCOM

components. Moreover, this class has a reference to

the interface Receptacle (OpenCOMJ implementation

of required interfaces). FTComponent subclasses use

different implementations of this interface and take
into account the inherent characteristics of each fault-

tolerance technique (N-Version Programming, Recov-

ery Blocks and State-based execution).

The FTInterface provides the operation execute
(String methodName, Object[] params). This operation

is implemented by FTComponent subclasses: RBCompo-

nent (Recovery Blocks technique), NVComponent (N-

Version Programming technique) and ContextCompo-
nent (State-based Variant). The execute operation is

responsible for executing the variants (using the refer-

ence to the interface Receptacle) and takes into account

FlexFT: A Generic Framework for Developing Fault-tolerant Applications in the Sensor Web 7

Reliable Component−based System

Fault−Tolerant CFs

Component run−time kernel

Deployment enviroment (hardware and/or software)

FlexFT

(a) FlexFT Architecture (b) FlexFT Reliable Component

Fig. 2 FlexFT Framework

the inherent characteristics of each technique (sequen-

tial execution, parallel execution and so on).

5 Case Study One: Design diversity techniques

This section provides some simple examples that illus-

trate how the FlexFT framework can be used to imple-

ment reliable components using different design diver-
sity techniques [2].

5.1 N-Version Programming Technique

We examine the implementation of a simple reliable
component based on the N-Version Programming tech-

nique [2] using the FlexFT framework.

Fig. 4 shows the MultiplyNV component (and its

variants AddVariant, MultiplyVariant and WrongVariant)
that provide the functionality of returning the prod-

uct of two integers. The MultiplyNV class represents the

ReliableComponent (Fig. 2) and extends the NVCompo-

nent abstract class (Fig. 3) that implements the execute

method by taking into account the inherent features
of the N-Version programming technique. That is, this

method is responsible for executing the variants and

for obtaining the respective decision (NVInterface de-

cide method). It is worth mentioning that the FlexFT
framework provides a default algorithm for the result

decision (majority) through the NVComponent decide

method implementation. However, NVComponent sub-

classes can reimplement this method and hence use a

different result decision algorithm.
In addition, the MultiplyNV class implements the

IMultiply interface (the functionality of returning the

product of two integers). This implementation (Code 1)

simply consists of invoking the execute method dis-
cussed earlier.

The AddVariant, MultiplyVariant and WrongVariant

represent three implementations of the functionality of

Code 1 MultiplyNV: multiply method
public Integer multiply(Integer a, Integer b) {
Object[] params = new Object[]{a, b};

return (Integer) this.execute("multiply", params);
}

returning the product of two integer numbers (IMulti-
ply interface). The AddVariant class only uses addition

operations (operator +) to implement this functional-

ity, while the MultiplyVariant class uses the operation of

multiplication (operator *). The WrongVariant class al-
ways returns the value 0 (no matter what the parameter

values are). Thus, the result of this erroneous variant

will always be disregarded because the other variants

always return correct values.

5.2 Recovery Block Technique

This section gives an example that illustrates how

the FlexFT framework can be used to implement re-

liable components based on the Recovery Block tech-
nique [23].

Fig. 5 shows the SortRB component (and its Noth-
ingSort, InvertionSort and QuickSort variants) which

provide the functionality of sorting an array of integers

in ascending order.

The SortRB class represents the ReliableComponent

(Fig. 2). This class extends the RBComponent class

(Fig. 3) and implements the inherent Recovery Block

operations: acceptance test, component state saving

and restoration. In this example, the acceptance test
has to check the following condition: V is an array of

integers, V [i + 1] ≥ V [i] for i = 1,2, ... , n-1. It is

worth mentioning that the FlexFT framework provides

a default algorithm (based on object serialization) for
the component state saving and restoration through the

RBComponent saveState and restoreState methods im-

plementation. However, RBComponent sub-classes can

8 D. Beder, J. Ueyama, J. P. de Albuquerque & M. Chaim

Fig. 3 FlexFT Framework classes

Fig. 4 N-Version Programming realization

Fig. 5 Recovery Block realization

FlexFT: A Generic Framework for Developing Fault-tolerant Applications in the Sensor Web 9

Fig. 6 State-based Variant Execution realization

reimplement these methods and hence use a different

component state saving and restoration technique.

In addition, the SortRB class implements the ISort
interface (the functionality of sorting an array of inte-

gers in ascending order). This implementation (Code 2)

consists simply of invoking the execute (from FTInter-

face) method discussed earlier.

