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Target tracking has become an elementary task in wireless visual sensor networks (WVSNGs). In this paper, we propose a camera
sensor activation scheme for target tracking in WVSN. Our objective is to balance the tradeoff between the accuracy of target
tracking and the resources of networks. By studying the sensing model and deployments of cameras, an observation correlation
coeflicient is derived to describe the correlation characteristics of visual information observed by cameras with overlapped field of
views. According to the observation correlation coefficient, a correlation-based camera activation scheme is designed. Experimental
results show that the proposed observation correlation coefficient can model the correlation characteristics of visual information in
WVSN. Further simulations show that the correlation-based camera activation scheme has satisfied performance in target tracking

compared with other sensor selection methods.

1. Introduction

Wireless visual sensor networks (WVSNs) include cameras
to capture visual data from the environment and processing
components to process the data locally in a desired way
[1]. Compared with the wireless scalar sensor networks,
WVSN can provide information-rich descriptions of cap-
tured events, which is adopt in various security and surveil-
lance applications, such as remote and distributed video-
based surveillance, environmental monitoring, and ambient-
assisted living and personal care [2]. In these surveillance
applications, target tracking is one of the major issues, which
is to accurately determine the location of possible moving
target within the least amount of time. For example, an
accurate and timely determination of vehicle location is
required for battlefield situational awareness [3].

Target tracking in WVSN involves a number of significant
challenges. Firstly, WVSN is a resource-limited network. The
capabilities of processing and transmission in WVSN are not
powerful enough. There may be constraints of bandwidth
for transmitting all the raw data from camera sensors to the
central node and difficulties in analyzing a huge amount of
visual data. The existing algorithms of tracking cannot solve

the target tracking in WVSN. Secondly, WVSN is an energy-
limited network. Sensor nodes are typically battery powered,
and it may not be feasible to replace or recharge the batteries
of sensors in many remote sensing applications. As a result,
an important characteristic of sensor networks is the limited
energy. In particular, compared with the scalar sensors, image
processing and transmission consume remarkable energy, in
spite of the fact that the content of interest in each frame
capture by the visual node is very high. Therefore, it is crucial
for energy efficient use in WVSN. Thirdly, WVSN is a low-
cost network. Visual nodes are usually equipped with low-
resolution cameras due to the cost limitation [4]. Pixels on
the target in WVSN are relatively less than that in other
camera networks, which will increase the difficulties in target
extraction, localization, and tracking.

To address the above challenges, the key is to balance
the tradeoff between the value of information in the mea-
surements and the resources of WVSN [5]. In this paper, we
follow the information-driven sensor querying framework
in which camera sensors are selectively activated based on
their correlations. Because of constraints on resources, energy
consumption, and low resolutions of cameras, we consider a
group-based target tracking scheme, where there is a small



group of sensors active, while the rest of the network is idle.
A camera which has detected the target will call up other
cameras with the most correlations to compose a group of
active cameras for locating and tracking the target. If any
active camera loses the view of the target, it goes back to
sleep, and a new camera will be activated to renew the active
group based on the correlation computation. The crux of
the group-based target tracking scheme is the approach of
sensor activation which must be carried out with accuracy
and in real time as important considerations. The scheme of
activating cameras should provide the most accurate location
information of the target, and it should also assure that the
WYVSN could execute in real time.

In this paper, we address the problem of cameras sensor
activation for tracking a target in WVSN. Motivated by the
fact that the image observed by a camera is directly related
to its field of view, we designed an observation correlation
coeflicient to evaluate the correlations between two cameras
based on the sensing model rather than analyzing the specific
images of cameras. In cooperation with the observation cor-
relation coeflicient, the most correlated cameras are selected
to be activated for locating the target in the world frame. Our
main contributions include the following:

(1) we design the observation correlation coeflicient
to describe the correlation from images observed
by cameras with overlapped field of views. By this
method, a large bulk of computation for image pro-
cessing to find the correlated camera is avoided;

(2) a small group of cameras are involved in the target
tracking rather than all the cameras viewing the same
target, which is beneficial for saving the cost, the
computation, and communication.

