
Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2013, Article ID 385892, 12 pages
http://dx.doi.org/10.1155/2013/385892

Research Article
FlexFT: A Generic Framework for Developing Fault-Tolerant
Applications in the Sensor Web

Delano Medeiros Beder,1 Jó Ueyama,2

João Porto de Albuquerque,2 and Marcos Lordello Chaim3

1 DC, Federal University of São Carlos (UFSCar), 13565-905 São Carlos, SP, Brazil
2 ICMC, University of São Paulo (USP), 13566-585 São Carlos, SP, Brazil
3 EACH, University of São Paulo (USP), 03828-000 São Paulo, SP, Brazil

Correspondence should be addressed to Delano Medeiros Beder; delano@dc.ufscar.br

Received 29 August 2012; Accepted 4 December 2012

Academic Editor: Yunghsiang Han

Copyright © 2013 Delano Medeiros Beder et al.This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Fault-tolerant systems are expected to operate in a variety of devices ranging from standard PCs to embedded devices. In addition,
the emergence of new software technologies has required these applications tomeet the needs of heterogeneous software platforms.
However, the existing approaches to build fault-tolerant systems are often targeted at a particular platform and software technology.
The objective of this paper is to discuss the use of FlexFT—a generic component-based framework for the construction of adaptive
fault-tolerant systems that can integrate and reuse technologies and deploy them across heterogeneous devices. Furthermore,
FlexFT provides a standardized and interoperable interface for sensor observations by relying upon the “Sensor Web” paradigm
established by theOpenGeospatial Consortium (OGC).We have implemented a Java prototype of our framework and evaluated the
potential benefits by carrying out case studies and performance measurements. By implementing and deploying these case studies
in standard PCs as well as in sensor nodes, we show that FlexFT can cope with the problem of a wide degree of heterogeneity with
minimal resource overheads.

1. Introduction

At present, a number of software development technologies
(e.g., component-based approach, aspect-oriented program-
ming, and web services) can be employed for building
systems that can be run on a variety of hardware platforms
ranging from standard PCs to networked embedded devices.
This scenario is also valid for reliable systems which are
often required to run on a variety of hardware platforms
including embedded devices. In this paper we are concerned
with examining two types of heterogeneity:

(i) Device Heterogeneity. Fault-tolerant systems are often
deployed with heterogeneous devices which can
range from PCs to embedded devices. However, this
heterogeneity is expected to be adversely affected by
the emergence of new hardware platforms.

(ii) Software Language/Middleware Heterogeneity. There
are currently a large number of fault-tolerant

policies, each ofwhich requires a particular procedure
and strategy. They are normally based on hetero-
geneous programming languages and technologies
(e.g., publish-subscribe systems, web service applica-
tions, tuple spaces, and message-oriented toolkits).

The aim of this paper is to investigate approaches that
can lead to the development of middleware solutions that
require different programming models in different environ-
ments. For this purpose, we introduce FlexFT, a generic
framework for constructing reliable systems that can deal
with both hardware and software heterogeneity.This consists
of a minimal policy-free microkernel where fault tolerance
policies are incremented as demanded. Furthermore, it pro-
vides a standardized and interoperable interface for sensor
observations, by relying on the “Sensor Web” paradigm [1]
established by the Open Geospatial Consortium (OGC).

The policy is deployed in the form of component plug-
ins, which are destroyed when no longer required. FlexFT

2 International Journal of Distributed Sensor Networks

(a) (b)

Figure 1: FlexFT: research challenges.

also supports dynamic adaptation, as these plugins can be
reconfigured at runtime. The key feature of FlexFT is the
provision of a unique tool for constructing reliable systems
based on a wide range of software technologies targeted at a
variety of hardware platforms. We evaluate FlexFT by means
of case studies and performance measurements; these show
the following important benefits.

(i) Flexibility. Fault-tolerant systems can be developed
and deployed independently of target platforms. The
kernel can plug in the targeted platforms of a partic-
ular abstraction or behavior that is implemented.

(ii) Reusability/Modularity. The developers can reuse the
existing components and processes that are employed
for particular platforms.

(iii) Transference of Skills. The employment of different
technologies to build applications for each targeted
device and applicability do not allow for the transfer
of skills across different tools. Skill sets and areas of
expertise are rarely transferable when they rely on
different technologies. A generic approach can bring
about the transference of skills because the developers
only utilize a single tool for developing applications
based on a variety of technologies.

(iv) Technology Independency. FlexFT allows heteroge-
neous components to be reconfigured, for example,
both COM and Java components.

(v) Interoperability. FlexFT provides an interface that
follows the “Sensor Web” paradigm and makes it
easy for developers to export sensor observations in
accordance with the OGC standard Sensor Observa-
tion Service (SOS) (http://www.ogcnetwork.net/swe).
In this manner, FlexFT provides interoperability with
a variety of end-user applications that are able to
consume data via web services that comply with the
SOS standard.

The paper is structured in the following way: we set
out by discussing the basic concepts and research challenges

in Section 2. Section 3 reviews selected works related to
the topics discussed in this paper. Following this, Section 4
outlines the generic framework for fault-tolerant system
development; this includes an in-depth examination of the
benefits obtained. Together with this section, Sections 5
and 6 examine some case studies which draw on the
constructed prototype to show that the proposed approach
attains an acceptable standard of performance and adequate
resource consumption overhead. Finally, Section 7 concludes
the paper and adds some comments about ongoing work.

2. Background and Research Challenges

Before examining the FlexFT architecture in detail, we will
first discuss the determining factors underlying this new
approach to reliable software development.

Sophisticated applications must now take account of a
wide range of software technologies and middleware plat-
forms to meet a large number of requirements. As illus-
trated in Figure 1(a), a reliable system may have to use an
implementation that has already been developed as Java or
XPCOM (https://developer.mozilla.org/en/XPCOM) com-
ponents, and a multithreaded component technology may
also be necessary. In addition, multiple distribution abstrac-
tions may be required for example, a publish-subscribe bind-
ing when the application is operating over ad hoc wireless
networks, along with Web Service middleware when the
application needs to interact with a legacy service in the
established infrastructure.