Code 2 SortRB: sort method
public int[] sort(int[] elements) {

return (int[]) this.execute("sort", elements);

}

The NothingSort, InvertionSort and QuickSort repre-

sent three implementations of the functionality of sort-
ing an array of integers (interface ISort) in ascending

order. It should be said that these classes should ex-

tend the OpenCOMComponent class discussed above.

– The NothingSort class simply returns the array

passed as a method parameter. If this array is al-

ready sorted, this variant will pass the acceptance

test.
– The InvertionSort class reverses the array passed as a

method parameter. If the array is sorted in descend-

ing order, this variant will pass the acceptance test.

– The QuickSort class sorts the array by means of the
QuickSort algorithm. It is expected that this variant

will always pass the test of acceptance.

5.3 State-based Variant Execution

This section gives a simple example to illustrate how

the FlexFT framework can be used to implement reli-

able components by using the State-based variant exe-

cution. Fig. 6 shows the ContextConnection component

(and its variantsWiFiVariant and BluetoothVariant) that
provide the functionality of sending messages by means

of different wireless network infra-structures (Wi-Fi or

Bluetooth).

The ContextConnection class represents the Reliable-

Component (Fig. 2). This class extends the ContextCom-

ponent class (Fig. 3) and implements the interface ICon-

nection. This implementation (Code 3) simply consists
of invoking the execute (from FTInterface) method dis-

cussed earlier.

Code 3 ContextConnection: state-based send method
public void send(String message) {

Object[] args = new Object[] { message };
this.execute("send", args);

}

The WiFiVariant and BluetoothVariant represent two

implementations of the functionality of sending a mes-

sage (interface IConnection):

– The WiFiVariant class sends messages using the Wi-
Fi technology and

– The BluetoothVariant class sends messages using the

Bluetooth technology.

5.4 Experimental results

The N-Version programming technique [2] (example

discussed earlier) was implemented (together with other

10 D. Beder, J. Ueyama, J. P. de Albuquerque & M. Chaim

design diversity techniques) and deployed in two differ-

ent hardware platforms: Standard PC and Sun SPOT

(Sun Small Programmable Object Technology)5.

The experiment was run in a desktop with an Intel i5

CPU 2.67 GHz processor and 8 GBytes of RAM mem-

ory running Ubuntu 12 operational system. Sun SPOT

is a wireless sensor network (WSN) mote developed by
Sun Microsystems. Unlike other available mote systems,

Sun SPOT is built on the Squawk Java Virtual Ma-

chine [7]. For comparative purposes, the Squawk Java

Virtual Machine was used in both platforms. The ap-

plication code used to assess the cost of utilizing the
FlexFT framework is listed in Appendix A.

Performance and Resource Consumption PC Mote*
load/instantiate NVComponent (ms) 6.2 110.1
load/instantiate NVComponent (bytes) 1472 1472
load/instantiate Variants (ms) 7.2 196.6
load/instantiate Variants (bytes) 3004 3004
redundant operation execution (ms) 1.3 10.8
runtime dynamic reconfiguration (ms) 1.2 30.1

*Sun SPOT (Sun Small Programmable Object Technology)

Table 1. FlexFT Evaluation

Table 1 shows the average performance (measured in

ms) and the memory consumption (measured in bytes)

of the main operations of the N-Version programming
technique: (a) to load and instantiate NVComponents,

(b) to load and instantiate the variants, (c) to execute a

redundant operation — i.e. executing the Variants and

the method for the respective (majority) decision result
and (d) to unload a component and after that, load an-

other similar component — i.e. dynamic runtime recon-

figuration.

On the basis of these values, it can be argued that

the proposed approach has an acceptable performance

and resource consumption overhead across heteroge-

neous platforms. It should be stressed that these values
are in compliance with those of the study conducted by

Salmony [24] which states that the reconfiguration de-

lays should not exceed 250ms. Moreover, according to

[17] for multimedia applications, delays less than 150

ms are not even noticeable and the maximum tolerable
delay is 400 ms.

6 Case Study Two: Sensor Web Enablement

This section gives an example that illustrates how the

FlexFT framework can be used to provide standardized

5 http://www.sunspotworld.com/docs/Red/

spot-developers-guide.pdf

access to sensor observations while automatically dis-

regarding potentially erroneous readings. First, the ex-

ample scenario is described, and in the sequence the

experimental results achieved are presented.