The remainder of this paper is organized as follows: in
Section 2, we briefly highlight the related works. Section 3
presents assumptions and preliminaries. We also present
the sensing model of the cameras and the model of tar-
get localization by two cameras. Section 4 introduces the
observation correlation coefficient. The proposed camera
sensor activation scheme is introduced in Section 5. Section 6
conducts experiments to validate and evaluate the proposed
scheme, and conclusions are given in Section 7.

2. Related Works

Strategies of sensor scheduling for optimizing network
lifetime in wireless sensor networks have been previously
considered in the literatures. Yu et al. develops a camera
scheduling strategy to maximize the lifetime of the visual
sensor networks [6]. Soro et al. provides a heuristic approach
for camera scheduling by proposing a cost function asso-
ciated with each camera depending upon the remaining
energy of the camera and the coverage geometry [7]. In the
above two works, they utilize the ceiling cameras, which are
impractical to deploy. Cai et al. organizes the directions of
sensors into a group of nondisjoint cover set, where one cover
set in which the directions cover all the targets is activated
at one time to extend the network lifetime [8]. Alaei et al.
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provides a priority-based sensor scheduling strategy to apply
coordination on cluster sensor for awakening the minimum
number of sensors to monitor the interested area [9]. Given
the noisy measurements and the object prior distribution,
Ercan et al. uses the minimum mean square error (MSE)
of the best linear estimate of the object location in 2D
as a metric for sensor selection [10]. Besides, an entropy-
based analytical framework is developed to measure the
amount of visual information provided by multiple cameras
in WVSN [11]. This method is heavily relied on a joint
probability distribution of the two image sources [12], whose
accurate estimation is difficult to get due to the complexity
of image contents and the difficulty in image modeling
[11]. The information-driven sensor scheduling technique is
introduced in [13, 14], which activates the next sensor based
on maximizing information utility and minimizing resource
cost.

In context of sensor scheduling for target tracking, some
approaches have been developed for optimizing tracking
performance subject to constraints on sensor usage. Ying et
al. develops a Monte Carlo solution method to address the
problem of sensor scheduling for target tracking, which is
formulated as a partially observable Markov decision process
[15]. Kreucher et al. adopts an active sensing approach to
scheduling sensors for multiple target tracking applications
that combines particle filtering, predictive density estimation,
and relative entropy maximization [16]. Toh et al. develops a
distributed target system implementing a novel competition-
based distributed sensor scheduling scheme where a candi-
date sensor node with highest predicted tracking accuracy
will be elected as the new tasking sensor with the highest
probability [17]. The previous researches are mainly in the
area of wireless sensor networks. However, these existing
sensor scheduling algorithms cannot solve the issue in visual
sensor networks, due to the significant differences in infor-
mation acquiring and processing method from conventional
sensor networks.

A distributed target tracking approach using a cluster-
based Kalman filter was proposed in [18], where a cam-
era is selected as a cluster head which aggregates all the
measurements in the communication range to estimate its
position using a Kalman filter and sends the estimation to
the central unit for tracking the target. Song et al. [19] also
proposed a consensus method to track the target in a camera
network. In their work, if a camera detects a target, the
information from all the other cameras viewing the same
target is used for fusing. From the aforementioned related
works, we can observe that the accuracy of target tracking is
limited by the resource of sensor networks in existing sensor
scheduling methods. Therefore, in this paper, we propose the
sensor activation scheme to balance the tradeoff between the
tracking accuracy and resources of WVSN.

3. Preliminaries

3.1. Assumptions. In this paper, all subsequent discussions are
based on the following assumptions:
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F1GURE 1: Field of view.

(1) we consider a homogeneous WVSN, which only
contains the camera sensors, in a two-dimensional
field. For convenience, we assume that the cameras
sensors are placed in a square region. Actually, we
are not concerned about the shape of the interested
region, which can be circular or any other polygons;

(2) we assume that all the cameras are placed horizontally
around a space. The positions and bearings of the
cameras have been already known in the world frame;

(3) the WVSN is deployed with sufficient nodes such
that the network is connected. Some of them are in
the active mode during the period when no target is
detected. Other cameras are in the sleep mode, which
can be switched to the active mode immediately if
they have received awakening signal;

(4) the sleeping sensors can be woken up by external
means. The time delay from the sleeping mode to the
active mode is neglected in this paper.

