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Vehicular communication environments are characterized by highly mobile nodes, frequent topology changes, and a great variation
in the number of neighbor vehicles. The network layer (NL) protocols must adapt continuously to these unreliable conditions, hence
the growing effort in the development of protocols specific to vehicular networks. The aim of this work is to help create vehicular
systems with an adaptive network layer, by means of proposing a middleware based on an adaptation model and using as input the
context information of the vehicle. The architecture will build an adaptive network layer using two types of run-time adaptations:
modification of NL protocol internal parameters and adaptations where a selection between NL protocols must be made. To assess
the feasibility of our approach, we present two case study examples and present a first prototype. In addition, we briefly evaluate
the adaptation presented in case study 1 via simulation, and we found that it produces 20% less control overhead. Furthermore, we
present an analysis of the prototype performance to get a rough idea on the cost of using the middleware in the vehicular system;

results show that it is feasible to implement the middleware in hardware similar to today’s midrange smartphones.

1. Introduction

Intelligent transportation system (ITS) [1] aims to bring sig-
nificant improvement in transportation system performance,
including reduced congestion, increased safety, and traveler
convenience. Vehicular ad hoc networks (VANETSs) are the
most important component of an ITS, in which vehicles are
equipped with some short-range wireless communication.
VANETSs represent a rapidly emerging, particularly challeng-
ing class of mobile ad hoc networks (MANETSs). In the recent
years, there has been intensive research work around VANETs
due to the wide variety of services or potential applications
they could provide.

Vehicular communication environments are character-
ized by highly mobile vehicles, extremely frequent topology
changes, and a great variation in the number of vehicles in a
certain region [2, 3]. These and other dynamic variations in
network conditions make the design of network layer (NL)
protocols difficult and complicate the development of appli-
cations that require efficiency under the dynamicity of these

network conditions. Hence, routing protocols must adapt
continuously to these unreliable conditions, thus the growing
effort in the development of communication protocols which
are specific to vehicular networks. Schoch et al. [2] mention
some key VANET network conditions like network density,
node speed, node heterogeneity, and movement patterns; the
authors highlight the extremely opposite values that these
network conditions can get in the course of the network’
lifetime; for example, the node velocity may range from zero
for stationary road side units, or when vehicles are stuck
in a traffic jam, to over 130 kph on highways. For us, these
characteristics can be seen as context information useful for
the network layer protocol.

Some authors [2, 4] state that potential vehicular appli-
cations require different communication or types of net-
work layer protocols that exist in the literature to optimize
communication. For example, applications like postcrash or
breakdown warnings are adequate to use geobroadcast or
information dissemination protocols, because the informa-
tion has to be delivered as quickly as possible to a subset



of surrounding vehicles. On the contrary, applications like
Internet connectivity and road surface conditions to traffic
authority center are not well suited to use dissemination pro-
tocols, because the destination of the message is of great im-
portance and one-to-one communication is desired; in this
case, using unicast routing network layer protocols seems
more adequate.

We think that having a vehicular system that supports
most of these potential applications will help promote the
adoption of a real world VANET technology by offering a
wealth of services that encourages the driver to go premium
and get the on-board system in their new vehicle or mitigate
the investment of buying and installing the on-board module
in their current vehicle. Nevertheless, for this to work, each
application underlying NL protocol must maintain a good
performance in spite of the changing network or even appli-
cations conditions. There could even be a case in which for an
application to maintain good service performance, adapting
the NL protocol is not enough and requires the use of different
types of NL protocols.

In reference to the applications requiring different com-
munication protocols, authors like Schoch et al. [2] have
proposed having a network stack with a set of different
network protocols to satisfy all the different applications
needs. Schoch et al. also proposed a set of NL protocol
types (referred to by them as communication patterns) that
they think will be enough to support most of the vehicular
applications in the literature. Some of these protocol types
are dissemination, unicast, and carry and forward. Some
other authors have made different categorizations of NL pro-
tocols, for example, in [4, 5]. From the point of view of
integration of the vehicular systems of the automotive makers
and the research and academic projects, we think that at
least two NL protocols are needed in the vehicular system:
a unicast NL protocol to enable V2I communication for
the infoentertainment applications and a dissemination NL
protocol to enable V2V communication for security on the
road applications.

Exploring the state of the art in NL protocols in VANET,
we notice that the dynamic aspect problem of a VANET is
too vast and proposals only attack part of the problem. These
proposals focus on adapting to specific context information
or network conditions, optimize for specific scenarios like
highway, city, low density network, and so forth, and are
tailored for using a specific NL protocol. In addition, even
when all the proposals solve the dynamic network problem
using some kind of adaptation solution, they all use different
concepts and terminology to describe their solution. For
example, we can find proposals for different types of protocols
using concepts like hybrid, adaptive, context-aware, reflec-
tive, autonomic, self-managed, policy-based, and so forth.
This use of different concepts and terminologies complicates
the comparison between proposals, reuse, and generalization
the adaptation ideas. Another observation of the state of the
art is that we identify a need for vehicular systems using
more that one type of NL protocol to support more vehicular
applications instead of trying to find one that serves for all.
Moreover, we think that there could be situations in which
the application can select what NL protocol to use depending
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on the current context or to switch to using a different-type
NL protocol when the current context makes the default NL
protocol perform poorly.

Based on the previous problem context, we have the
strong conviction that a future network layer that could truly
satisfy the needs of potential vehicular applications and deal
with the dynamicity of a VANET must have the following
functionality:

(i) support multiple types of network layer protocols,
in addition, allow adaptations where there could
be a selection on which protocol to use based on
context decisions or switch to using another NL
protocol when the current context generates poor
performance,

(ii) have network layer protocols with the ability to
adapt their internal parameters based on the current
context.

That is why the focus of the present work is to propose
a middleware architecture to help create vehicular systems
with an adaptive network layer. This architecture is a generic
approach as it will build a subset of adaptive NL protocols
found in the literature, and because the architecture must be
instantiated by adding the modules to provide the context
information, the NL protocols and vehicular applications are
required to build the desired vehicular system. The architec-
ture will be able to build an adaptive network layer using
in general two types of run time adaptations: modification
of internal parameters of an NL protocol and adaptations
where a selection between NL protocols must be made; both
of these adaptations will use as input the context information
of the vehicle. The core ideas of our adaptation middleware
architecture can be summarized in the following points.

(i) Propose a model of the adaptation concept.

(ii) Propose a design methodology to build the adapta-
tions in the architecture by dividing the solution into
submodules (components) which are independent of
each other, and then combine them by describing
their relationships to form the adaptive network layer.

(iii) Propose a multiple applications-multiple NL proto-
cols environment.

The rest of the paper is organized as follows: we start
by describing the adaptation model used by the architecture.
After that in Section 3, we present in detail the architecture
for the proposed adaptation middleware. Then, in Section 4,
we present some case studies examples and how they are
implemented in our architecture. In Section 5, we describe
how we implement a first prototype of the adaptation
middleware. We proceed in Section 6 with the evaluation
of our adaptation middleware which focuses on evaluating
the performance of one of our case studies examples and
presenting an analysis of the cost and performance of the
prototype. Then, we present the related work in adaptive NL
protocols and other architectures that promotes adaptation.
Finally, Section 7 contains conclusions and possible future
work.
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2. The Adaptation Model

Prior to the description of the adaptation middleware archi-
tecture, we will present how we modeled adaptations with a
focus for NL protocols; this adaptation model will be the core
of the architecture.