6.1 Example

The example setting employed is illustrated in Fig. 7

and described as follows.

– A set (3 to 5) of Sun SPOT sensors which work

together to monitor the temperature from the sur-

rounding environment. Each sensor uses a different
port number (in the range of 66 to 70) to broad-

cast, once every second, the collected temperature

data. Owing to its simplicity, the adopted commu-

nication protocol is the radiogram protocol that

provides datagram-based communication (with no
guarantees about delivery or ordering) between two

devices.

– By default, the 52◦ North Sensor Web Framework

does not provide the observations of the tempera-
ture sensors. That is, it was necessary to register

the temperature sensor as follows: (a) create a Sen-

sorML6 instance document that describes this kind

of sensor; (b) store the instance document in the

configuration directory of 52◦ North Sensor Web
Framework.

– The basestation employs a N-Version programming

approach to collect the information that has been

broadcast. In other words, the basestation instanti-
ates the SensorNV (and its variants) that provide the

functionality of returning the consensual tempera-

ture from the sensors. Each SensorVariant is bound

to a specific Sun SPOT sensor since it listens to a

specific port number (in the range 66 to 70). Table 2
shows the relationship between the Sun SPOT sen-

sors and the variants. Each Sun SPOT is listed by

its IEEE network number.

Sun SPOT Sensor Port Variant
0014.4F01.0000.132D 66 SensorVariantOne

0014.4F01.0000.2BCC 67 SensorVariantTwo

0014.4F01.0000.2A56 68 SensorVariantThree

0014.4F01.0000.2470 69 SensorVariantFour

0014.4F01.0000.4432 70 SensorVariantFive

Table 2. Sun SPOT Sensors & Variants

– In order to validate the N-Version programming

technique, some erroneous temperature values were

injected (by placing a heat source close to the sen-
sors). As expected, these results were disregarded

because the correct temperature values were re-

turned by other sensor/variants.

6 http://www.opengeospatial.org/standards/sensorml

FlexFT: A Generic Framework for Developing Fault-tolerant Applications in the Sensor Web 11

Fig. 7 FlexFT Sensor Web Enablement

– The next step is to store the consensual temperature

(and corresponding metadata useful for discovery

and human assistance) in the 52◦ North Sensor Web

Framework database.

– As discussed earlier, the 52◦ North Sensor Web
Framework provides Sensor Web Services which can

be accessed by different types of clients: desktop,

mobile or web applications.

6.2 Experimental results

To perform our experiments with FlexFT and the Sen-
sor Web Enablement (SWE), we utilized the same hard-

ware configuration described in Section 5.4 and the 52◦

North Sensor Web Framework assessing a PostgreSQL7

data base using the JDBC api8. The application code

utilized to illustrate FlexFT being utilized in the SWE
context is listed in Appendix A.

Unlike the previous implementation, the N-Version

programming technique [2] was only implemented and

deployed in the Sun SPOT basestation. Three scenar-

ios were employed to evaluate this implementation. The
one single difference between these three scenarios is

the number (three to five) of sensors/variants employed.

The first experiment employs three sensors, while the

second and third experiments employ four and five sen-
sors respectively.

Table 3 shows the average performance of these

three experiments; that is, the average of the execution

for 1000 samples where each sample represents the per-

formance (measured in ms) of the main operations of

7 http://www.postgresql.org/
8 http://www.oracle.com/technetwork/java/javase/jdbc/

index.html

the N-Version programming technique combined with

the Sensor Web enablement approach. The following

operations were assessed:

– To execute a redundant operation — i.e. to execute

the SensorVariants (collect the temperature of differ-
ent sensors),

– To execute the method for the respective result of

the (majority) decision and

– To store the consensual temperature (and corre-
sponding metadata that is useful for discovery and

human assistance) in the 52◦ North Sensor Web

Framework database.

Experiment No. of Sensors Average Performance (ms)
1st 3 43.426
2nd 4 46.856
3rd 5 52.188

Table 3. Performance of the Experiments

On the basis of these values, the difference in perfor-

mance between the three experiments suggests the ap-

proach performance increases linearly with the growth
of sensor nodes. However, the analysis of the data shows

that there is a great variation in the sample perfor-

mance. That is, several outliers were observed while the

results were being obtained. This might be due to the
overhead inherent to the Java Virtual Machine (JVM)

such as Garbage Collection.