3.2. Sensing Model. Difterent from scalar data sensors, cam-
eras project a target from a 3D world to a 2D plane via a
perspective point, which can only acquire the bearings of the
target in the visual image. Specifically, as shown in Figure 1,
a camera has a field of view (FOV) that represents the area
on the x,,0y,, plane where a target captured by the camera is
located. The FOV is represented as an isosceles triangle where
both the equal sides join at a point representing the camera
location. The angle between these equal sides is known as the
FOV angle and is a factory specification defined for every
camera.

It seems that cameras have unlimited sensing range;
however, the target, which is described as pixels in the image,
cannot be extracted from the background, if the target is
located too far away from the camera, especially, when the
resolution of camera is not good enough. Thus, for the reason
of reducing the complexity, the sensing model of the camera
in this paper is expressed by a triangle which is determined
by four parameters (p, r, 0, «) [20], shown in Figure 2, where
p means the position of the camera, r is the sensing radius, «
is the heading direction of the camera’s projection (the angel

FIGURE 2: Simplified sensing model.

between the center line of the sight of the camera’s FOV and
the positive semiaxis of x,,, and rotating in counterclockwise
is positive), and 0 is the FOV angle.

3.3. The Model of Target Localization. The purpose of target
tracking is to generate the trajectory of a target over time
by locating its position in every frame of the video [21]. The
principle of target localization is to estimate the coordinates
of intersection point when the bearings of target in different
images are intersected. We set up a world coordinate system
0x,Y,%, for the interested area. The x, 0y, plane is the
ground plane. The X, Y plane is set as the image plane
of cameras. For a camera sensor, its optical center can be
denoted as o,..

The coordinates of the intersection point of the target
bearings in the world coordinate plane can be calculated
as follows. We assume that simple background subtraction
is performed locally at each camera node. The hull of
the target can be extracted. A feature point is selected to
represent the target. As shown in Figure 2, px and py are
the pixels coordinates on the image plane. Based on the pixel
information, we can compute the bearing of the target in
the world coordinate frame. The bearings of the target in the
image of camera can be computed according to the following
formula:

kztan(oc—arctan<<;i:5>-tan(%))), 1)

where k is the bearing of the target, « is the angle of camera
rotating around z,, axis, when the direction of the camera is
along with the x,,, « = 0, and rotating in counterclockwise
is positive, 0 is the horizontal field of view, and p_,,, is the
number of pixels in the horizontal. px is the horizontal pixel
coordinate in the image. In our localization scheme, only px
is communicated to the base station.

If two cameras capture the same target at the same time,
the target bearings generated from two cameras would be
intersected. We can infer the coordinate of the target from the
known positions of two cameras and the intersected point of




bearings of the target. The computation process is described
by the following equation:

C
k=22, @
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where k; is the bearing of the target in the ith camera’s image.
xf, yic are the coordinates of the ith cameras in the world
coordinate frame. x and y are the pending coordinates of the
target in the world coordinate. If there is only one camera that
could detect the target, the values x and y cannot be uniquely
determined because there are two unknowns. Thus, at least
two cameras that detect the camera are needed to determine
the location of the target. The target position’s computation
matrices are shown as follows:
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The position (x, y) of the target T in the world coordinate
frame is obtained. Once there are more than two cameras
that capture the target T' simultaneously, we can utilize the
statistical method to refine the estimated result for improving
the accuracy [22].

3.4. Multiple Targets Localization. There may be multiple
targets existing in the interested field. The biggest difference
between the single target tracking and the multiple target
tracking lies on the corresponding target matching, which
can be addressed by the approaches incorporated with
features of targets, such as the color, motion, contour, and
boundary. From the perspective of statistics, the position
of the same target estimated by a set of cameras would
have more convergence in the world coordination. According
to this concept, we apply a statistical method to match
the corresponding target for locating targets in the world
coordination.

Step 1. The visual hulls of targets are extracted, and the
polygon centers of the target hulls are estimated. The polygon
centre of the visual hull can be formulized as follows:

Q
_\Pxi
px—izzlm,
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px and py mean the center’s coordinate in horizontal and
vertical, respectively, px; and py; are the horizontal and
vertical pixel positions of the visual hull of the target and Q is
the amount of the hull’s pixels.

Step 2. One target centre is selected from each camera that
captures targets in order to make the correlated target pair.
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Then, we use the target localization algorithm to generate
possible coordinates of the target. If n cameras are deployed
in the surveillance area, we could get C C! C, possible target
positions. a and b are the numbers of visual hulls of targets
captured by the two cameras, respectively.