Furthermore, end users currently rely on a variety of
devices ranging from PCs to smartphones. They are also
often interested in accessing data from a number of sources
including sensor motes (e.g., data coming from urban rivers,
such as temperature and depth levels). Since these different
sources have heterogeneous sensor protocols and interfaces,
this scenario requires a good deal of effort on the part of
application developers. Moreover, information systems that
rely on sensors (e.g., information systems for disaster man-
agement) usually depend on integrating and composing
several services, where each service handles different sensors

International Journal of Distributed Sensor Networks 3

that monitor and collect specific contextual information.
Since typically the services are developed in an independent
way, it is important to do adhere to a standardized interface
to ensure interoperability.

Against this backdrop, FlexFT offers a generic approach
to help application developers mitigate the effects of this
heterogeneity so as to ensure that end users can read data
from sensors using a wide range of devices (e.g., PCs, smart-
phones, and tablets). Rather than treat these as individual
technologies that must be understood and integrated in an
ad-hocmanner, FlexFT provides a single unified tool to allow
developers to build applications to deal with the current
heterogeneous environments which rely on the Sensor Web
standards referred to above.

Reliable systems are also built on a diverse range of
hardware platforms, as illustrated in Figure 1(b). Instead of
depending on porting applications across these platforms
with the aid of the software technologies that are available,
FlexFT offers a tool where the application can be developed
independently of the target; the system then ensures that
the appropriate implementation is deployed. Finally, since
change is an essential feature of current systems, a uniform
approach is required to provide dynamic software reconfigu-
ration as well as to tackle the problem of heterogeneity.

The FlexFT framework provides mechanisms that make
it easier for application designers to undertake the task of
constructing reliable component-based systems. The con-
struction of reliable systems is not a simple task; it requires
the use of appropriate techniques during the whole software
development cycle. In general, these techniques are based on
the provision of redundancy (i.e., they make use of design
diversity), both for error detection and error recovery.

Design diversity [2] means that multiple functionally
equivalent software components are independently generated
from the same initial specification. Two or more versions of
the software component are independently developed from
this specification, each by a group that does not interact
with any other, and, whenever possible, employs different
algorithms.

However, the provision of software redundancy involves
the following: (i) an increase in the cost of creating the
software and (ii) a greater degree of complexity in the system,
caused by the addition of redundant components. Ideally,
the added software redundancy should be incorporated into
the original system in a structured and nonintrusive manner
to enable the application designers to construct dependable
systems.

2.1. Recovery Block. Recovery block [3] is a technique devised
by Randell [4] from what, to some extent, was observed to be
the practice at that time. The description outlined here has
been slightly changed from the original description so that
it is in accordance with the approach for component-based
systems development. In a system with recovery blocks [3],
the design of the system is broken down into fault recover-
able blocks/modules (i.e., reliable system components). Each
critical system component requires the separate development
of alternative variants (modules of differing design aimed at
a common specification) and one adjudicator to check the

results produced by the variants (by means of an acceptance
test). On entry to a recovery block, the state of the reliable
system component (or of the whole system) must be saved
to permit backward error recovery, that is, to establish a
checkpoint.

The primary alternate is executed, and then the accep-
tance test is evaluated to provide an assessment of its out-
come. If the acceptance test is passed, the outcome is regarded
as successful and the recovery block can be exited. The
information on the state of the component system obtained
on entry (i.e., at the checkpoint) can be discarded. However,
if the test fails or if any errors are detected by other means
during the execution of the alternate, an exception is raised
and backward error recovery is invoked. This restores the
state of the component system to what it had been on entry.
After this recovery, the next alternate is executed and then the
acceptance test is applied again.This sequence continues until
either an acceptance test is passed or all of the alternates have
failed it. If all the alternates either fail the test or result in an
exception (due to an internal error being detected), a failure
exception will be signaled to the environment of the recovery
block.

2.2. N-Version Programming Technique. Among the design
diversity techniques, it is worth highlighting the N-version
programming technique [2]. In an N-version software sys-
tem, each module is formed of up to N different implemen-
tations. Each variant carries out the same task, but it is hoped
in a different way. Each version then submits its answer to a
voter or decider which determines the correct answer (e.g.,
the majority of the votes) and returns this as the result of the
N-version component system.

There are few differences between the recovery block and
the N-version techniques, but they are important. In tradi-
tional Recovery Blocks, each alternative would be executed
serially until an acceptable solution is found as determined
by the adjudicator. The N-version technique has always been
designed to be executed in parallel. In a serial N-version
system, the cost in time of trying out multiple alternatives
may be too expensive, especially for a real-time system.
Another important difference between the twomethods is the
distinction between the roles of an adjudicator and decider.
The recovery block technique requires each fault recover-
able block (reliable system component) to build a specific
adjudicator; in the N-version technique, a single default
decider (e.g., the majority) may be used. On the basis of
the assumption that the programmer can create a sufficiently
simple adjudicator, the recovery block technique will create
a system which is very unlikely to enter into an incorrect
state. The engineering tradeoffs, especially monetary costs,
involved with developing either type of system have both
benefits and drawbacks, and it is important for the engineer
to explore the space so as to be in a position to decide on what
the best solution for his project should be.

2.3. State-Based Variant Execution. The ability of dynamic
reconfiguration—for example, to replace faulty components
and/or to change the computation performed in fault
situations—is a crucial factor in the development of reliable

4 International Journal of Distributed Sensor Networks

systems. When account is taken of the diversity of designs
(components and their different variants), ideally the selec-
tion of the variant that will be executed should depend on the
system and/or state of the component.

FlexFT supports dynamic adaptation, as these compo-
nents and/or variants can be reconfigured at runtime, by
implementing a slight variant of the state design pattern
[5], a well-known pattern that has been used in various
applications. Its purpose is to allow an object to change its
behavior when its internal state changes.