7 Concluding remarks

This paper discussed the use of a generic component-
based framework for the construction of adaptive fault

tolerant systems that can integrate and re-use technolo-

gies and deploy them across heterogeneous devices. We

12 D. Beder, J. Ueyama, J. P. de Albuquerque & M. Chaim

have implemented a framework prototype and evalu-

ated the potential benefits by means of two case stud-

ies and performance measurements. These show that

the proposed framework can deal with a wide degree of

heterogeneity with minimal resource overheads.

With regard to our generalized approach, it should

be emphasized that FlexFT was designed to construct
fault-tolerant systems for a variety of platforms includ-

ing PCs and sensor motes. Though our prototype was

only employed to build fault-tolerant systems in de-

vices such as sensors and PCs, we believe that sensors

are the most difficult devices to be programmed. This
is also recognized by the research community (i.e. de-

vices that are very hard to be programmed [20]). Thus,

since FlexFT was adopted to program this resource-

constrained device, we believe that FlexFT can be easily
adopted to construct fault-tolerant systems in other de-

vices such as smartphones and PDAs.

The generality of hardware and software are
achieved by means of the so-called loader and binder

extension plugins [12] that we borrowed from Open-

COM. In short, the loader plugin encapsulates the com-

plexity of loading software in a particular deployment

environment (e.g. loader for a Assembly based soft-
ware component into the Sun SPOT sensor mote or

a loader for deploying N-version system based on Java

Multithreads). The binder plugin provides a wide range

of ‘binding mechanisms’. Using binders, developers are
free to implement a wide range of binding mechanisms

that might be required in the underlying deployment

environment. For example, he/she may implement a

binder that creates connections between Java compo-

nents or a binder that connects components written in
Assembly language. That way, one can create fault tol-

erant software for a variety of environment such as sen-

sor nodes, mobile phones and desktop PCs.

With regard to future studies, two different direc-

tions can be envisaged:

Fault tolerance techniques. Regarding the examples

discussed in Section 5, we plan to incorporate other

fault tolerance techniques into the FlexFT framework

such as coordinated atomic action [6][28], concurrent
exception handling [14], context-based exception han-

dling [3][26] and so on. Moreover, we plan to evaluate

how the FlexFT framework can be fitted into the con-

text of critical embedded systems development.

Multi-hop communication. Regarding the example

discussed in Section 6, we plan to utilize the FlexFT
framework in the implementation of multi-hop commu-

nication in this scenario. The multi-hop communica-

tion [11] is the best choice of economy power consump-

tion in wireless sensor networks (WSNs), since the en-

ergy required for communication between two arbitrary

nodes A and B depends on the distance between the

two nodes. In this scenario, the FlexFT framework will

be employed to implement the sensors and the base sta-
tion.

Acknowledgments

The authors would like to express their gratitude for

the support granted by CNPq and FAPESP to the

INCT-SEC (National Institute of Science and Technol-
ogy — Critical Embedded Systems - Brazil), processes

573963/2008-9 and 08/57870-9.

Dr. Delano Beder and Dr. Jó Ueyama are also grate-

ful to CNPq for the support provided for the REACT

project (process 483699/01881-5).
Dr. Jó Ueyama would also like to thank FAPESP

(process 2008/05346-4), CNPq (process 474803/2009-

0) and RNP (CIA2-RIO) for their financial support.

Dr. João P. de Albuquerque and Dr. Jó Ueyama
are also grateful for the support granted by FAPESP

(process 2008/58161-1).

Finally, Dr. João P. de Albuquerque would also like

to thank the Alexander von Humboldt Foundation for

its sponsorship.

References

1. Åkerholm, M., Möller, A., Hansson, H., Nolin, M.: SAVE-
Comp - a Dependable Component Technology for Em-
bedded Systems Software. Technical Report MDH-
MRTC-165/2004-1-SE, Målardalen University (2004)

2. Avizienis, A.: The N-Version Approach to Fault-Tolerant
Software. IEEE Trans. Software Eng. 11(12), 1491–1501
(1985)

3. Beder, D., de Araújo, R.B.: Towards the Definition of
a Context-Aware Exception Handling Mechanism. In:
Dependable Computing Workshops (LADCW), Fifth
Latin-American Symposium on Dependable Computing
(LADC’2011), pp. 25–28 (2011)