The adaptation concept refers to the ability of a process
or entity to dynamically alter its behavior during its lifetime
depending on the changing conditions of the environment.
In computer software, the adaptation term appears in subjects
like adaptation of the video quality depending on the network
connection [15], adaptation of the GUI of an application
based on the display resolution of the device [16], reconfig-
uration of the components forming a system [17, 18], and so
forth. There are also some other topics in computer science
that center on the idea of adaptation, for example, the term of
computational reflection, dynamic aspect oriented program-
ming, policy middleware, and autonomic computing. In our
work, we refer to the adaptation of the network layer of a
vehicular system; this means that the process or entity that
will be adapted is the NL protocol.

In regard to adaptations in communication protocols,
Grace [19] distinguishes between two distinct classes of adap-
tations: in node-local adaptation, the adaptation triggered
by a node only involves changing the behavior of itself. In
distributed adaptation, an adaptation triggered by a node
involves changing the behavior of itself and other nodes
in the network. An example of a distributed adaptation is
the dynamic reconfiguration of sensor networks proposal
of Grace [19]. Distributed adaptations are more complex
because they have additional challenges to take into account;
for example, proposing a consensus mechanism for situations
when multiple nodes perform a distributed adaptation with
different results due to the different local context information.
Other additional challenges are the need for a notification
and scheduling protocols in order to perform the adaptation
operation in all participants. Finally, special care is needed
to avoid performing conflicting adaptations that can render
unexpected results. In the case of our work, this version
of the architecture is only focused on dealing with node-
local adaptations; extending the work to support distributed
adaptations will be considered as future work.

Grace [19] also identifies two kinds of general approaches
to software adaptation: parameter adaptation and composi-
tional adaptation. Parameter adaptation modifies predefined
program variables that determine a systems behavior; there
is no introduction of new algorithms and behavior. Com-
positional adaptation allows the dynamic recomposition of
software modules to change or introduce new behavior. Our
adaptation middleware architecture falls into the parameter
adaptation approach of software adaptation.

After describing the adaptation concept, we proceed to
the description of the adaptation model. Foremost, from now
on we will refer to any NL protocol proposal that adapts in
this manner, even previously proposed works, by the name
of “adaptive protocol” The adaptations inside these adaptive
protocol proposals take as input the local context information
from the vehicle.

A key point of the adaptation model is the idea of sep-
arating the functionality of an adaptive protocol into two
independent parts. One part is the network layer function-
ality of a protocol, for example, the definition of messages
format, message sending/receiving operations, suppression
mechanism for repeated messages, topology update, connec-
tion to upper and lower layers, and so forth. We think that
this is the biggest part of an adaptive protocol because the
development of a network layer protocol is very complex.
The second part is the functionality that performs the specific
adaptations in the protocol that enhance it and make it more
dynamic; we named a specific adaptation in the protocol as
an “adaptation solution”; an adaptive protocol could have
multiple adaptation solutions that enhance the protocol.

This idea relies on the separation of concerns principle
[20], a general principle in software engineering that pro-
motes the separation of different interests or concerns in
a problem, solving in separate modules without requiring
detailed knowledge of the other parts, and finally combining
them into one result. For us, the two concerns to separate are
the adaptation solution functionality and the network layer
protocol functionality, and by solving them separately our
model will offer a mechanism to combine them to form a
complete solution which in our case is the adaptive protocol.

The adaptation model also proposes the separation of
the adaptation solution concept into subconcepts (named
by us as adaptation elements) and the description of their
relationship. Applying again the principle of “separation
of concerns,” the adaptation solution is divided into three
elements.

(i) Context element: it symbolizes a piece of information
about the environment which is used as input to
produce an adaptation solution. This concept also
encapsulates the instructions or codes that manage
and provide this context information in order to be
used for the adaptation. This is similar to the concept
of metric from the works of Boleng et al. [21] and
Yawut et al. [22]; however, we decided to use the
simpler word element instead of metric.

(ii) Adaptation algorithm: it encapsulates the instructions,
logic, or operations that use the adaptation solution,
which is based on the context elements to produce
an adaptation as a result. This is also similar to the
concept of “policy” used by Hadzic et al. [23].

(iii) Adaptation action: it symbolizes a characteristic, ele-
ment, or action that the adaptation solution modifies,
activates/deactivates, or does as a result of adaptation
solution. This is similar to the concept of “mecha-
nism” of Hadzic et al. [23].

The separation of the adaptation solution in these three
concepts further promotes the modularization of the adaptive
protocol. A second benefit is that it facilitates the comparison
and classification of prior works by observing the adaptation
elements used by them. Finally, this separation could enable
a rapid calibration of an adaptation by simply exchanging the
adaptation elements in it until a right combination produces
a desired result.



The relationship between the elements of an adaptation
solution is modeled as an algorithm with inputs and outputs:

Algorithm (N Context Element Values) — R Action Values.
¢))

The adaptation algorithm takes as input a list of context
elements, their values are used by the instructions and
operations inside the algorithm, and the current values of the
context elements are collected from the context environment
when the input list is constructed. The adaptation algorithm
produces as a result a list of values for the associated adap-
tation actions. Finally, these values are transmitted to the
adaptation actions entities that modify the behavior of the
adaptable process based on these values.

Another aspect of the adaptation model is the definition
of where or when in the process will an adaptation solution
be executed. We named these places or points of the process
as “adaptation modes” For example, for an NL protocol,
some places or points to execute adaptation solutions could
be when a node receives a message, when the routing table
is modified, every T seconds, when some context elements
conditions are met, and so forth. Our adaptation model
defines a set of adaptation modes which are specific for each
type of process wanting to adapt. Hypothetically, a more
general and flexible adaptation model could allow adaptation
modes to be in every point/place in the process (e.g., in
[17]); however, we think this entails changing the way the
original process works internally to be able to support
this functionality. In the case of network layer protocols,
a complete reimplementation of a protocol will surely be
required, and this is not an easy task. That is why we opted to
having only a set of adaptation modes, in hope that a proper
selection of the adaptation modes can surely diminish the
task of porting an already implemented NL protocol in the
literature.

The last aspect of our adaptation model is how the
network layer protocols are integrated into the adaptation
solution concept and its elements. The NL protocol is tied
to the adaptation action concept; an NL protocol will offer a
number of adaptation actions to allow adaptation solutions to
change its behavior via changing the value of the adaptation
action. Moreover, there will be a handful of special adaptation
actions that are not associated with a specific NL protocol
but instead are offered by our middleware; we will talk
more about them in later sections. In Figure 1, we show the
relationship of all these adaptation elements described in an
entity/relationship model.

3. PLUGAM Architecture

In this section, we will describe the architecture of the
proposed adaptation middleware called PLUGAM (Plug-in-
based adaptation middleware), this architecture is based on
the adaptation model described in the previous section. This
description will be guided by explaining the key aspects of
the architecture; first we will present an overview of the
PLUGAM architecture and the details will be described in the
following subsections.
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NL protocol

Context element

FIGURE 1: Entity/relationship model of the relationship of the
elements of the adaptation solution.

The objective of the PLUGAM middleware is to propose
a generic architecture to build a set of adaptive protocols.
The adaptation solutions embedded in the adaptive proto-
cols are built using external and independently developed
components, called “extension components” in the archi-
tecture, loaded in the middleware at startup. The extension
components defined in the architecture are the adaptation
elements (context elements, adaptation actions, and algo-
rithms), the applications, and NL protocols. After loading all
the extension elements needed to build the desired adaptation
solution, the next step is to express the combination of the
extension components forming an adaptation solution, that
is, the adaptation algorithm used, the context elements that
will add the inputs to the algorithm, the adaptation actions
that will be tied to the outputs of the algorithm, and in what
adaptation mode will the adaptation solution be executed,
among other things. To express this combination, an “adap-
tation configuration” must be created in the middleware (see
Section 3.6 for more information).