Consider the following example of motivation: compo-
nents Sensor which represent individual sensors in a sensor
network system and component Connection which provide
the communication infrastructure for this system. For the
sake of simplicity, we restrict Connection to two variants:
Bluetooth and Wi-Fi. Depending on the current state of
the system, it can respond in a different way to the client’s
(sensors) requests. For example, the implementation of a
sendMessage operation depends on the state of the system: if
the system is in its “normal” state, the communication should
be carried out by using Bluetooth (cheaper); otherwise, the
Wi-Fi should be used. Moreover, the Connection component
can change its current state when an event occurs or when
a condition is satisfied (e.g., after error detection or fault
treatment procedures).

2.4. Sensor Web Enablement. As well as the issues referred
to above, one of the main challenges for the application
developer is how to integrate data that has been acquired
from different types of sensors. Existing sensors use a large
variety of sensor protocols (e.g., Sun SPOT ZigBee protocol,
XBee/ZigBee, and GumStix Wi-Fi) and sensor interfaces
(e.g., nesC), and most applications are still dealing with this
by integrating sensor resources through their own mecha-
nisms. However, this manual bridging of the gap between
sensor resources and applications leads to an extensive
adaptation effort and is considered to be a key cost factor in
large-scale deployment scenarios [6].

This challenge to address the diversity of protocols,
interfaces, and sensor devices was addressed by the Open
Geospatial Consortium (OGC) which in 2003 began to lay
down a set of standards (http://www.ogcnetwork.net/swe)
with the aim of establishing the “SensorWeb” [1].This can be
defined as an infrastructure that allows for the interoperable
usage of sensor resources by ensuring that their discovery,
access, tasking, and eventing and alerting are carried out
in a standardized way. Thus, the Sensor Web conceals the
underlying layers, the network communication details, and
heterogeneous sensor hardware from the applications built
on top of it and thus allows users to share sensor resources
more easily [6]. In the Sensor Web paradigm, all the sensors
report their position and are available in the worldwide web;
in addition, their metadata is registered so that they can all
be uniformly accessed (and some of them even controlled)
via the internet [1].

The realization of the vision of sensor webs and networks
is being pursued by the Sensor Web Enablement (SWE)
working group of OGC through the establishment of several
(XML-based) encodings for describing sensor resources and

sensor observations and through several standard interface
definitions of web services. The first generation of SWE
includes standards for [1] (a) description of sensor data; (b)
description of sensor metadata including properties and the
behavior of the sensors; (c) access to observations and sensor
metadata based on standardized data formats and appropriate
query and filter mechanisms; and (d) setting of tasks for
sensors to obtain measurement data.

FlexFT adopts OGC SWE standards to provide stan-
dardized access to sensor observations. The most important
standard in this context is the SensorObservation Service [7],
which consists of a pull-based service for querying as well as
inserting measured sensor data and metadata. FlexFT relies
upon the existing open source SOS implementation from the
52
∘ North Sensor Web framework (http://52north.org/swe)

to provide the application developer with a service-oriented,
standardized interface for sensor observations.

3. Related Work

This section presents the related work on component-based
building system technology. We first review each platform
and highlight theirmain features and contributions.Then, we
outline how our work contributes towards the state of the art.

SaveCCM [8, 9] is a component model designed to
develop vehicular real-time systems. Within this domain,
SaveCCM addresses the safety-critical subsystems responsi-
ble for controlling vehicular dynamics which includes power-
train, steering, and braking. However, SaveCCM only sup-
ports RTXC OS [10] andMicrosoftWindows OSs and thus is
only deployable in environments where they are supported.
Reconfiguration at runtime is not achieved in SaveCCM,
and hence, all the configurations are carried out at compile
time. This prevents the use of SaveCCM in systems that need
a dynamic configuration such as a scenario in which new
functionalities have to be deployed at runtime.

RUNES (Reconfigurable, Ubiquous, Networked Embed-
ded Systems) [11, 12] is a software platform aimed at providing
the software fabric for developing networked embedded sys-
tems. It is based on a componentmodelwhich encapsulates the
characteristics of the devices and also allows for the dynamic
reconfiguration of the network of embedded systems. The
component model is carried out by implementing a runtime
API and the components themselves for particular devices.
To support reconfiguration, the RUNES architecture employs
metamodels which are updated by theAPI runtimewhenever
a component is created or destroyed. Although RUNES is
able to handle changes occurring in the network of devices,
fault tolerance techniques can only be supported at device
level whereas the FlexFT middleware allows it to be handled
at architecture level. In addition, FlexFT has an interface
which makes sensor data available as a service in the Web
in compliance with the OSG Sensor Web Enablement (SWE)
standard [1].

The Loosely coupled Component Infrastructure (LooCI)
[13] is designed to support embedded JavaME (microedition)
platforms such as Sun SPOT or JavaME smartphones. LooCI
comprises an easy-to-use component model and a simple
yet extensible networking framework. Each LooCI node is

International Journal of Distributed Sensor Networks 5

FlexFT

Reliable component-based system

Fault-tolerant CFs

Component runtime kernel

Deployment environment (hardware and/or software)

(a) FlexFT architecture

IReliable

≪component≫
ThirdVariant

IReliable

≪component≫
SecondVariant

IReliable

≪component≫
FirstVariant

IReliable

IVariant≪component≫
ReliableComponent

Binding

(b) FlexFT reliable component

Figure 2: FlexFT Framework.

connected via a common event-bus communication sub-
strate. Like other embedded component platforms, such as
RUNES [12] or OpenCOM [14], LooCI components support
runtime reconfiguration, concrete interface definitions, and
introspection and support for the rewiring of bindings.
LooCI was recently ported to a number of sensor devices
and Android platforms and is thus capable of creating
component-based platforms in a heterogeneous environ-
ment. Unlike FlexFT, LooCI does not include a framework
to create component-based runtime reconfigurable fault-
tolerant systems. Hence, it cannot create fault-tolerant sys-
tems in a natural and explicitly supported way.