4. Botts, M., Percivall, G., Reed, C., Davidson, J.: OGC
sensor web enablement: Overview and high level archi-
tecture. In: F. Fiedrich, B.V. de Walle (eds.) Proceedings
of the 5th International ISCRAM Conference, May 2008,
pp. 713–723. Washington, DC, USA (2008)

5. Broering, A., Echterhoff, J., Jirka, S., Simonis, I., Everd-
ing, T., Stasch, C., Liang, S., Lemmens, R.: New gener-
ation sensor web enablement. Sensors 11(3), 2652–2699
(2011)

6. Capozucca, A., Guelfi, N., Pelliccione, P., Romanovsky,
A., Zorzo, A.: Frameworks for Designing and Implement-
ing Dependable Systems using Coordinated Atomic Ac-
tions: A Comparative Study. Journal of Systems and
Software 82(2), 207–228 (2009)

7. Cifuentes, C.: Squawk - A Java VM for Small (and
Larger) Devices (2005). Slides for the IFIP WG 2.4 Meet-
ing

FlexFT: A Generic Framework for Developing Fault-tolerant Applications in the Sensor Web 13

8. Clark, M., Blair, G., Coulson, G., Parlavantzas, N.:
An Efficient Component Model for the Construction of
Adaptive Middleware. In: IFIP Middleware. Germany
(2001)

9. Costa, P., Coulson, G., Gold, R., Lad, M., Mascolo, C.,
Mottola, L., Picco, G.P., Sivaharan, T., Weerasinghe, N.,
Zachariadis, S.: The RUNES middleware for networked
embedded systems and its application in a disaster man-
agement scenario. In: 5th IEEE International Conference
on Pervasive Computing and Communications (PerCom
2007), pp. 69–78. IEEE Computer Society, Los Alamitos,
CA, USA (2007)

10. Costa, P., Coulson, G., Mascolo, C., Mottola, L., Picco,
G., Zachariadis, S.: A Reconfigurable Component-based
Middleware for Networked Embedded Systems. Interna-
tional Journal of Wireless Information Networks 14(2),
149–162 (2007)

11. Coulouris, G., Dollimore, J., Kindberg, T.: Distributed
systems - Concepts and Designs, 3rd edn. In-
ternational Computer Science Series. Addison-Wesley-
Longman (2002)

12. Coulson, G., Blair, G., Grace, P., Taiani, F., Joolia, A.,
Lee, K., Ueyama, J., Sivaharan, T.: A Generic Compo-
nent Model for Building Systems Software. ACM Trans-
action on Computer Systems 26(1) (2008)

13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design
Patterns: Elements of Reusable Object Oriented Soft-
ware. Addison-Wesley Publishing (1995)

14. Garcia, A., Beder, D., Rubira, C.: A Unified Meta-Level
Software Architecture for Sequential and Concurrent Ex-
ception Handling. Computer Journal 44, 569–587 (2001)

15. Hansson, H., Akerholm, M., Crnkovic, I., Torngren, M.:
SaveCCM – A Component Model for Safety-critical Real-
time Systems. In: Euromicro Conference, Special Ses-
sion Component Models for Dependable Systems. IEEE
(2004)

16. Hughes, D., et. al.: Looci: a loosely-coupled component
infrastructure for networked embedded systems. In:
MoMM’2009 - The 7th International Conference on Ad-
vances in Mobile Computing and Multimedia, pp. 195–
203 (2009)

17. Kurose, J., Ross, K.: Computer Networking: A Top-Down
Approach. Addison-Wesley Publishing (2009)

18. Na, A., Priest, M.: Ogc implementation specification 06-
009r6: Opengis sensor observation service (sos) (2007)

19. Porter, B., Coulson, G.: Lorien: a pure dynamic
component-based operating system for wireless sensor
networks. In: MidSens ’09: Proceedings of the 4th In-
ternational Workshop on Middleware Tools, Services and
Run-Time Support for Sensor Networks, pp. 7–12. ACM,
New York, NY, USA (2009)

20. Porter, B., Roedig, U., Coulson, G.: Type-safe updating
for modular wsn software. In: Distributed Computing in
Sensor Systems, 7th IEEE International Conference and
Workshops, DCOSS 2011, pp. 1–8 (2011)

21. Quadros, S.: RTXC Kernel User’s Guide. http://www.

quadros.com

22. Randell, B.: System Structure for Software Fault Toler-
ance. IEEE Transactions on Software Engineering 1(2),
220–232 (1975)