Step 3. If we assume that one camera could capture m target
at most, we could get m" possible position pairs of targets
at most. We compute the means of the target positions and
the mean square errors (MSEs) between the estimates and
the mean. The mean of pending coordinates of a target is
formularized as follows:

X+ X+ + X,
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X and Y are the mean of the pending position of the target; x;
and y; are the horizontal and the vertical coordinates of the
ith pending position of target, respectively. The MSE of a set
of pending targets positions can be expressed as follows:

VEL G- X"+ 5L 012 )

n
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Step 4. We make comparisons of the MSEs of the possible
coordinates and find the minimum one. The mean with
the little MSE is set as a possible target’s position. The
centers of visual hulls in the corresponding cameras’ images
are removed from the next iteration for finding the next
correlated targets’ image pair.

Step 5. The feasible set of centers of visual hulls of targets is
updated, and Steps from 2 to 4 are repeated till all the centers
are used. By this method, the corresponding target can be
matched among the camera set.

4. Correlations between Images

In this section, we investigate how to measure the correlations
of images between different cameras. Without loss of gener-
ality, we are given a set C = {¢;, c;, ..., ¢y} of cameras sensors
with fixed lens in a 2D interested area. For camera ¢; and
camera ¢; in the set C, we will derive a correlation coefficient
A;j to describe the degree of correlation between image of ¢;
and image of c;.

Intuitively, the visual information provided by multiple
cameras should have more correlation if the sensing regions,
which are observed by cameras, are more close to each other
in the world frame. If the images observed by cameras are
less correlated, the sensing regions covered by cameras are
definitely more distinct with each other. From this perspec-
tive, we can map the problem of estimating the correlation
of images into the problem of computing the correlations of
regions observed by cameras. Since the sensing area of the
camera is modeled as a bounded triangular region in this
paper, the correlations of observed regions can be reflected
by the overlapping field of views.
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We can project the overlap extent of cameras’ FOVs to
the overlap area of intersections of the sensing model of the
cameras. This intersection is a series of triangle intersections;
therefore, it will always be a convex polygon [23]. Utilizing
the method of computing the union of two convex polygons,
which is described in [24], we can distinguish the intersection
region and order its vertices. Thus, according to the properties
of the polygon, if the vertices are ordered counterclockwise,
the area of the convex polygon can be computed by the
following expression:

:l<x1 N X Vol *n J’n) (8)
2\|%2 V2| (X3 )3 X1 N
or
1 n
S= EZ (XiYie1 = X1 01) » 9)
i=1

where S is the overlap area; n is the number of vertices of the
polygon. (x;, y;) are the coordinates of the ith vertex of the
overlap region of the sensing region of cameras. Note that to
close the polygon the first and the last vertex are the same;
that is, (x,,, ,,) = (xg» ¥o)-

We design an observation correlation coefficient (OCC)
A to reveal the correlations between the images observed
by cameras. Suppose that camera ¢; and camera c; are two
arbitrary cameras on the ground plane that can observe
the interested area. The observation correlation coeflicient is
defined as the ratio of the overlap area of intersection region
of camera ¢; and camera ¢; to the entire area of sensing model
of a single camera

- |5"nsf' _ S (10)
Y |5i| s

where 1;; is the observation correlation coefficient between
camera ¢; and camera ¢;, s; and s; mean the sensing region
of the camera ¢; and camera c;, respectively, s;; is the area of
the intersection of s; and s, and s is the sensing area, that
is, the area being sensed by the camera. According to the
aforementioned algorithm, we can determine the intersection
of camera ¢; and camera c; and its area. s can be obtained
based on the parameters of the sensing model. | - | is the
operator of computing the area

1
s= Erz sin 0. 1)

According to the definition of A, the maximum value is
obtained when the sensing regions of camera ¢; and camera
¢; are identically overlapped, which equals to 1. If there is no
intersection between the two cameras, the value of A is zero,
which is the minimum value. Thus, the value of A ranges from
Otol.