The component-based operating system (OS) Lorien [15]
allows users to experiment freely with software at any system
level (e.g., MAC, drivers, routing, scheduling, etc.), and code
can be (un)loaded dynamically during experiment runtime
without resetting the nodes. The OS can also be used as a
boot manager to run other Wireless Sensor Network (WSN)
OSs of the user’s choice. Lorien runs on T-Mote class devices
and provides all the benefits of OpenCOM while running
on resource-constrained devices. It is particularly targeted at
providing runtime reconfiguration (flexibility) for OSs that
runs on WSNs. While it provides flexibility on WSN OSs,
Lorien does not provide a generic framework for constructing
reconfigurable fault-tolerant systems. Furthermore, Lorien
does not provide an implementation that can ensure therewill
be an interaction with the Sensor Web paradigm.

The middleware developed in the context of the MORE
project (Network-centric Middleware for GrOup commu-
nication andResource Sharing acrossHeterogeneousEmbed-
ded Systems) [16] targets heterogeneous embedded systems
in the Service-Oriented Architecture (SOA) context. MORE
middleware allows XML-based information (e.g., SOA data,
XML-based policies) to be transferred to embedded services
nodes in an efficient manner. The idea is to reduce consump-
tion of resources (e.g., battery, processing time) in the devices.
To achieve such a goal, the 𝜇SOA approach is proposed to
reduce the message size and parsing overhead. According to
the authors, a 𝜇SOA message requires 2.5% of a standard
SOAP message. In contrast, FlexFT is a middleware system
supporting the development of fault-tolerant components
with a service-oriented interface. It does not address the
question of internode communication.

In summary, we argue that FlexFT provides a framework
for constructing runtime reconfigurable component-based
fault tolerant systems. Given that the FlexFT kernel itself is
minimal, it is deployable in a variety of devices including
the sensor motes. We also argue that none of the platforms
discussed above adopt SWE standards to ensure that data
from the sensor nodes are accessible via the web to any end
user interested in this kind of information.

4. FlexFT Framework

The FlexFT framework architecture can be decomposed into
two layers, and a rough draft of its structure is illustrated in
Figure 2(a):

(i) Fault-Tolerant Component Frameworks. This layer is
responsible for providing mechanisms for develop-
ing reliable component-based systems. These mech-
anisms are implemented in the form of component
frameworks. Component Framework (CF) has been
defined as “collections of rules and interfaces that
govern the interaction of a set of components “plugged
into” them” [17]. A CF embodies rules and interfaces
that make sense in a specific application domain.

(ii) Component Runtime Kernel Layer.This layer provides
support for the development of component-based
reliable systems.That is, this layer provides the inher-
ent componentmodel operations of FlexFT such as (i)
loading components and instantiation, (ii) definition
of receptacles, and (iii) definition of bindings.

4.1. FlexFT: Component Model. The FlexFT framework pro-
vides mechanisms (implemented as Component Frame-
works) thatmake easier the task of constructing reliable com-
ponent-based systems by application designers. Figure 2(b)
shows the FlexFT component approach that is employed to
implement the reliable (redundant) components and their
respective variants.

(i) The FirstVariant, SecondVariant, and ThirdVariant

components consist of variants (multiple functionally
equivalent software components that are indepen-
dently generated from the same initial specifications).

6 International Journal of Distributed Sensor Networks

≪interface≫
IReceptacle

ContextComponent<𝑇>

+changeState(state:String):void

ContextInterface
+changeState(state:String):void

NVInterface
+decide(results:List):Object

NVComponent<𝑇>

+decide(results:List):Object
+execute():Object

RBComponent<𝑇>

+execute():Object
+saveState():void
+restoreState():void

OpenCOMComponent

FTComponent

+connect():boolean
+disconnect():boolean
+startup():boolean

≪interface≫
FTInterface

+execute():Object

RBInterface
+acceptance(result:Object):boolean
+saveState():void
+restoreState():void+invoke():Object

+invoke():Object

OCM_MultiReceptacleContext<𝑇>

+invoke():Object

+shutdown():boolean

≪interface≫≪interface≫ ≪interface≫

OCM MultiReceptacleContext<𝑇>

OCM MultiReceptacle<𝑇>

Figure 3: FlexFT Framework classes.

(ii) The component ReliableComponent is a controller
that is responsible for coordinating the execution of
the variants and invoking the inherent operations
(acceptance test, adjudication, and so on) of different
design diversity techniques.

(iii) The Binding mechanism connects both the provided
and required interfaces. It is worth pointing out that
the granularity of this connection is N provided inter-
faces (IReliable) to 1 required interface (IVariant).

4.2. FlexFT Framework Classes. Figure 3 shows the classes
and interfaces that comprise the FlexFT implementation of
three different design diversity techniques. Fault-tolerant sys-
tems designers must extend these classes and/or imple-
ment these interfaces to build reliable systems. When the
FlexFT prototype was implemented, it was based on the
OpenCOMJ—the OpenCOM [14, 18] implementation in
Java. OpenCOM is a lightweight, efficient, and reflective
component model.

The abstract classOpenCOMComponent includes generic
source code for OpenCOM components (OpenCOMJ API).
The abstract class FTComponent extends the OpenCOM-
Component class and is the root of the reliable (redundant)
components hierarchy and implements the basic life-cycle
operations (creation, destruction, connection, and discon-
nection) of reliable OpenCOM components. Moreover, this
class has a reference to the interface Receptacle (OpenCOMJ
implementation of required interfaces). FTComponent sub-
classes use different implementations of this interface and
take into account the inherent characteristics of each fault tol-
erance technique (N-version programming, recovery blocks,
and state-based execution).

The FTInterface provides the operation execute (String
methodName, Object[] params). This operation is imple-
mented by FTComponent subclasses: RBComponent (recov-
ery blocks technique), NVComponent (N-Version Program-
ming technique), and ContextComponent (state-based vari-
ant). The execute operation is responsible for executing the

variants (using the reference to the interface Receptacle)
and takes into account the inherent characteristics of each
technique (sequential execution, parallel execution, and so
on).