The architecture makes use of plug-in technology as a
mechanism to encapsulate and load the extension elements to
the middleware; the relationship between the different types
of plug-ins and the extension elements offered by these plug-
ins is described in Section 3.4. Our proposed architecture
also includes a mechanism to uniquely identify an extension
component from all others, even from others of the same
type (e.g., between NL protocols or context elements). The
main use of this identification mechanism is to reference
what extension component is required in each field of the
adaptation configuration, among other uses that we will see
in detail in Section 3.5.

As mentioned in the adaptation model section, an adap-
tation mode is a place or point of an NL protocol where an
adaptation solution is executed (see Figure 2). We proposed
to use four adaptation modes: send, receive, forward, and
CUPIB. The send, receive, and forward modes are in reference
to the events between an application and NL protocol; for
example, send mode refers to the event when the application
calls the send command and the message must be directed to
the protocol. The CUPIB mode is not tied to an application
and NL protocol event, but rather is a mode that executes the
adaptation solution at a certain period of time. A detailed
description of these adaptation modes can be consulted in
Section 3.3.
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As shown in Figure 2, we modeled an adaptation solution
as a module containing an algorithm, which receives as input
a list of context elements values and produces as output a list
of values used to execute adaption actions which are param-
eterized with these values. Before executing an adaptation
solution, the architecture will retrieve the current context
element values from a context environment defined in the
architecture. This context environment is made by different
context sources offering context elements; more details on
these context sources and the definition of a context element
can be found in Section 3.2. Referring to the adaptation
actions, apart from the adaptation actions offered by the
NL protocols, the architecture offers two special adaptation
actions: the “switcher” and the “filter”; more details about
these special adaptations actions are presented in Section 3.8.

Finally, in this architecture the network layer is composed
of multiple NL protocols, all of them executing concurrently
at run time; this is different from a common network stack in
which there can be multiple applications in the application
layer but in the network layer there is only one protocol.
In this multiple NL protocol environment an application
needs to subscribe to multiple NL protocols at initiation; then
at run time, it can send and receive messages from these
NL protocols. A more in-depth description of the role of
applications in the architecture can be seen in Section 3.9.

This concludes the overview of the PLUGAM architec-
ture; from here on we will describe the details of the architec-
ture, starting with the characterization of the intended user
of the middleware.

3.1. The User of PLUGAM Middleware. This middleware is
intended to be used by the automotive maker developer
which is building the on-board vehicular computer with
VANET capabilities, 3G, and so forth. It is not intended
to be used directly by the driver. This middleware will be
a development tool to help the automotive maker develop
more dynamic vehicular applications by having an adaptive
network layer in the vehicular system. In the following,
we present a characterization of these automotive vehicular
systems.

The development of complex vehicular systems by the
automotive maker is a recent trend; they are referred to as

“in-car technology” in the automotive business. Some exam-
ples of these systems are Toyota Entune, Ford SYNC, MyFord
Touch, Renault R-Link, and Nissan NissanConnectSM. These
are closed proprietary systems, incompatible with other
vehicular systems of other brands and even from different
models of the same brand.

Most of these systems provide a little touch screen in the
vehicle’s dashboard to provide output and input, and their
hardware specs are similar to embeded systems of smart-
phones. Furthermore, these systems can be updated via USB
flash drive either at the automotive dealer or by downloading
the update to the USB drive. Recently, some automotive com-
panies are starting to provide over-the-air updates to the soft-
ware of their on-board systems, for example, the Tesla Model
S vehicle (http://www.wired.com/autopia/2012/09/tesla-over-
the-air).

3.2. Definition of Context Environment in the Architecture.
The adaptation middleware architecture uses the concept of
context to refer to the input information used by the adap-
tations solutions. From Salber et al. [24], the definition of
context refers to the environmental information that is part
of a systems operating environment and that can be sensed
by the system.

For the adaptation middleware architecture, we define
the context of a node, or the context environment of the
middleware, as a collection of “context elements” A context
element can be provided by an entity inside the node or
middleware, called a “context source.” In the architecture, we
view a context source as an independent module running
concurrently and supplying the current value of the context
element it offers. At run time, the middleware will take
charge of retrieving the current value from the context source
either via polling or publish and subscribe mechanism. The
architecture defines four context sources: an NL protocol, an
application, and finally entities that offer local-node context
elements (e.g., information from a GPS or an automobile
sensor); each context source could offer multiple context
elements.

Each context element has meta information associated to
it like a name, the data type of the context element, and so
forth. At run time, at a given time ¢, a context element CE has



a value CE(t), which can be retrieved by querying its context
source. At run time, a context element value is encapsulated
by the ContextElementValue class, which contains a name
field to store the name of the context element, the value field
to store the current value of the context element (to be able
to store any data type in java, an Object class is used), and a
type field to store the data type of the context value (in java a
Class class is used).

A context manager module in the middleware handles the
retrieval of the current context element value from the source
via either the polling or publish and subscribe methods,
concurrently to the execution of the adaptation solutions.
The PLUGAM architecture is flexible by allowing the context
sources to offer the current values only by the polling method,
and implement the publish and subscribe method optionally;
the context manager favors using the publish and subscribe
method if available. The context manager stores the current
values of the context elements in an internal direct access
memory structure (e.g., hash tables).

The idea is to always have an up-to-date context envi-
ronment; thus, at the time when an adaptation solution is
executed and it needs the latest values of the context elements,
the context manager simply gets these values directly from
the context manager direct access structure, instead of going
to the context source to get the current value. We adopted
this context element values scheme to generate a minimal
processing time in the execution of an adaptation solution.
However, it opens the possibility of getting a not up-to-date
value of a context element at the moment when the adaptation
solution is being executed.

The processing overhead of the context manager can be
reduced by using the publish and subscribe method because
the architecture already assumes that the context sources are
concurrent entities. In addition, favoring the publish and
subscribe method instead of polling avoids getting non-up-
to-date values of context elements, because the context source
immediately informs the context manager when the value
changes.

For critical adaptation solutions that depend on the most
updated value of the context elements to work correctly, we
can trade up-to-datedness for processing time by extend-
ing the adaptation configuration definition. This extension
involves adding a Boolean-type flag named GetInmediate-
Value alongside the context element field in the adaptation
configuration. This flag will be used at the moment the
adaptation solution is being executed and getting the current
values of the context elements; if the GetInmediateValue flag
is true, then the middleware does not get the current value
from the context manager, but instead goes and retrieves the
value by directly querying the context source.

3.3. Definition of the Adaptation Modes. As we mentioned
earlier, the concept of adaptation mode refers to where or
when in the process will an adaptation solution be executed.
In order to produce adaptations involving a multiple protocol
network layer and adaptations that change the NL protocol
internal parameters, in this version of the architecture we
define four modes of adaptation; these modes are as follows.
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(i) Send: an adaptation can take place the moment the
message is sent, in between when the application calls
the send command and before arriving to the network
layer protocol.

(ii) Receive: an adaptation can take place the moment the
message is received, in between after the NL protocol
delivers the message to the upper layer and before the
application actually receives it.

(iii) Forward: an adaptation can also take place the
moment the message is forwarded, meaning when
the protocol receives a message from another node to
relay it, just before it will resend it to another node.

(iv) CUPIB: finally, the architecture supports the CUPIB
mode (continuous update of protocol internal behav-
ior) used for adaptation of behavior inside NL proto-
cols by periodically executing the adaptation solution.