The proposed observation correlation coefficient model
is derived based on the sensing model and deployment
information of cameras. To calculate the correlation between
the camera ¢; and the camera c;, the camera ¢ just needs to
transmit its four parameters to the camera ¢;: p, r, 6, a. If All

camera sensors follow the same sensing model, only p and «
are required to be transmitted. Once the camera ¢; receives
the parameters, it can calculate the observation correlation
coefficient based on (10). It can be seen that the computation
of observation correlation coeflicient is independent of image
processing.

We present a simulation to show how the observation cor-
relation coeflicient varies when the deployments of cameras
change.

4.1. OCC Influenced by Orientations of Cameras. As shown in
Figure 3(a), the camera with pink projection region is ¢;, and
the camera with the yellow projection region is c,. We assume
that camera ¢, is fixed at (-L, 0), and its projection bearing
is 0°. We let the location of camera ¢, change. The distance
between the ¢, and the original point (0, 0) maintains L. The
projection bearing « of camera ¢, changes from —180° to 180°.
The difference of projection bearings between ¢; and ¢, is also
«. The observation correlation coefficient between ¢, and ¢, is
illustrated in Figure 3(b).

From the results in Figure 3(b), we can see that with the
increase of difference of projection bearings between the two
cameras, the observation correlation coeflicient decreases.
When the two cameras entirely overlap with each other, the
observation correlation coefficient equals 1. It means that
the two cameras have the same view towards the environ-
ment. When the projection bearings of the two cameras
are perpendicular, the OCC decreases to 0.32, which means
that the correlations between the images of the two cameras
become weak. If the projection bearings of the two cameras
are opposite to each other, the OCC becomes 0, from which
we can see that the images of the two cameras are totally
independent of each other.

4.2. OCC Influenced by the Positions of Cameras. We assume
that the camera ¢, is fixed at the (5, 5) in the world frame. The
orientation of ¢; is 60°. Then, we fix the orientation of camera
¢, and alter its position randomly in the region 0f 10%10. Based
on the definition of OCC, we compute the value of OCC
between ¢; and ,. Actually, it is not necessary to exhaustively
search each camera in the set, since the OCC between the two
cameras, whose distance from each other is greater than 2r,
will definitely be zero. In this case, we give the definition of
neighboring sensors: the neighboring sensors are the sensors
whose distances are less than 2r

d; <2r

G neighboring sensor of ¢, ' (12)
! otherwise,

not neighboring sensor of ¢,

2 2
where, d;; = |p; - p;ll = \/(xf - x9)"+ (¥ = ¥7)" p; and p;
mean the positions of camera ¢; and camera c;, respectively,
and (x7, y), (x, ;) are their corresponding coordinates in
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FIGURE 4: OCC value in different deployments of cameras: (a) orientation of ¢, is 75°; (b) orientation of ¢, is 135°; (c) orientation of ¢, is 225°.

the world frame. Therefore, it is only required to compute the
OCCwhen , is the neighbor sensor of ¢;; otherwise, the OCC
is zero.

Figure 4 illustrates the estimated results of observation
correlation coeflicient between the two cameras when the
orientations of ¢, are 75°, 135°, and 225°, respectively. We find
that (1) different locations of cameras will generate different
OCCs, in spite of the same orientations of cameras; (2) when
the positions of cameras are identical, the OCC could be
different due to the difference of orientation of cameras.

Therefore, positions and orientations of cameras are the two
determining factors for the value of OCC.

In WVSN, as long as the interested region is specified, and
the locations and sensing directions of cameras are estimated,
the observation correlation coefficient between cameras’
overlapped field of views can be obtained as introduced
above. It is much easier to obtain the proposed observation
correlation coefficient than to get the entropy correlation
coefficient [11]. The more cameras ¢, and ¢, are correlated, the
more observation correlation coefficient can be obtained by ¢,
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and c,. Therefore, the observation correlation coefficient can
help find the most correlated cameras.

5. Camera Activation Scheme for
Target Tracking

In this section, we extend our study to design a correlation-
based scheme to activate cameras for tracking a target. In
general, sensors are always deployed in large numbers with
redundancy in sensor networks. WVSN is not exceptional.
Therefore, not every camera node in the WVSN needs to
be active for sensing and communication all the time. The
principle of the scheme is that the camera nodes, whose
observed images are more correlated with each other, should
be activated for involving the target tracking. The correlation
degree between the images depends on the observation
correlation coefficient discussed in Section 4. As long as the
OCC is given, the cameras that need to be activated can be
determined. The cruxes of the camera activation scheme lie
on the following: (1) if one camera detects a target, how to
activate additional cameras to cooperatively locate it in the
world frame? (2) If the target moves out of field of views of
the activated cameras, how to renew the group of the activated
cameras to keep the target in the view of wireless visual sensor
networks?