5. Case Study One: Design Diversity
Techniques

This section provides some simple examples that illustrate
how the FlexFT framework can be used to implement reliable
components using different design diversity techniques [2].

5.1. N-Version Programming Technique. We examine the im-
plementation of a simple reliable component based on the
N-version programming technique [2] using the FlexFT

framework.
Figure 4 shows the MultiplyNV component (and its

variants AddVariant, MultiplyVariant, and WrongVariant)
that provides the functionality of returning the product of
two integers. The MultiplyNV class represents the Reliable-
Component (Figure 2) and extends the NVComponent

abstract class (Figure 3) that implements the execute method
by taking into account the inherent features of the N-
version programming technique. That is, this method is
responsible for executing the variants and for obtaining the
respective decision (NVInterface decide method). It is worth
mentioning that the FlexFT framework provides a default
algorithm for the result decision (majority) through the
NVComponent decide method implementation. However,
NVComponent subclasses can reimplement this method and
hence use a different result decision algorithm.

In addition, the MultiplyNV class implements the IMul-
tiply interface (the functionality of returning the product of
two integers). This implementation (Pseudocode 1) simply
consists of invoking the execute method discussed earlier.

The AddVariant,MultiplyVariant, andWrongVariant rep-
resent three implementations of the functionality of returning
the product of two integer numbers (IMultiply interface).

International Journal of Distributed Sensor Networks 7

≪interface≫
IReceptacle

+invoke():Object

≪interface≫
NVInterface

+decide(results:List):Object

NVComponent

+decide(results:List):Object
+execute():Object

MultiplyNV

+mul(a:int,b:int):int
+decide(results:List):Object
+execute():Object

WrongVariant

+mul(a:int,b:int):int

MultiplyVariant

+mul(a:int,b:int):int

AddVariant

+mul(a:int,b:int):int

≪interface≫
IMultiply

+mul(a:int,b:int):int

IVariant

IMultiply
≪component≫

MultiplyNV

IMultiply

≪component≫
AddVariant

IMultiply

≪component≫
MultiplyVariant

IMultiply

≪component≫
WrongVariant

Binding

Component modelIVariant

OCM MultiReceptacleParallel

Figure 4: N-version programming realization.

public Integer multiply(Integer a, Integer b) {
Object[] params = new Object[]{a, b};
return (Integer) this.execute(“multiply”, params);
}

Pseudocode 1: MultiplyNV: multiply method.

public int[] sort (int[] elements) {
return (int[]) this.execute (“sort”, elements);
}

Pseudocode 2: SortRB: sort method.

TheAddVariant class only uses addition operations (operator
+) to implement this functionality, while theMultiplyVariant

class uses the operation of multiplication (operator ∗). The
WrongVariant class always returns the value 0 (no matter
what the parameter values are). Thus, the result of this
erroneous variant will always be disregarded because the
other variants always return correct values.

5.2. Recovery Block Technique. This section gives an example
that illustrates how the FlexFT framework can be used to
implement reliable components based on the recovery block
technique [3].

Figure 5 shows the SortRB component (and its Nothing-
Sort, InvertionSort, and QuickSort variants) which provide
the functionality of sorting an array of integers in ascending
order.

The SortRB class represents the ReliableComponent

(Figure 2). This class extends the RBComponent class (Figure
3) and implements the inherent recovery block operations:
acceptance test, component state saving and restoration. In
this example, the acceptance test has to check the following
condition: 𝑉 is an array of integers, 𝑉[𝑖 + 1] ≥ 𝑉[𝑖], for
𝑖 = 1, 2, . . . , 𝑛 − 1. It is worth mentioning that the FlexFT

framework provides a default algorithm (based on object
serialization) for the component state saving and restoration

through theRBComponent saveState and restoreStatemeth-
ods implementation. However, RBComponent subclasses can
reimplement these methods and hence use a different com-
ponent state saving and restoration technique.

In addition, the SortRB class implements the ISort

interface (the functionality of sorting an array of integers
in ascending order). This implementation (Pseudocode 2)
consists simply of invoking the execute (from FTInterface)
method discussed earlier.

The NothingSort, InvertionSort, and QuickSort repre-
sent three implementations of the functionality of sorting
an array of integers (interface ISort) in ascending order.
It should be said that these classes should extend the
OpenCOMComponent class discussed above.

(i) TheNothingSort class simply returns the array passed
as a method parameter. If this array is already sorted,
this variant will pass the acceptance test.

(ii) The InvertionSort class reverses the array passed as a
method parameter. If the array is sorted in descending
order, this variant will pass the acceptance test.

(iii) The QuickSort class sorts the array by means of the
QuickSort algorithm. It is expected that this variant
will always pass the test of acceptance.

8 International Journal of Distributed Sensor Networks

≪interface≫
IReceptacle

RBComponent

+execute():Object
+saveState():void
+restoreState():void

≪interface≫
RBInterface

+acceptance(result:Object):boolean
+saveState():void
+restoreState():void

SortRB

+sort(numbers:int[]):int[]
+acceptance(result:Object):boolean
+execute():Object

+invoke():Object

NothingSort

+sort(numbers:int[]):int[]

InvertionSort

+sort(numbers:int[]):int[]

QuickSort

+sort(numbers:int[]):int[]

≪interface≫
ISort

+sort(numbers:int[]):int[]

ISort

IVariant

≪component≫
SortRB

ISort

≪component≫
InvertionSort

ISort

≪component≫
NothingSort

ISort

≪component≫
QuickSort

Binding

IVariant

Component model

OCM MultiReceptacle

Figure 5: Recovery block realization.

public void send (String message) {
Object[] args = new Object[] {message };
this.execute (“send”, args);
}

Pseudocode 3: ContextConnection: state-based send method.

5.3. State-Based Variant Execution. This section gives a sim-
ple example to illustrate how the FlexFT framework can
be used to implement reliable components by using the
State-based variant execution. Figure 6 shows the Context-
Connection component (and its variants WiFiVariant and
BluetoothVariant) that provides the functionality of sending
messages by means of different wireless network infrastruc-
tures (Wi-Fi or Bluetooth).