To further understand the send, receive, and forward
adaptation modes, Figure 3 shows their location in regard
to the end-to-end path of a message passing through the
application and network layers.

These adaptation modes were deducted from examining
prior adaptive protocols proposals: for example, in [6] the
authors perform adaptation from the receive network layer
operation, in [3, 6] the authors perform adaptation in the
forward operation of a network layer protocol, and in [11] the
authors perform adaptation in the sending of the messages in
the NL protocol. Finally, the work in [8] performs adaptation
to NL protocol by updating an internal behavior of the
protocol and reevaluating with a certain frequency.

The CUPIB mode is especially useful for extending
already implemented protocols where a constant can be
tweaked to adapt to some context conditions. By creating
an adaptation solution in the CUPIB mode and linking the
protocol variable to an output adaptation action, the adap-
tation middleware will automatically take care of updating
the protocol variable at run time by periodically executing
the adaptation solution. The adaptation solution is reexecuted
at a certain time interval defined in the configuration of a
CUBIP mode instance. In addition, thanks to the definition
of an adaptation solution, which allows associating multiple
adaptation actions as output, it is possible for a single
adaptation solution in CUPIB mode to update various NL
protocol variables even from different NL protocols.

3.4. Encapsulation of the Extension Components Using Plug-
Ins. Back in the adaptation model, we separated the concept
of adaptation solution into the contexts elements, the adapta-
tion algorithm, and actions. Moreover, the architecture pro-
poses a separation of the implementation of these adaptation
parts, in addition to the implementation of the applications
and NL protocols; in this manner all of them can be developed
separately and independently. We named these independent
modules as the extension components of the middleware. For
this purpose, we have chosen to encapsulate these extension
components into plug-ins. The idea is to develop all the
needed extension components inside the plug-ins, and load
them into the middleware by loading the plug-ins.
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Plug-in platforms represent a flexible approach for build-
ing software systems which are extensible and customizable
to the particular needs of the individual user [25]. Plug-in
platforms enable the extension of a core application with
new features implemented as components that are plugged
into the core at load time or even at run time and integrate
seamlessly with it. The best known use of plug-in technology
is in web browsers and the Eclipse platform (Eclipse webpage:
http://www.eclipse.org/). In addition, the popular Unik-olsrd
(Unik-olsrd website: http://www.olsr.org/) implementation
of OLSR supports a plug-in framework based on encapsu-
lating the plug-ins in dynamic libraries. The core application
uses a plug-in by following a service interface. A plug-in is
an already compiled application piece that provides a certain,
usually very specific, function or service “on demand” The
plug-ins depend on the mechanisms provided by the core
application and do not usually work by themselves.

Separating the implementation of the extension compo-
nents and encapsulating them using plug-ins greatly facilitate
the sharing of these components created by third party
middleware users (or a separate team in the project), thus

accelerating the development of new adaptation solutions by
reusing extension components. Another benefit is for a plug-
in developer to avoid the interaction with the middleware
source code when developing the plug-in, even avoiding
compiling the whole middleware. Experience tells us that
learning to extend and compile an already developed system
(possibly of thousands of lines of code and files) is not trivial
and is time consuming; hence, this can greatly increase the
development time.

The architecture defines four different types of plug-ins,
each with their own service interface to offer the middleware
the different extension components. In addition, each of these
different plug-in types shares a common set of methods
giving metainformation about the plug-in that will serve to
identify it, such as version, authors names, name of plug-in,
and type. The four types of plug-ins and their relationship
with the extension elements are shown in Figure 4 these are
as follows.

(i) The application plug-in, offering only one application
component. The application plug-in can also offer
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FIGURE 5: IPlugin interface definition and the relationship with the plug-in types.

multiple context elements to the context environ-
ment, since an application is a context source.

(ii) The contextE plug-in, which offers multiple context
elements components. The aim of this type of plug-in
is to offer contexts elements from the node or vehi-
cle, not tied to an NL protocol or application, for ex-
ample, a contextE plug-in wrapping around a GPS
receiver offering time, speed, and location informa-
tion; another example could be a contextE plug-in
offering context elements related to some sensor of
the vehicle.

(iii) The protocol plug-in, which offers one NL protocol,
offers multiple context elements in relation to the NL
protocol and multiple adaption actions to change the
internal protocol variables.

(iv) The algorithm plug-in, which offers one adaptation
algorithm.

We finish describing the plug-in aspect of the architecture
by showing the plug-in interfaces (APIs) used to construct
the plug-ins and offer the extension components to the
middleware. The plug-in APIs consist of four interfaces for
the four types of plug-ins in the middleware, plus the IPlugin
interface. The IPlugin interface contains the set of methods
to provide metainformation about the plug-in this interface
must be implemented by every type of plug-in, or in object
oriented perspective, the other plug-ins interfaces extend
from the IPlugin interface (see Figure 5).

Finally, we present the definition of all the different plug-
in interfaces of the architecture in the appendix.

3.5. Identification Mechanism of Extension Components. As
we explained in a previous section, the extension components
of the architecture are created independently of the middle-
ware. The architecture needs a method to uniquely identify
each extension component and refer to them at load time
and run time, even between those from the same type. In this
section, we describe how we address this issue.

We defined two ways to uniquely identify an extension
component depending on a one-to-one or one-to-many
relationship between the plug-in and the extension compo-
nent. For the extension components having a one-to-one
relationship with the plug-in (NL protocol, the application,
and the adaptation algorithm), these extension components
are uniquely identified from all the others by taking into
account the duple (NP, HP), where:

(i) NP is the name of the plug-in containing the exten-
sion component and also the name of the extension
component;

(ii) HP is the hash value of the plug-in containing the
extension component.

For extension components having a one-to-many rela-
tionship between the plug-ins, like the context elements
and the adaptation actions, these extension components are
uniquely identified from all the others by taking into account
the tuple (NP, HP, and NE), where:

(i) NP is the name of the plug-in containing the exten-
sion components;

(ii) HP is the hash value of the plug-in containing the ex-
tension component;

(iii) NE is the name of the extension component. We
assume that this value is unique across the other
extension components contained in the same plug-in.

To store and represent the identification information of
the extension components, we proposed the use of the Ele-
mentldentifier class shown in Table 5(a). ElementIdentifier
is simply a container class with three data fields that will
contain the identity information needed by the different types
of extension components of the architecture. The use and
meaning of these three data fields are shown in Table 5(b).

3.6. The Adaptation Configuration. After all the needed
extension components are loaded in the middleware, the next
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FIGURE 6: Adaptation middleware position in the OSI model.

step is to build the adaptation solution by expressing their
relationship. The mechanism to describe an adaptation is
by declaring an adaptation configuration (see Table 6); here
we state the associated Elementldentifier references of the
adaptation algorithm we want to use, what context elements
are needed as input, and the adaptation actions associated to
the output values. In addition, we state the adaptation mode
where this adaptation solution will be executed and assign
a name for the configuration. An adaptation configuration
also contains other additional fields that are adaptation mode
specific; these are as follows.

(i) Protocol and application fields: these fields are needed
by an adaptation configuration in the send, receive,
and forward adaptation modes. Its purpose is to tie
a configuration to a network operation between a
specific application and protocol; that is, a send con-
figuration associated when application X calls the
send command to NL protocol Y.

(ii) The CUPIBTime field: this field is needed only by
adaptation configurations in CUPIB mode and it is
used to specify the number of milliseconds needed to
reexecute the adaptation solution.