5.1 Buildup of the Group of Active Cameras. If a camera
detects a target in its image, it has to activate other cameras
to locate the target. Note that only two cameras, which
capture the target simultaneously, could obtain the coordi-
nates of the target in the world frame in theory; however,
the accuracy of the target localization and tracking can be
gradually improved by involving more cameras. On the other
hand, gaining measurements from multiple camera nodes
and transmitting these measurements will consume more
energy and occupy much bandwidth of wireless visual sensor
networks. Therefore, in order to balance the tradeoff between
the tracking quality and the amount of measurements, we
select three camera sensors to be activated, because three
cameras are the minimum amount of cameras for utilizing
the statistical method discussed in Section 3.4. Then, we also
use the statistical method, described in [22], to fuse the
measurements to obtain the location of the target in the world
frame.

Once the target has been detected by camera ;, the next
task is to activate more cameras to track the target. We select
two additional cameras, which are most correlated with the
camera that has detected the target, to be activated; that is, to
activate the two cameras that have the maximum observation
correlation coefficients with the camera ¢

(Cm’ n) = arg f)lc?é(c {/\m” Ami} . (13)

We cannot assure that the camera with maximum OCC
can definitely project target in its corresponding field of view.
Therefore, a judgment has to be made: whether the two cam-
eras with maximum OCC can successfully extract the target
from their images. If so, it means that the target is located in

FIGURE 5: Overlaps between cameras.

the overlapping field of views of the selected cameras. By the
use of epipolar geometry, discussed in Section 3, the target
location in the world frame can be estimated. If not, we have
to activate other cameras till all three cameras can extract the
target from their images. The activation process also follows
the principle of awaking the sensors with the maximum
observation correlation coefficient. It will be illustrated by an
example.

In Figure 5, ¢, ¢, 63, ¢, ¢; represent the five cameras,
respectively. The triangle shadows with different color mean
the sensing regions of the cameras. The colored polygons
show the overlap area between the corresponding cameras’
sensing region: the blue polygon is generated by ¢; and c,, the
green one is by ¢; and ¢;, the red one is by ¢, and ¢,, and the
black one is by ¢, and c;.

If camera ¢; detects the target T, we will compute the OCC
between ¢; and its neighbor sensors {c,, ¢;, ¢;, ¢5}. According
to the expression (10), A,, = 0.83, A,;; = 0.15, A,, = 0.45,
and A,5; = 0.39. Thus, ¢, and ¢, which have the maximum
OCC with ¢, are to be selected to be activated. However,
the target T is located out of the field of view of camera c,.
We have to activate another camera for involving the target
localization. Among the other cameras except for ¢, and ¢,
the camera ¢; has the maximum OCC with the camera ¢
which can project the target in its image at the same time.
Therefore, if ¢, has detected the target, the cameras ¢, and ¢;
will be activated to cooperate with ¢, to locate the target in
the world frame.

Note that when the camera nodes are sparsely deployed
in the interested area, it is possible that there are less than 3
cameras that can capture the target simultaneously at some
times. In the sparse deployment of cameras, the target is
not always under surveillance by 3 cameras. For camera
activation, therefore, we activate the available cameras that
can capture the target rather than invariably activate up to
the predefined number of cameras.

5.2. Renew the Group of Active Cameras. Once the target
moves out of the field of view of the activated cameras,
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FIGURE 6: The deployment of cameras and the trajectory of the
target.

we have to activate other cameras to keep the target under
the incessant surveillance. In this section, we address the
problem of renewing the group of active cameras for target
tracking. In our proposed activation scheme mentioned
above, three cameras should be activated. The camera sensor
which detects the target initially is called the reference sensor
in the active camera group. For example, in Figure 5, camera
¢, is the reference sensor. The camera that has the biggest
OCC with the reference sensor is called the primary sensor in
the active group. The camera c, is the primary sensor shown
in Figure 5. The sensor which has the second biggest OCC
with the reference camera is called the secondary sensor in
the active group. The camera ¢; is the secondary sensor in
Figure 5.