The ContextConnection class represents the Reliable-
Component (Figure 2). This class extends the Context-
Component class (Figure 3) and implements the interface
IConnection. This implementation (Pseudocode 3) simply
consists of invoking the execute (from FTInterface) method
discussed earlier.

The WiFiVariant and BluetoothVariant represent two
implementations of the functionality of sending a message
(interface IConnection):

(i) TheWiFiVariant class sendsmessages using theWi-Fi
technology and

(ii) The BluetoothVariant class sends messages using the
Bluetooth technology.

5.4. Experimental Results. TheN-version programming tech-
nique [2] (example discussed earlier) was implemented
(together with other design diversity techniques) and de-
ployed in two different hardware platforms: Standard PC and
Sun SPOT (Sun Small Programmable Object Technology)
(http://www.sunspotworld.com/docs/Red/spot-developers-
guide.pdf).

Table 1: FlexFT evaluation.

Performance and resource consumption PC Mote∗

Load/instantiate NVComponent (ms) 6.2 110.1
Load/instantiate NVComponent (bytes) 1472 1472
Load/instantiate Variants (ms) 7.2 196.6
Load/instantiate Variants (bytes) 3004 3004
Redundant operation execution (ms) 1.3 10.8
Runtime dynamic reconfiguration (ms) 1.2 30.1
∗

Sun SPOT (Sun Small Programmable Object Technology).

The experiment was run in a desktop with an Intel i5
CPU 2.67GHz processor and 8 GBytes of RAM memory
running Ubuntu 12 operational system. Sun SPOT is a
Wireless Sensor Network (WSN) mote developed by Sun
Microsystems. Unlike other available mote systems, Sun
SPOT is built on the Squawk Java Virtual Machine [19]. For
comparative purposes, the Squawk Java Virtual Machine was
used in both platforms. The application code used to assess
the cost of utilizing the FlexFT framework is listed in (see
Appendex A in Supplementary Material available online at
http://dx.doi.org/10.1155/2013/385892.)

Table 1 shows the average performance (measured in ms)
and the memory consumption (measured in bytes) of the
main operations of the N-version programming technique:
(a) to load and instantiate NVComponents, (b) to load and
instantiate the variants, (c) to execute a redundant operation,
that is, executing the Variants and the method for the
respective (majority) decision result, and (d) to unload a

International Journal of Distributed Sensor Networks 9

≪interface≫
ContextInterface

+changeState(state:String):void

ContextComponent<𝑇>

+changeState(state:String):void

IVariant
≪interface≫
IReceptacle

Binding

Component model

IConnection

≪component≫
WiFiVariant

IConnection

≪component≫
BluetoothVariant

IConnection

IVariant

≪component≫
ConnectionContext

ConnectionContext

+execute():Object
+changeState(state:String):void
+send(msg:String):void

≪interface≫
IConnection

+send(msg:String):void

BluetoothVariant

+send(msg:String):void

WiFiVariant

+send(msg:String):void

+invoke():Object

OCM MultiReceptacleContext<IConnection>

Figure 6: State-based variant execution realization.

802.15.4 radio

802.15.4 radio

802.15.4 radio SOS framework

NVersion
FlexFT

HostBase station

802.15.4 radio

802.15.4 radio

SOS clients

USB

Figure 7: FlexFT sensor web enablement.

component and after that load another similar component,
that is, dynamic runtime reconfiguration.

On the basis of these values, it can be argued that the pro-
posed approach has an acceptable performance and resource
consumption overhead across heterogeneous platforms. It
should be stressed that these values are in compliance with
those of the study conducted by Hehmann et al. [20] which
states that the reconfiguration delays should not exceed
250ms. Moreover, according to [21] for multimedia applica-
tions, delays less than 150ms are not even noticeable, and the
maximum tolerable delay is 400ms.

6. Case Study Two: Sensor Web Enablement

This section gives an example that illustrates how the FlexFT
framework can be used to provide standardized access to sen-
sor observations while automatically disregarding potentially
erroneous readings. First, the example scenario is described,
and in the sequence the experimental results achieved are
presented.

6.1. Example. The example setting employed is illustrated in
Figure 7 and described as follows.

(i) A set (3 to 5) of Sun SPOT sensors which work
together to monitor the temperature from the sur-
rounding environment. Each sensor uses a different
port number (in the range of 66 to 70) to broadcast,
once every second, the collected temperature data.
Owing to its simplicity, the adopted communication
protocol is the radiogram protocol that provides
datagram-based communication (with no guarantees
of delivery or ordering) between two devices.

(ii) By default, the 52∘ North Sensor Web Framework
does not provide the observations of the temperature
sensors. That is, it was necessary to register the temp-
erature sensor as follows: (a) create a SensorML (http:
//www.opengeospatial.org/standards/sensorml)
instance document that describes this kind of sensor;
(b) store the instance document in the configuration
directory of 52∘ North Sensor Web Framework.

(iii) The base station employs an N-version programming
approach to collect the information that has been
broadcast. In otherwords, the base station instantiates
the SensorNV (and its variants) that provides the
functionality of returning the consensual temperature

10 International Journal of Distributed Sensor Networks

Table 2: Sun SPOT sensors and variants.

Sun SPOT sensor Port Variant
0014.4F01.0000.132D 66 SensorVariantOne
0014.4F01.0000.2BCC 67 SensorVariantTwo
0014.4F01.0000.2A56 68 SensorVariantThree
0014.4F01.0000.2470 69 SensorVariantFour
0014.4F01.0000.4432 70 SensorVariantFive

from the sensors. Each SensorVariant is bound to a
specific Sun SPOT sensor since it listens to a specific
port number (in the range 66 to 70). Table 2 shows the
relationship between the Sun SPOT sensors and the
variants. Each Sun SPOT is listed by its IEEE network
number.

(iv) In order to validate the N-version programming
technique, some erroneous temperature values were
injected (by placing a heat source close to the sensors).
As expected, these results were disregarded because
the correct temperature values were returned by other
sensors/variants.