The architecture allows the middleware user to create
any number of adaptation configurations, thus enabling the
definition of multiple adaptation solutions in an adaptive
network layer.

3.7 Middleware Aspect of the Architecture. The PLUGAM
architecture is conceived as a middleware system, situated
between the application and network layers because the
interception of messages between the applications and NL
protocols is needed to enable the send, receive, and forward
adaptation modes. The middleware aspect also serves to help
manage the multiple NL protocols and multiple applications
aspect of the architecture. There is no direct communication
between applications and the NL protocols; instead, they
communicate indirectly using the services offered by the
middleware. In reference to the role of a possible transport
layer in the architecture, the services of this layer will need
to be embedded in either the NL protocol or the application.
Figure 6 shows the position of the middleware from the point
of view of the OSI layers.

The multiple NL protocol aspect of the middleware
architecture facilitates the use of different communication
channels (WIFI, 802.11p, 3G, GSM, etc.) in the system.
This can be achieved by encapsulating each communication
channel lower level protocols (physical and link layer) plus
the NL protocol in a protocol plug-in. If two NL protocols in
the middleware share the same communication channel (e.g.,
one for unicast communication and another for dissemina-
tion, each sharing the 802.11p radio), possible interprotocol
interference must be dealt with by the middleware user.
Furthermore, having too many protocols is not desirable,
because they are complex modules and may quickly bloat
the middleware; finding an optimum set of NL protocols that
serve all the applications communications needs is out of the
scope of this work.

3.8. Special Adaptation Actions of the Architecture. As we
mentioned in the adaptation model, the NL protocols ofter
different adaptation actions to allow the modification of its
behavior. In addition, this definition gets extended to account
for special adaptation actions, we called them special because
they are offered by the middleware and not the NL protocols.
The special adaptation actions are used to allow adaptations
where the result is a change of behavior between NL protocols
and applications. Based on the foregoing and exploring some
possible modifications in the interactions between NL proto-
cols and applications, we extend the definition of adaptation
actions to conceive three types of adaptation actions in the
architecture:

(i) protocol adaptation actions,
(ii) special switcher adaptation action,

(iii) special filter adaptation action.

The protocol adaptation actions are offered by NL pro-
tocols and their purpose is to change the behavior of the
protocol by linking it to a protocol internal variable or
parameter. An NL protocol can have multiple adaptation
actions, each linking to an internal variable. For example,
a dissemination NL protocol can offer an adaptation action
linked to extending or lowering the dissemination spread via
changing the value of an internal variable of the protocol, or
an adaptation action linking to the HELLO interval constant
of the OLSR NL protocol.

The purpose of the special switcher adaptation action
is to redirect a message from the predefined path between
NL protocols and applications; this adaptation action is used
for doing a change between NL protocols adaptation. The
switcher receives as input an ElementIdentifier object with
the reference to the protocol or application to redirect the
message to. The actual decision of where to redirect the
message is done in the adaptation algorithm, then by linking
to one of the adaptation algorithm outputs the switcher
receives the final decision and redirects the message. If the
switcher is included in an adaptation solution located in the
send and forward adaptation modes, the switcher redirects
between the available NL protocols that the application
registered at the initiation step. If the switcher is included
in an adaptation solution located in the receive adaptation
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FIGURE 7: Graphical representation of the special adaptation actions switcher and filter.

mode, the switcher redirects between the applications having
registered the NL protocol where the message comes from.

Figure 7(a) shows an example of how the switcher works.
In this example, the adaptation solution having the switcher
is located in the send adaptation mode, and the default path
of the message was to go the NL protocol no. 1, but the Ele-
mentldentifier reference received as input told the switcher to
redirect the message to NL protocol no. 2.

The purpose of the special filter adaptation action is to
recreate a pass or not to pass behavior. This adaptation action
can only be used in the send, receive, and forward adaptation
modes. The filter receives as input a Boolean data type where
avalue of true means that the filter lets the message pass to the
destination protocol or application; with a value of false the
message is dropped. Figure 7(b) shows an example of how the
filter works; in this example the adaptation solution having
the filter receives the value of false, the filter then drops the
message, and it does not go to the NL protocol no. 1.

To finalize the description of the adaptation actions, the
architecture introduces the AdaptationActionValue class to
represent the value of an adaptation action at run time similar
to the context element value concept. An adaptation action
value can also be of any data type similar to a context element
value, which is why the definition of the AdaptationAction-
Value class contains exactly the same attributes as the Con-
textElementValue class.

3.9. Interaction of Applications in the Adaptation Middleware.
In this section, we describe how a vehicular application
interacts with the middleware and associates to the NL
protocols that it will use during its execution. Foremost, the
middleware has control of the lifetime of the applications.
Applications are started by the middleware and stopped when
the middleware terminates.

Furthermore, an application will not interact directly with
the NL protocols, instead it uses the middleware as a proxy.

O

IMiddlewareProxy

Send(protocol: ElementIdentifier, msg: AdaptationMiddlewareMessage)
GetProtocolsUseByApp( ): ElementIdentifier]| ]
ApplicationFinish( )

AdaptationMiddlewareMessage

appldent: ElementIdentifier
protocolldent: ElementIdentifier
srcAddress: InetAddress
dstAddress: InetAddress

msgContent: byte[ ]

FIGURE 8: Definition of the AdaptationMiddlewareMessage class
and the IMiddlewareProxy interface.

Two-way communication between applications and middle-
ware is achieved using two interfaces: the IApplicationPlugin
and the IMiddlewareProxy. The middleware communicates
to the application by calling methods of the IApplication-
Plugin interface (defined in the appendix in Figure 20). An
application communicates with the middleware by calling
methods in the IProxyMiddleware object; the definition of
the IProxyMiddleware interface is shown in Figure 8.

When the middleware registers the available applications,
the middleware creates a middleware proxy object tied to
each registered application, then the middleware passes this
object to the respective application using the SetMiddleware-
Proxy method of the IApplicationPlugin interface.

Moreover, at the application’s registration step the mid-
dleware queries the application via the GetAppDeclared-
Protocol method of the IApplicationPlugin interface, this
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FIGURE 9: UML sequence diagram of the registration of an applica-
tion by the middleware.

method returns a list of references (ElementIdentifier objects)
of all the NL protocols that the application needs. The
middleware must search if these NL protocols where indeed
loaded in a prior step. After the application starts, it must use
the proxy middleware object to interact with the requested
NL protocols. In Figure 9, we show the sequence diagram of
the steps done by the middleware to register an application,
here is where the middleware registers the requested NL
protocols of the application and passes the middleware proxy
object to it.

At run time, when an application wants to send a message
to an NL protocol, it must call the send method of its
middleware proxy object. This send method receives as
input an Elementldentifier object with a reference to the
NL protocol chosen to send the message, in addition to an
AdaptationMiddlewareMessage object wrapping the contents
(an array of bytes) of the message to send; the definition
of the AdaptationMiddlewareMessage class is shown in
Figure 8. Moreover, the middleware calls the onReceiveMes-
sage method of the IApplicationPlugin to transfer a message
receive from an NL protocol to the application.

The dstAddress field in the AdaptationMiddlewareMes-
sage object must be filled by the application before sending
the message, in order to instruct the NL protocol and the
destination node of the message. In this version of the archi-
tecture, we do not address the issue of having different
representations of a network layer address depending upon
the different types of NL protocols; for instance, for a dis-
semination or geocast protocol the destination address could
be difficult to be represented by an IP address. We will leave
this issue as future work and for now assume that using an IP
address will suffice.