23. Randell, B., Xu, J.: Trends in Software, chap. The Evo-
lution of the Recovery Block Concept, pp. 1–22. Wiley
(1994)

24. Salmony, M., Stuttgen, H.: Transport Services for Multi-
media Applications on Broadband Networks. Computer
Communications 13(4), 197–203 (1990)

25. Szyperski, C.: Component Software: Beyond Object-
Oriented Programming, second edn. Addison-Wesley
(2002)

26. Tripathi, A., et al.: Exception Handling Issues in
Context-Aware Collaboration Systems for Pervasive
Computing. In: LNCS Advanced Topics in Exception
Handling Techniques, vol. 4119, pp. 161–180. Spring
(2006)

27. Wolff, A., Michaelis, S., Schmutzler, J., Wietfeld, C.:
Network-centric middleware for service oriented archi-
tectures across heterogeneous embedded systems. In:
IEEE 11th International EDOC Conference Workshop.
EDOCW ’07, pp. 105–108. IEEE Computer Society, Los
Alamitos, CA, USA (2007)

28. Xu, J., Randell, B., Romanovsky, A., Rubira, C., Stroud,
R., Wu, Z.: Fault Tolerance in Concurrent Object-
Oriented Software through Coordinated Error Recov-
ery. In: 25th International Symposium on Fault Tolerant
Computing (FTCS’25), pp. 499–508 (1995)

Appendix

A – Application code utilized in the case

studies

The application code implemented for the case studies dis-
cussed in Sections 5.4 and Section 6.2 is listed below.

// F i l e : TemperatureDemoHos tApp l ica t ion . j a v a

package org . sunspotworld . demo ;

import FlexFT . NVInterface ;
import OpenCOMV2. OCM InterfaceRefList ;
import OpenCOMV2.OpenCOMV2;
import org . sunspotworld . demo . s en sor .

Temperature ;
import org . sunspotworld . demo . s en sor . ISensor ;
import org . sunspotworld . demo . s en sor . SensorNV

;
import java . s q l . DriverManager ;
import java . s q l . Statement ;
import java . s q l . SQLException ;
import java . u t i l . Calendar ;
import java . u t i l . Date ;
import com . sun . spot . u t i l . U t i l s ;
import java . i o . Pr intWri ter ;
import java . s q l . Connection ;

public c l a s s TemperatureDemoHostApplication
{

private s t a t i c f i n a l St r ing DATABASEURL
= ” jdbc : p o s t g r e s q l : // l o c a l h o s t
:5432/ ” ;

private s t a t i c f i n a l St r ing
DATABASENAME = ”SosDatabase ” ;

private s t a t i c f i n a l St r ing
DATABASE USER = ” pos tgre s ” ;

private s t a t i c f i n a l St r ing
DATABASEPASSWORD = ” pos tgre s ” ;

private s t a t i c f i n a l St r ing JDBC DRIVER
= ”org . p o s t g r e s q l . Dr iver ” ;

// Name o f t h e da t a b a s e t a b l e where we
s t o r e s en sor r e a d i n g s

14 D. Beder, J. Ueyama, J. P. de Albuquerque & M. Chaim

private s t a t i c f i n a l St r ing
DATATABLENAME = ” obs e rvat i on ” ;

private Statement stmt = nul l ;
private Connection dbCon = nul l ;
private ISensor pISensor ;
private f i n a l int NRO SENSORS = 5 ;
private f i n a l int NRO SAMPLES = 1000;

private void run () throws Exception {
try {

setUp () ;
co l l e c tDat a () ;

} catch (Exception e) {
e . pr intStackTrace () ;

} f i n a l l y {
tearDown () ;

}
}

private void setUp () throws Exception {

f i n a l St r ing className = ”org .
sunspotworld . demo . s en sor . Sensor ”
;

System . out . p r i n t l n (”Database demo
app l i c a t i on s t a r t i n g . . . ”) ;

try {
// R e g i s t e r t h e JDBC d r i v e r f o r

mysq l / p o s t g r e s
// This i s t y p i c a l l y found in a

JAR f i l e
// named someth ing l i k e
// mysql−connec tor−j ava−<v e r s i on

>−b i n . j a r
// which s h ou l d be in t h e

c l a s s p a t h
// See us e r . c l a s s p a t h in b u i l d .

p r o p e r t i e s
// f o r t h i s Sun SPOT ho s t

a p p l i c a t i o n
Class . forName (JDBC DRIVER) ;