(v) The next step is to store the consensual temperature
(and corresponding metadata useful for discovery
and human assistance) in the 52∘ North Sensor Web
Framework database.

(vi) As discussed earlier, the 52∘ North Sensor Web
Framework provides Sensor Web Services which can
be accessed by different types of clients: desktop,
mobile, or web applications.

6.2. Experimental Results. To perform our experiments with
FlexFT and the Sensor Web Enablement (SWE), we utilized
the same hardware configuration described in Section 5.4
and the 52∘ North Sensor Web Framework assessing a
PostgreSQL (http://www.postgresql.org/) data base using the
JDBC api (http://www.oracle.com/technetwork/java/javase/
jdbc/index.html). The application code utilized to illustrate
FlexFT being utilized in the SWE context is listed in Supple-
mentary Appendix A.

Unlike the previous implementation, the N-version pro-
gramming technique [2] was only implemented and deployed
in the Sun SPOT base station.Three scenarios were employed
to evaluate this implementation. The one single difference
between these three scenarios is the number (three to five)
of sensors/variants employed. The first experiment employs
three sensors, while the second and third experiments employ
four and five sensors, respectively.

Table 3 shows the average performance of these three
experiments, that is, the average of the execution for
1000 samples where each sample represents the perfor-
mance (measured in ms) of the main operations of the N-
version programming technique combined with the Sensor
Web Enablement approach. The following operations were
assessed:

Table 3: Performance of the experiments.

Experiment No. of sensors Average performance (ms)
1st 3 43.426
2nd 4 46.856
3rd 5 52.188

(i) To execute a redundant operation, that is, to execute
the SensorVariants (collect the temperature of differ-
ent sensors),

(ii) To execute the method for the respective result of the
(majority) decision, and

(iii) To store the consensual temperature (and corres-
ponding metadata that is useful for discovery and
human assistance) in the 52∘ North Sensor Web
Framework database.

On the basis of these values, the difference in performance
between the three experiments suggests the approach perfor-
mance increases linearly with the growth of sensor nodes.
However, the analysis of the data shows that there is a great
variation in the sample performance. That is, several outliers
were observed while the results were being obtained. This
might be due to the overhead inherent to the Java Virtual
Machine (JVM) such as Garbage Collection.

7. Concluding Remarks

This paper discussed the use of a generic component-based
framework for the construction of adaptive fault-tolerant
systems that can integrate and reuse technologies and deploy
them across heterogeneous devices. We have implemented a
framework prototype and evaluated the potential benefits by
means of two case studies and performance measurements.
These show that the proposed framework can deal with awide
degree of heterogeneity with minimal resource overheads.

With regard to our generalized approach, it should be
emphasized that FlexFT was designed to construct fault-
tolerant systems for a variety of platforms including PCs and
sensor motes. Though our prototype was only employed to
build fault-tolerant systems in devices such as sensors and
PCs, we believe that sensors are the most difficult devices
to be programmed. This is also recognized by the research
community (i.e., devices that are very hard to be programmed
[22]). Thus, since FlexFT was adopted to program this
resource-constrained device, we believe that FlexFT can be
easily adopted to construct fault-tolerant systems in other
devices such as smartphones and PDAs.

The generality of hardware and software are achieved by
means of the so-called loader and binder extension plugins
[14] that we borrowed from OpenCOM. In short, the loader
plugin encapsulates the complexity of loading software in
a particular deployment environment (e.g., loader for an
assembly-based software component into the Sun SPOT
sensormote or a loader for deployingN-version systembased
on Java multithreads). The binder plugin provides a wide
range of “binding mechanisms.” Using binders, developers
are free to implement a wide range of binding mechanisms

International Journal of Distributed Sensor Networks 11

that might be required in the underlying deployment envi-
ronment. For example, he/she may implement a binder that
creates connections between Java components or a binder
that connects components written in assembly language.That
way, one can create fault-tolerant software for a variety of
environments such as sensor nodes, mobile phones, and
desktop PCs.

With regard to future studies, two different directions can
be envisaged:

Fault Tolerance Techniques. Regarding the examples dis-
cussed in Section 5, we plan to incorporate other fault toler-
ance techniques into the FlexFT framework such as coordi-
nated atomic action [23, 24], concurrent exception handling
[25], context-based exception handling [26, 27], and so on.
Moreover, we plan to evaluate how the FlexFT framework
can be fitted into the context of critical embedded systems
development.

Multihop Communication. Regarding the example dis-
cussed in Section 6, we plan to utilize the FlexFT framework
in the implementation of multihop communication in this
scenario.Themultihop communication [28] is the best choice
of economy power consumption in Wireless Sensor Net-
works (WSNs), since the energy required for communication
between two arbitrary nodes A and B depends on the
distance between the two nodes. In this scenario, the FlexFT
framework will be employed to implement the sensors and
the basestation.

Acknowledgments

The authors would like to express their gratitude for the
support granted by CNPq and FAPESP to the INCT-SEC
(National Institute of Science and Technology—Critical
Embedded Systems—Brazil) processes 573963/2008-9 and
08/57870-9. Dr. D. M. Beder and Dr. J. Ueyama are also
grateful to CNPq for the support provided for the REACT
project (process 483699/01881-5). Dr. J. Ueyama would also
like to thank FAPESP (process 2008/05346-4), CNPq (pro-
cess 474803/2009-0), andRNP (CIA2-RIO) for their financial
support. Dr. J. P. de Albuquerque and Dr. J. Ueyama are
also grateful for the support granted by FAPESP (process
2008/58161-1). Finally, Dr. J. P. de Albuquerque would also
like to thank the Alexander von Humboldt Foundation for
its sponsorship.

References

[1] M. Botts, G. Percivall, C. Reed, and J. Davidson, “OGC sensor
web enablement: overview and high level architecture,” in
Proceedings of the 5th International ISCRAM Conference, F.
Fiedrich and B. V. deWalle, Eds., pp. 713–723,Washington, DC,
USA, May 2008.