The appldent and protoldent fields of the Adaptation-
MiddlewareMessage contain the references of the application
and NL protocol that originally sent the message. These fields
are assigned by the middleware after the application calls the
send method in the middleware proxy, the application can
view this information when it receives the message. The appI-
dent field is specially useful when the middleware redirects

1

the message to the right application; this is analogous to the
TCP port of the TCP/IP stack. Finally, the scrAddress field
of the AdaptationMiddlewareMessage is assigned by the NL
protocol when sending the message, and when receiving a
message this field can be consulted by the application.

4. Description of Case Study Examples

In this section, we present two simple case studies of adaptive
protocols built with our adaptation middleware architecture,
each presenting two distinct domains of the middleware
behavior. These case studies will help us better explain how
all the aspects of the architecture work together in order to
build an adaptive network layer and also as a proof of concept
of the architecture. The first case study is about extending
an existing MANET NL protocol to be more dynamic by
adapting it based on local context, thus making it better suited
to be used in VANETS. In the second case study, we propose
to implement a conceptual scenario with our architecture,
where a selection or switch must be made between two
NL protocols. In the following, we present a description of
these case studies and how they are implemented with our
architecture.

4.1. Case Study 1. Modifying an Existing NL Protocol to
Make It More Dynamic by Adapting to Local Context.
As we previously mentioned, this case study extends an
already defined NL protocol by adding the functionality of
adapting to certain context information. As the base NL
protocol for the case study, we chose one from MANET
because there are still no reference protocols for VANET. We
selected OSLR because it is particularly well known, with
a lot of work around it and with code availability. OLSR
(http://tools.ietf.org/html/rfc3626) is a proactive protocol
which maintains an up-to-date routing table using periodic
messages (e.g., HELLO messages) received from neighbors.
Huang et al. [26] experimented with the HELLO_INTERVAL
constant which is the time period to send these HELLO
messages and it is strongly related to the up-to-dateness of
the routing table. They tested performance changing this
constant using different scenarios of node density and node
mobility. They concluded that adjusting this constant can
bring improvements in performance and proposed as future
work to adapt it dynamically at run time. We used Huang
et al. results and future work as the basis for the adaptation
proposal of this case study, this way we have a certainty
that the impact of the proposed adaptation will be indeed
beneficial.

Associating the Case Study 1 with the concepts of our
architecture for adaptation, the HELLO_INTERVAL constant
is represented as an adaptation action offered by a protocol
plug-in implementing OLSR. The context information which
will be the input of this adaptation will be a simplification of
the node mobility, the node, or vehicle speed. There are more
complex and precise ways to represent the node mobility (e.g.,
in [21] the mobility metric is based on link duration of the
neighbor nodes); nonetheless, to simplify the description of
this case study example we think that using the vehicle speed
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TaBLE 1: Table showing the (v;, f(v;)) pairs proposed for the
adaptation algorithm of case study 1.

v; f)
0 3500
10 3400
20 3000
30 2000
70 1000
90 900

120 800

serves the purpose. We proposed to obtain the vehicle speed
by creating a ContextE plug-in wrapping a GPS code which
calculates this information by measuring the Doppler shift in
the signals from the GPS satellites, this ContextE plug-in will
offer the middleware the context element of “vehicle speed”

In addition, we need to describe the adaptation algorithm
that we will use for the Case Study 1 adaptation solution. We
decided to create an extremely simple adaptation algorithm
based on one-on-one mapping between the vehicle speed
and the HELLO_INTERVAL value. The adopted vehicle
speed and HELLO_INTERVAL relationship is based on the
following simple reasoning: at higher vehicle speed the
neighbors change more rapidly; hence, the neighbor table
must be updated more often by lowering the value of
the HELLO_INTERVAL. This reasoning does not take into
account the existence of neighbor nodes driving at high
speed alongside the vehicle; however, for this example it is
useful enough. To implement the one-on-one mapping, we
defined the pairs (v;, f(v;)), where i € N and € [I,N], v;
represents the vehicle speed, and f(v;) represents the future
value of the HELLO_INTERVAL constant in milliseconds
(2000 milliseconds is the default value in OLSR). The N = 7
pairs that we selected are shown in Table 1.

With the help of the (v;, f(v;)) pairs, we can compute the
HELLO_INTERVAL f(v), where v € R, as follows:

f (v) = Linear Interpolation (v;,v;;) | v € [v;,vi41)
ie[LN-1]

if v<v, then f(v) = f(v,),

ifv> vy then f(v) = f (vy).

Finally, the adaptation solution for Case Study 1 will be
located in the CUPIB adaptation mode. This mode will peri-
odically reexecute the adaptation, solution thus updating the
HELLO_INTERVAL value; we are defining the CUPIB period
(in the CUPIBTime field of the adaptation configuration) to
1000 ms because it is the update rate of a common GPS device.

We now proceed to explain how to build the Case Study 1
in our architecture. The first step is to construct the following
plug-ins (see Figure 10).

(i) Create a protocol plug-in of OLSR; this plug-
in will offer an adaptation action tied to the
HELLO_INTERVAL constant of OLSR.
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(ii) We need a ContextE plug-in offering the vehicle speed
context element; we decided to obtain it by wrapping
the ContextE plug-in around a GPS receiver code.

(iii) Create an adaptation algorithm plug-in that computes
the previously described f(v); this algorithm receives
as input a Double data type containing the node speed
v, and outputs a long data type with the resulting
HELLO_INTERVAL value f(v).

Once we have all the required extension components, a
second step is to link them all by declaring an adaptation
configuration as shown in Figure 11; the configuration shown
here is in JSON format as we implemented it in the proof of
concept prototype. Looking at this JSON code, we can see that
most of the elements constituting an adaptation configuration
are in the form ElementIdentifier objects represented in JSON
as the {“name™;, “hash™, “secondname”:}. In addition, this
adaptation configuration is declared in the CUPIB adaptation
mode and the CUPIB_time field is to 1000 ms.

The preceding are all the steps necessary to create the
adaptation of Case Study 1 in the adaptation middleware;
at run time the middleware will execute this adaptation
solution periodically due to how the CUPIB mode works,
hence changing the HELLO_INTERVAL constant of OLSR
depending on the node speed.

4.2. Case Study 2: Adaptation Based on Switching between
Different NL Protocols. In this case study, we present an
adaptation in which a selection or switch between different
NL protocols must be made depending on the current
context. To achieve this, we describe a simple scenario where
such switch between NL protocols is needed. This scenario
is the dissemination of an accident event in the road to
interested vehicles. We chose to use a directional broadcast
NL protocol to only inform vehicles driving in the same
direction as the vehicle which had the accident. This works
well when there are enough vehicles driving in the same
direction (scenario A in Figure 12). However, if there are not
enough vehicles driving in the same direction to relay the
message, the communication of the message fails.

We propose to exploit the vehicles driving in the opposite
direction, and switch to use a carry and forward protocol
given this context (scenario B in Figure 12). The conditions to
switch or select the NL protocol are: if there are not neighbors
in same direction and we detect a vehicle passing in the
opposite direction. If these conditions are met, then switch
and use carry and forward protocol; if not continue using the
directional broadcast.

For this scenario, we could choose to put the adaptation
solution in two adaptation modes: send or forward. Depend-
ing on the chosen adaptation mode the behavior is different.
If we choose to insert this adaptation solution at the send
adaption mode, then the switch between protocol can only
happen in the source node, specifically when the application
calls the send command to an NL protocol throughout the
middleware. If we want to execute the adaptation solution
at each hop, we must insert the adaptation solution in the
forward adaptation mode. Is it possible to put the same
adaptation solution in both the send and forward modes by
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FIGURE 10: Implementation of the extension components needed for Case Study 1 in the adaptation middleware.