// De f i n e URL o f d a t a b a s e s e r v e r
f o r

St r ing u r l = DATABASEURL +
DATABASENAME;

// Get a connec t i on t o t h e
da t a b a s e f o r g i v e n us e r /
password

dbCon = DriverManager .
getConnection (ur l ,
DATABASE USER,

DATABASEPASSWORD) ;

// D i s p l a y URL and connec t i on
i n f o rma t i on

System . out . p r i n t l n (”URL: ” + u r l
) ;

System . out . p r i n t l n (”Connection :
” + dbCon) ;

// Get a Sta t ement o b j e c t
stmt = dbCon . createStatement () ;

NVInterface pINV ;
OCM InterfaceRefList p i n t f s ;

OpenCOMV2 runtime = OpenCOMV2.
ge t In s tance () ;

f i n a l St r ing s e n s o r I n t e r f a c e =
ISensor . c l a s s . getName () ;

f i n a l St r ing nv In t e r f a c e =
NVInterface . c l a s s . getName () ;

// Creat e NVSensor

int sensorNVId = runtime . load (
SensorNV . c l a s s . getName ()) ;

int sensorNVComId = runtime .
i n s t a n t i a t e (sensorNVId) ;

p i n t f s = (OCM InterfaceRefList)
runtime . getprop (
sensorNVComId , ”INTERFACES”)
;

p ISensor = (ISensor) p i n t f s .
g e t I n t e r f a c eRe f (
s e n s o r I n t e r f a c e) ;

pINV = (NVInterface) p i n t f s .
g e t I n t e r f a c eRe f (n v In t e r f a c e)
;

S t r i ng [] s en s o r e s = new St r ing [
NRO SENSORS] ;

for (int i = 1 ; i <= NRO SENSORS
; i++) {
s en s o r e s [i − 1] = Clas s .

forName (className + i) .
getName () ;

}
pINV . con f i gu r e (sensorNVComId ,

s en s o r e s) ;

System . out . p r i n t l n (”setUp
completed s u c c e s s f u l l y ”) ;

} catch (Exception e) {
System . e r r . p r i n t l n (”setUp caught

” + e) ;
System . e r r . p r i n t l n (”Make sure

that mySQL i s i n s t a l l e d
p roper l y \n”

+ ”and has a Test
database a c c e s s i b l e
v ia the \n”

+ ” d e f au l t admin i s t ra tor
s e t t i n g s on

l o c a l h o s t :3306\ n”) ;
throw e ;

}
}

public double getTemperature () {

Temperature r e s u l t = pISensor .
getTemperature () ;

return r e s u l t . getValue () ;
}

FlexFT: A Generic Framework for Developing Fault-tolerant Applications in the Sensor Web 15

public void co l l e c tDat a () throws

Exception {
St r ing id = nul l ;
S t r i ng t s = nul l ;
double val = 0 ;

S t r i ng [] s a ida = new St r ing [
NRO SAMPLES] ;

System . out . p r i n t l n (”Sampling . . . \ n [
Each ∗ i n d i c a t e s one sample , !
imp l i e s ”

+ ” rad i o timed out wai t ing
f o r a sample] ”) ;

// Main data c o l l e c t i o n l oop
for (int i = 1 ; i <= NRO SAMPLES; i

++) {
try {

Ut i l s . s l e ep (1000) ;

System . out . p r i n t l n (”∗ ” + i)
;

long s t a r t = System .
cu r r en tT imeMi l l i s () ;

va l = getTemperature () ;

Calendar c a l = Calendar .
ge t In s tance () ;

c a l . setTime (new Date (System .
cu r r en tT imeMi l l i s ())) ;

t s = ca l . get (Calendar .YEAR)
+ ”−”

+ (1 + ca l . get (
Calendar .MONTH))
+ ”−”

+ ca l . get (Calendar .
DAYOFMONTH) +
” ”

+ ca l . get (Calendar .
HOUR OFDAY) + ”
: ”

+ ca l . get (Calendar .
MINUTE) + ” : ”

+ ca l . get (Calendar .
SECOND) ;

f i n a l St r ing p roc id = ”urn :
ogc : ob j ec t : f e a tu r e :
Sensor : IFGI : i f g i −s ensor
−3” ;

f i n a l St r ing f o i i d = ”
f o i 3 001 ” ;

f i n a l St r ing phe id = ”urn :
ogc : de f : phenomenon :OGC
: 1 . 0 . 3 0 : temperature ” ;

f i n a l St r ing o f f i d = ”
TEMPERATURE” ;