[2] A. Avizienis, “N-version approach to fault-tolerant software,”
IEEE Transactions on Software Engineering, vol. 11, no. 12, pp.
1491–1501, 1985.

[3] B. Randell and J. Xu, “The evolution of the recovery block
concept,” in Software Fault Tolerance, Trends in Software, pp.
1–22, Wiley, 1994.

[4] B. Randell, “System structure for software fault tolerance,” IEEE
Transactions on Software Engineering, vol. 1, no. 2, pp. 220–232,
1975.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object Oriented Software, Addison-
Wesley, 1995.

[6] A. Bröring, J. Echterhoff, S. Jirka et al., “New generation sensor
web enablement,” Sensors, vol. 11, no. 3, pp. 2652–2699, 2011.

[7] A. Na and M. Priest, Ogc Implementation Specification 06-
009r6: Opengis Sensor Observation Service (Sos), 2007.

[8] H. Hansson, M. Åkerholm, I. Crnkovic, and M. Törngren,
“SaveCCM—a component model for safety-critical real-time
systems,” in Proceedings of the 30th EUROMICRO Conference,
Special Session Component Models for Dependable Systems, pp.
627–635, IEEE, September 2004.

[9] M. Akerholm, A. Moller, H. Hansson, and M. Nolin, “SAVE-
Comp—a dependable component technology for embedded
systems software,” Tech. Rep. MDHMRTC-165/ 2004-1-SE,
Malardalen University, 2004.

[10] S. Quadros, “RTXC Kernel User’s Guide,” http://www.quad-
ros.com.

[11] P. Costa, G. Coulson, R. Gold et al., “The RUNES middleware
for networked embedded systems and its application in a
disaster management scenario,” in Proceedings of the 5th Annual
IEEE International Conference on Pervasive Computing and
Communications (PerCom ’07), pp. 69–78, IEEE Computer
Society, Los Alamitos, CA, USA, March 2007.

[12] P. Costa, G. Coulson, C. Mascolo, L. Mottola, G. P. Picco, and
S. Zachariadis, “Reconfigurable component-based middleware
for networked embedded systems,” International Journal of
Wireless Information Networks, vol. 14, no. 2, pp. 149–162, 2007.

[13] D. Hughes, K. Thoelen, W. Horré et al., “LooCI: a loosely-
coupled component infrastructure for networked embedded
systems,” in Proceedings of the 7th International Conference on
Advances in Mobile Computing and Multimedia (MoMM ’09),
pp. 195–203, December 2009.

[14] G. Coulson, G. Blair, P. Grace et al., “A generic component
model for building systems software,” ACM Transaction on
Computer Systems, vol. 26, no. 1, article 1, 2008.

[15] B. Porter and G. Coulson, “Lorien: a pure dynamic component-
based operating system for wireless sensor networks,” in Pro-
ceedings of the 4th International Workshop onMiddleware Tools,
Services and Run-Time Support for Sensor Networks (MidSens
’09), pp. 7–12, ACM, New York, NY, USA, 2009.

[16] A.Wolff, S.Michaelis, J. Schmutzler, andC.Wietfeld, “Network-
centric middleware for service oriented architectures across
heterogeneous embedded systems,” in Proceedings of the 11th
International IEEE EDOC Enterprise Distributed Object Com-
puting Conference Workshop (EDOCW ’07), pp. 105–108, IEEE
Computer Society, Los Alamitos, CA, USA, October 2007.

[17] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, Addison-Wesley, 2nd edition, 2002.

[18] M.Clark,G. Blair, G. Coulson, andN. Parlavantzas, “An efficient
component model for the construction of adaptive middle-
ware,” in Proceedings of the IFIP Middleware, 2001.

[19] C. Cifuentes, “Squawk—a java VM for small (and larger)
devices,” in Proceedings of the IFIP WG 2. 4 Meeting, 2005.

[20] D. B. Hehmann, M. G. Salmony, and H. J. Stüttgen, “Transport
services for multimedia applications on broadband networks,”
Computer Communications, vol. 13, no. 4, pp. 197–203, 1990.

12 International Journal of Distributed Sensor Networks

[21] J. Kurose and K. Ross, Computer Networking: A Top-Down
Approach, Addison-Wesley, 2009.

[22] B. Porter, U. Roedig, and G. Coulson, “Type-safe updating for
modular wsn software,” in Proceedings of the 7th IEEE Interna-
tional Conference on Distributed Computing in Sensor Systems
and Workshops (DCOSS ’11), pp. 1–8, 2011.

[23] A. Capozucca, N. Guelfi, P. Pelliccione, A. Romanovsky, and
A. F. Zorzo, “Frameworks for designing and implementing
dependable systems using coordinated atomic actions: a com-
parative study,” Journal of Systems and Software, vol. 82, no. 2,
pp. 207–228, 2009.

[24] J. Xu, B. Randell, A. Romanovsky, C. M. F. Rubira, R. J. Stroud,
and Z. Wu, “Fault tolerance in concurrent object-oriented
software through coordinated error recovery,” in Proceedings
of the 25th IEEE International Symposium on Fault-Tolerant
Computing (FTCS ’95), pp. 499–508, June 1995.

[25] A. F. Garcia, D. M. Beder, and C. M. F. Rubira, “A unified
meta-level software architecture for sequential and concurrent
exception handling,” Computer Journal, vol. 44, no. 6, pp. 569–
587, 2001.

[26] D. M. Beder and R. B. De Araújo, “Towards the definition of a
context-aware exception handling mechanism,” in Proceedings
of the 5th Latin-American SymposiumonDependable Computing
Workshops (LADCW ’11), pp. 25–28, April 2011.

[27] A. Tripathi et al., “Exception handling issues in context-aware
collaboration systems for pervasive computing,” in Proceedings
of the LNCS Advanced Topics in Exception Handling Techniques,
vol. 4119, pp. 161–180, Spring, 2006.

[28] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Sys-
tems—Concepts and Designs, International Computer Science
Series, Addison-Wesley-Longman, 3rd edition, 2002.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