», «

“configurationName”: “Case study 1 configuration”,

», «

“algorithm”: {*hash”: 563893, “name”:

Declaration of the adaptation configuration in JSON format

‘A. Algorithm case study 1 example’, “secondName”: },

» <

“contextElements”: [{“hash”: 746725, “name”: “GPS speed provider”, “secondName”: “node speed”}],

“actionElements”: [{*hash”: 143839, “name”: “OLSR protocol’, “secondName”: “hello_interval’}]

“adaptationMode™: “CUPIB’,
“CUPIBTime”: 1000,

», @

“application”: {“hash”: 0, “name”: ¢, “secondName”: ’},

“protocol”: {*hash”: 143839, “name”: “OLSR protocol’, “secondName”: 7},

», «

y

FIGURE 11: Adaptation configuration of Case Study 1 in JSON format.

creating two different adaptation configurations. In Figure 12
we opted to use the send adaptation mode for demonstration
purposes.

Having described the Case Study 2 scenario we proceed
to show how to build it in our architecture. Foremost is to
construct the necessary plug-ins to provide the extension
components needed for this adaptation configuration, which
is why we constructed the following plug-ins (see Figure 13).

(i) Two protocol plug-ins, one implementing the direc-
tional broadcast protocol and another for the carry
and forward protocol. To implement the context
elements needed for this adaptation solution, for
this example, we decided that the carry and forward
protocol will provide them. These context elements
are very simple Boolean values indicating if there
is a neighbor passing by in the opposite direction

or not, and if there are neighbor vehicles driving in
the same direction or not. Nevertheless, computing
the value of these context element is not trivial, the
implementation of how to compute them is up to
the protocol implementation and not shown in this
example.

(ii) We need an application plug-in with the accident

in the road application; this application requires the
directional dissemination and the carry and forward
NL protocol to work; hence, their Elementldentifier
objects must be included in the list returned by the
GetAppDeclaredProtocols method of the IApplica-
tionPlugin interface.

(iii) Finally, we need an adaptation algorithm plug-in

containing the logic of how to select the protocol to



14

Neighbors same
direction

Hazardous
situation

0]

International Journal of Distributed Sensor Networks

I Dir. broadcast I

Scenario A

Scenario B

No neighbors in same direction and

I Carry & forward I

vehicle passing in opposite direction

FIGURE 12: Adaptation configuration of Case Study 1in JSON format.
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situation” example #SW”)
6599008 Iplugin.hash( ) = 98569

FIGURE 13: Implementation of the extension components needed for Case Study 2 in the adaptation middleware.

switch. The output type of this adaptation algorithm
must match the parameter type of the special adap-
tation action switcher, which is an ElementIdentifier
data type that refers to an NL protocol. The algorithm
contains a very simple conditional operation using
the two Boolean context elements.

Next, we need to link the functionality of the exten-
sion components by declaring the adaptation configuration,
Figure 14 shows the adaptation configuration of Case Study 2
expressed again in JSON format. An important remark about
an adaptation configuration created for the send adaptation

mode, is that the application and protocol fields must also
be assigned in order for the adaptation to be executed only
when the hazardous situation application sends a message to
the directional broadcast protocol (which is the default NL
protocol for this scenario).

Once the middleware loads the adaptation configuration,
it will execute this adaptation at run time. To finish the
description of this case study example, we will present how
this adaptation is performed inside the middleware at run
time (see Figure 15). It all starts when the hazardous situation
application calls the send command to disseminate the
message using a directional broadcast protocol (1). Instead



International Journal of Distributed Sensor Networks

15

i

“configurationName”: “Adaptive example #SW?,

Declaration of the adaptation configuration in JSON format

“algorithm”: {*hash”: 98569, “name”: “A. Algorithm - example #SW”, “secondName”: 7},

“adaptationMode”: “Send”,
“CUPIBTime”: 0,

»

», «

“contextElements”: [{“hash”: 425368, “name”: “Carry & forward”,
{“hash”: 425368, “name”: “Carry & forward”, “secondName”: “neighbors passing op dir”}],
“actionElements”: [{*hash”: 0, “name”: “4SPECIAL#”, “secondName”: “#Special ASwitcher#”}]

“protocol”: {*hash”: 686999, “name”: “Dir. broadcast”, “secondName”: “7},
“application”: {“hash”: 6599008, “name”: “Hazardous situation”, “secondName”: 7},

X
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FIGURE 14: Adaptation configuration of Case Study 2 in JSON format.
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FIGURE 15: Graphical description of the run time behavior of the middleware executing the adaptation configuration of Case Study 2.

of going directly to the protocol, it is intercepted by the
middleware and goes to the send mode module. Here, a
lookup is performed to see if there is a configuration defined
at initiation for the application-protocol pair (2), which
indeed there is and it's named “Adaptive example #SW”.
Next is the execution of the adaptation solution declared in
the configuration (3); first the middleware gets the current
context element values from the context environment via the
context manager (3.a); then these values are passed as inputs
to the adaptation algorithm which executes and produces the
output value needed to the adaptation action, in this case
the special adaptation action switcher. The middleware then

transfers the value to the switcher module which does the
actual redirection of the message to the chosen NL protocol
(4). In the run time example of Figure 15, the context elements
are such that the message is directed to the carry and forward
protocol.

5. Description of Proof of Concept Prototype

As proof of concept, we decided to implement a prototype of
the PLUGAM adaptation middleware. An important aspect
for the prototype was to find a proper plug-in platform. In
addition, working on an implementation of the PLUGAM
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architecture helped us better define some lower level details
of the architecture and have a more solid proposal. In this
section, we present the implementation details of this proto-
type.

In regard to the search for a plug-in platform, we found
some plug-in frameworks, platforms in Java and C#, and
HTML programming languages. For example, the Chrome
extension framework allows the creation of extensions (plug-
ins) developed in HTML and packed inside a zip file con-
taining the HTML code and a manifest in JSON format to
store the extension’s metadata. In the case of more traditional
programming languages like C# and Java, the binary code of
the plug-in can be packed as a DLL file in C# .NET [25] and
as a JAR file in Java. To identify that a binary file is a plug-
in instance and to manage plug-in metadata, .NET attributes
and reflection services can embed metadata directly in the
DLL file; Java relies on reading metainformation defined in
a manifest text file inside the JAR file.

We selected OSGi and iPOJO as the base technologies
for the plug-in platform. We chose the OSGi platform (OSGi
platform specification homepage: http://www.osgi.org/Tech-
nology/WhatIsOSGi) which is developed using the Java
programming language. OSGi defines an architecture for
modular application development, these modules are JAR
files which in OSGi are named bundles. A plug-in from our
architecture is a bundle that offers services available in the
OSGi environment, and the adaptation middleware will be
another bundle accessing the plug-ins services. The main
reason to select OSGi as the plug-in platform is because the
OSGi is a solid platform; also its community is currently very
active, there is a lot of development to improve and extend the
platform and there are a lot of additional tools to deal with
bundles.

The other technology constituting the plug-in platform is
iPOJO (iPOJO webpage: http://felix.apache.org/site/apache-
felix-ipojo.html) and its purpose is to simplify OSGi applica-
tion development and promotes service-oriented program-
ming on OSGi platforms. Based on the concept of POJO
(Plain Old Java Object), application logic is developed easily.
A PLUGAM plug-in will be implemented as an iPOJO
service. Thanks to iPOJO, there is no need to make reference
or calls to OSGi code to be able to implement an application
module via OSGi, the linking of OSGi and the iPOJO
component service to the application logic is made at the
compilation level. In other words, the use of iPOJO reduces
the development of a plug-in in the prototype to simply
writing a normal plain Java class that implements a Java
interface, this interface being one of the PLUGAM plug-in
interfaces.