S t r i ng query = ”INSERT INTO
” + DATATABLE NAME + ” (

time stamp , procedure id
, ” ;

query += ”
f e a t u r e o f i n t e r e s t i d ,
phenomenon id ,
o f f e r i n g i d ,
numer ic value) ” ;

query += ” VALUES(’ ” + ts +
” ’ , ’ ” + proc id + ” ’ , ’ ”
+ f o i i d + ” ’ , ” ;

query += ” ’ ” + phe id + ” ’ , ’
” + o f f i d + ” ’ , ’ ” + val
+ ” ’) ” ;

stmt . executeUpdate (query) ;

long end = System .
cu r r en tT imeMi l l i s () ;

s a ida [i − 1] = i + ” ” + (
end − s t a r t) + ” ” + val
;

System . out . p r i n t l n (s a ida [i −
1]) ;

} catch (SQLException e) {
System . out . p r i n t l n (”Caught ”

+ e
+ ” whi l e s t o r i n g

s en sor sample <”
+ ” \ ’ ” + id + ” \ ’ ,\ ’

” + ts + ” \ ’ , ” +
val + ”>”) ;

throw e ;
} catch (Exception e) {

System . out . p r i n t l n (”Caught ”
+ e

+ ” whi l e read ing
s en sor samples . ”
) ;

throw e ;
}

}
PrintWri ter w r i t e r = new PrintWri ter

(S t r i ng . valueOf (NRO SENSORS) + ”
. csv ”) ;

for (S t r i ng l i nha : s a ida) {

wr i t e r . p r i n t l n (l i nha) ;
}
wr i t e r . c l o s e () ;

}

public void tearDown () throws Exception
{
i f (dbCon != nul l) {

dbCon . c l o s e () ;
}
System . ex i t (0) ;

}

public s t a t i c void main (S t r i ng [] args)
throws Exception {
TemperatureDemoHostApplication app =

new

16 D. Beder, J. Ueyama, J. P. de Albuquerque & M. Chaim

TemperatureDemoHostApplication ()
;

app . run () ;
}

}

// F i l e : Temperature . j a v a

package org . sunspotworld . demo . s en sor ;

public c l a s s Temperature {

private double value ;

public Temperature (double value) {
th i s . va lue = value ;

}

public double getValue () {
return value ;

}

public St r ing toS t r i ng () {
return Double . t oS t r i ng (value) ;

}

public boolean equa l s (Object obj) {
boolean r e s u l t = f a l s e ;
i f (obj instanceof Temperature) {

Temperature temp = (Temperature)
obj ;

r e s u l t = Math . abs (temp . value −
th i s . va lue) <= 1 ;

}
return r e s u l t ;

}

public int hashCode () {
return (int) va lue ;

}
}

// F i l e : IS en sor . j a v a

package org . sunspotworld . demo . s en sor ;

public inter face ISensor {
public Temperature getTemperature () ;

}

// F i l e : SensorNV . j ava

package org . sunspotworld . demo . s en sor ;

import FlexFT .NVComponent ;
import OpenCOMV2. IConnect ions ;

public c l a s s SensorNV extends NVComponent
implements IConnections , ISensor {

public St r ing ge tRequ i r ed In te r f a c e () {
return ISensor . c l a s s . getName () ;

}

public Temperature getTemperature () {

return (Temperature) th i s . execute (
new Object [] { nul l }) ;

}

}

// F i l e : Sensor1 . j a v a

package org . sunspotworld . demo . s en sor ;

public c l a s s Sensor1 extends Sensor {

public int getPort () {
return 67 ;

}
}

// F i l e : Sensor2 . j a v a

package org . sunspotworld . demo . s en sor ;

public c l a s s Sensor2 extends Sensor {

public int getPort () {
return 68 ;

}

}

// F i l e : Sensor3 . j a v a

package org . sunspotworld . demo . s en sor ;

public c l a s s Sensor3 extends Sensor {

public int getPort () {
return 69 ;

}
}

// F i l e : Sensor4 . j a v a

package org . sunspotworld . demo . s en sor ;

public c l a s s Sensor4 extends Sensor {

public int getPort () {
return 70 ;

}
}

// F i l e : Sensor5 . j a v a

package org . sunspotworld . demo . s en sor ;

public c l a s s Sensor5 extends Sensor {

public int getPort () {
return 71 ;

}
}