If the target moves out of the field of view of the reference
sensor, the sensor which has the biggest OCC with the
primary sensor should be activated to join the active camera
group for executing the target localization and tracking. If the
primary sensor loses the view of the target, we should activate
the sensor having the biggest OCC with the secondary sensor.
If the secondary sensor cannot extract the target from its
image, we have to activate the sensor that has the second
maximum OCC with the primary sensor. When two cameras
of the active camera group lose the view of the target
simultaneously, the camera sensors that have the maximum
OCC with the remaining active camera will be activated till
there are three cameras in the active mode.

The details of the activation scheme are presented in the
form of Pseudocode 1.

5.3. Camera Activation Scheme for Multiple Target Tracking.
It is very possible that there is more than one target existing
in the interested region in practical applications. The camera
activation scheme has to be adjusted to satisfy requirements
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of multiple targets tracking. In the case of multiple targets, we
activate cameras for one target by one target.

If n targets are detected by n different cameras, which
means that every reference node has only one target in its
FOV. The buildup of active camera group is almost the same
as that for single target tracking. The cameras that have
the maximum observation correlation coefficients with the
camera that captures the target are selected to be activated.
Since maybe some cameras have multiple targets in its view,
we utilized the statistical method, which is discussed in
Section 3.4, to match the corresponding targets for locating.
In the phase of renewing the active cameras, if the camera in
the active group, which has only one target in its view, loses
the target, the scheme of activating the additional cameras
is no different from that discussed in Section 5.1. When the
target loss occurs in the camera that has multiple targets in
its view, it is required to judge which target moves out of
the FOV. As discussed in Section 3.4, we can distinguish the
corresponding active group for every target by the statistical
method. Thus, if the camera that loses the target is the
primary sensor, we should activate the camera having the
biggest OCC with the secondary sensor for the corresponding
target. If the camera that loses the target is the secondary
sensor, the camera sensor which has the second maximum
OCC with the primary sensor should be activated for the
corresponding target.

There is also another possibility that some cameras have
detected more than one target at the beginning, which means
that some reference nodes have more than one target in its
views. For this case, the phase of buildup of active camera
group is different from the scheme for single target tracking.
The selection of the primary sensor and the secondary sensor
is divided into two steps: (1) find all the sensors that capture
the same mount targets with the reference node from the
neighboring sensors; (2) the two cameras that have the
maximum OCC with the reference node are selected to be
activated. The camera that has bigger OCC with the reference
node in the two sensors is the primary sensor, and the other
is the secondary sensor. Thus, the active camera group for
the camera which has more than one target in its view is
established. Furthermore, the target matching can also be
obtained by using the statistical method shown in Section 3.4.
In the phase of renewing the active camera group, since
targets can be distinguished from each other, every active
camera group for each target can be renewed by the method
discussed in Section 5.2.

6. Performance Evaluations

In this section, we present the results of some simulations
which were performed to examine the performance of the
proposed camera activation scheme. For the reason of reduc-
ing the simulation complexity, we deploy ten camera sensors
inal0m * 10 m 2D field. The positions of the cameras are
shown as the red points in the figure, and the blue lines show
the bearing of cameras. All the cameras are with the FOV
of 57.4° and the radius of 10 m. One target is moving in the
field, shown as the red line in Figure 6. All the ten cameras
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FIGURE 7: Images taken by the ten cameras at 4.

IfA,, = A,

mr—

Else

End if
Set updated camera group C' = {C —

Find ¢’ = arg max, . {A(c,,
SetC' ={C-¢,—¢,—¢,—c'}
Setc, =c' or¢,=c

}

Fort =t + time step to f,,,

{
SetC'={C—c,—cm—cj—c'}

!
G =Cp 6 =C, G, =G,

!
6 =C» 6 =Cp C,=C
_ _ _ !
€ =C» Cp=0Cpr G, =C,
End if

End for

Begin t = 0, all the cameras are in the group C
The camera sensor that has detected the target is set as the reference node c,.
Find (c,,,¢,) = argmax, . .c{A,,, A, }, and activate them

C,, is the primary sensor, and ¢, is the secondary sensor

¢, is the primary sensor, and c,, is the secondary sensor

Cm — Cn}

While (c, or ¢,, cannot have the view of the target)

¢}, and activate it

Locate the target in the world frame (x,, y,) by the active camera group {c,,¢,,, c,}
While (any camera in the active group loses the view of the target)

Find ¢’ = arg max, o {A(c,, ')}, and activate it {c, = c,, or ¢, = ¢,}

If the camera that loses the view of the target is ¢,

Else if the camera that loses the target is ¢,

Else the camera that loses the target is ¢,

Update the position of the target (x,, ¥,) by active camera group {c,, ¢, c,}

PSEUDOCODE 1

will record the images for the interested field continuously.
Figure 7 shows the images of ten cameras at 4 s. We artificially
fix the time step as 1 second, due to the fact that we simulate
the process in the computer environment for this case. Note
that the time period of processing is decided by the resources
of camera node.

We take the utility-based sensor selection method [10] as
a reference. In the method, the minimum MSE of the best
linear estimate of the target location, which is a function
of the cameras orientations, is used as a measurement for
localization error. The optimal cameras are then activated by
finding the camera orientations that minimize this metric.
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FIGURE 8: Tracking performances of the proposed activation scheme
and the reference method.

Figure 8 shows the error performance of the reference
method and our proposed activation scheme. The red line
and the blue line show the errors of target tracking by
the proposed activation scheme and the reference method,
respectively. In each time step, the accuracy of target tracking
in the proposed scheme is better than that in the reference
method. For example, at 4 s, our proposed scheme has error
of 0.26 m, by contrast, the error of target tracking in the
reference method is 0.48 m. The reason behind this is that
when ¢, has captured the target, ¢, and ¢,, which have the
biggest OCC with the ¢, are activated for executing the target
tracking together with ¢, in our proposed activation scheme.
The reference method selects ¢}, ¢,, and ¢, to activate. Since
the ¢, and ¢, are not very far from the object, the estimation
of the target center is sensitive to the noise in the two cameras’
images, and even a little change of the light condition might
influence the final results. Therefore, the estimation of the
target center contains more errors, and correspondingly, the
accuracy of the result of target tracking decreases. From
another perspective, it is not enough to only rely on the
distance between the target and cameras to decide which
camera should be activated for executing the target tracking.

Comparing the results of the proposed scheme and
the results of the reference method, we find that in both
cases, the errors of target tracking are irregular. This is in
accordance with the fact that the images exhibit the state
of the environment at the time of taking images, and the
measurement errors cannot be predicted or predefined due
to the changes of the environment.

We also make some comparisons between our proposed
activation scheme and cluster-based scheme [19]. In cluster-
based scheme, if a camera detects a target, all the measure-
ments from all the other cameras that have the target in their
field of view are used to estimate the position of the target.
Figure 9 shows that the error performance of our proposed
activation scheme is close to the cluster-based scheme.
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FIGURE 9: Tracking performances of the proposed activation scheme
and the cluster-based method.
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FIGURE 10: Amount of activated cameras at every time step.

Figure 10 shows the amounts of cameras that take part in
target tracking in every time step by the two methods. It is
apparent that cluster-based method involves more cameras
to locate the position of target than our proposed activation
method. In some time steps, such as at 6s, 7s, and 10s,
the cameras that have been activated are the same between
the two methods. The reason behind this is that at such
time steps, there are 3 cameras or less that can capture the
target simultaneously. We activate the available cameras that
view the target. From Figures 9 and 10, we can see that the
proposed camera activation scheme has better performance
in the tradeoff between the cameras usage and the quality of
target tracking.

7. Conclusions

With the goal of accurately tracking a target, we have
presented a camera sensor activation scheme in wireless
visual sensor networks. By studying the sensing model and
deployment of cameras in the network, we propose an obser-
vation correlation coefficient to describe the correlations
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between images observed by cameras. The observation cor-
relation coeflicient is used for activating the most correlated
cameras. In order to address the problem that more than
one target exists in the interested area, we have provided
a statistical method to match the targets for locating and
tracking targets. Correspondingly, we also present the sensor
activation scheme for multiple target tracking. With the help
of simulations, we show that the proposed activation scheme
could generate more accurate estimations of target tracking
than the reference method. Therefore, the proposed scheme
serves as a useful tool for activating cameras to track the
target.
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