The OSGi platform specification has many different
open source implementations commonly known as OSGi
containers, for example, Equinox OSGi, Apache Felix and
Knopflerfish OSGi. In our case, we selected Apache Felix
(Apache Felix webpage: http://felix.apache.org/site/index
.html) as the OSGi container because its development and
community are very active, and it is used as a base for
industry quality architectures like ServiceMix (Apache
ServiceMix is an open source Enterprise Service Bus: http://
servicemix.apache.org/home.html).
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We implemented the adaptation middleware as an OSGi
bundle that will be running in the same OSGi container as
PLUGAM plug-ins. When the middleware bundle is started
by the user, it will detect all the plug-ins which are already
loaded in the OSGi container. In addition to developing the
plug-in platform of the prototype, we implemented some test
plug-ins. Specifically we implemented the necessary plug-ins
to implement the Case Study 1 example in the prototype.

(i) An OLSR protocol plug-in which is developed using
the OLSR code found inside the Mchannel [27]
middleware implementation. This plug-in offers an
adaptation action to modify the HELLO_INTERVAL
of OLSR.

(ii) A contextE plug-in offering GPS context information
by connecting to a Bluetooth GPS; we modified the
base code of the GPSylon project (GPSylon webpage:
http://www.tegmento.org/gpsylon/) to create the plug-
in. This plug-in offers two node speed context ele-
ments, one obtained from GPS NMEA readings and
the other one calculated from two positions; it also
offers longitude, latitude, time, and number of satel-
lites caught by the GPS.

(iii) An adaptation algorithm plug-in of the simple vehicle
speed to HELLO_INTERVAL mapping we talked
about in Section 4.1.

Thanks to the use of iPOJO creating a plug-in for the pro-
totype is rather simple and involves doing the following steps
using the Eclipse development tool.

(i) Create a new Java project in Eclipse, then import the
PluginServices.jar in your project; this jar is also an
OSGi bundle which contains all the auxiliary classes
and the plug-in interfaces for the middleware and
plug-ins to interact with each other.

(ii) Create a class in the project and make it implement
one of the plug-in interfaces.

(iii) Compile the project into an iPOJO bundle using
Apache Ant and the input files build.xml, meta-
data.xml, and (Project name).bnd; these files must be
customized for each plug-in project.

(iv) Put the resulted bundle in the plug-ins folder of
Apache Felix.

Installing the prototype is also simple thanks to Java
and Apache Felix, involving only to copy the contents of
the Apache Felix folder with the bundles of the adaptation
middleware to the computer, then put the self-created plug-
ins in the predefined folder of Apache Felix.

To run the middleware prototype, we must start the
Apache Felix JAR file (as shown in (1) of Figure 16), wait a
few seconds until Apache Felix detects the installed plug-ins,
then in the command console of Apache Felix start the bundle
of the PLUGAM adaptation middleware (as shown in (3) of
Figure 16).
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FIGURE 16: Apache Felix running with the adaptation middleware
bundle, the pluginServices bundle, and the PLUGAM plug-ins of
Case Study 1 which are shown in blue (2).

6. PLUGAM Evaluation

The evaluation of the adaptation middleware is presented in
two phases. The First phase is a cost/performance evaluation,
which is based on a set of measurements to the prototype in
order to get a rough idea on the cost of using the middleware
in the vehicular system. The objective of these measurements
is to determine if such middleware architecture is viable
to implement in a future vehicular system. Moreover, in
addition to presenting two case studies examples as proof
of concept of the proposed architecture, in the second
phase of the evaluation we go further and perform a set
of experiments/simulations to analyze the impact of one of
these specific adaptations, the Case Study 1 example, in order
to confirm if in practice this adaptation solution indeed
brings performance gains as proposed in theory by Huang
et al. [26]. Finally, we discuss the scalability of the proposed
architecture and talk about the additional costs introduced
by our generic approach in contrast with an existing adaptive
protocol, which is a particular solution.

6.1. Performance/Cost Measurements. To evaluate the perfor-
mance or cost of the adaptation middleware, we designed a
set of measurements to be done to the prototype. The aim of
these measurements is to analyze the possible processing and
memory cost of using a plug-in platform and the processing
cost added by the middleware between the interactions of
the applications and NL protocols. The objective of this
evaluation is to determine if such middleware architecture is
viable to implement in a future vehicular system.

For the performance/cost evaluation, we made measure-
ments to the following aspects of the prototype.

(i) Memory requirements of the prototype.

(ii) Processing costs or additional latency generated by
the adaptation middleware when executing adapta-
tion solutions in all the adaptation modes.

(iii) Finally, we are interested in analyzing the memory
and processing overhead introduced by the proto-
type’s plug-in platform.

All the measurements performed to the prototype were
made on a MacBook Air model A1231 (2008), which con-
tains an Intel Core 2 Duo 1.6 GHz and 2Gb of RAM.
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On the software side, we used the Ubuntu 10.10 operating
system, the installed software is Java JRE 1.6.0.22, Apache
Felix version 4.0.2, and iPOJO 1.8.2. We believe that these
hardware and software specifications will be similar to the
onboard systems of two-three years future vehicles, with
a price point of $700-1100, using computer technology
from four or five years behind and most probably using
a version of Linux or Windows Embedded. For example,
the MyFord Touch costs around $1150 and uses Microsoft
Windows Embedded Auto software platform; it has an ARM
Cortex A8 600 MHz CPU with 512 MB RAM and 2GB
NAND flash memory. The Toyota Entune costs around $1050
(http://toyota-entune.com/toyota-entune-cost/). On another
aspect, all the measurements of the prototype were done a
hundred times and we are showing the average value and
confidence intervals.

6.1.1. Prototype Memory Requirement. Due to the possibil-
ity and interest of deploying these vehicular systems in
embedded systems or even smart phones, which have limited
processing power and specially memory limitations, it is of
interest to have an idea of the memory costs of using the
adaptation middleware, more specifically the ROM and RAM
usage. The general memory requirements obtained from the
prototype are: 20.1 MB of RAM and 111.9 MB ROM memory
(size for PLUGAM binary files).

The above RAM value was obtained from the memory
footprint of the java process reported by the process status
(ps) program in Linux. A deeper examination of the 20 MB
RAM usage of the prototype reveals that 16.17 MB are needed
to run the plug-in platform environment (iPOJO + Apache
Felix + JVM), the JVM alone consumes 6.72 MB. On the other
hand, from the previous ROM value, 109.5 MB correspond
to the JVM files, only 1.98 MB correspond to the Apache
Felix with iPOJO files, and the last 442 KB correspond to the
adaptation middleware files. Moreover, if we include the plug-
ins needed to implement the Case Study 1 example in the
prototype, the ROM increases an additional 4.03 MB.

Furthermore, an important memory overhead of the
adaptation middleware is the addition of a middleware
specific header to the messages generated by the applications.
This header contains the information of the AdaptationMid-
dlewareMessage object (shown in Figure 8). Since the fields of
the AdaptationMiddlewareMessage has ElementIndentifier
objects which contains strings, the size of the header depends
on the maximum number of characters for these strings.
Setting this maximum size to 30 characters of one byte each,
and using an IPv4 address representation of 4 bytes resulted
in a header size of 132 bytes.

In summary, the resulting ROM and RAM requirements
are modest and should fit even on today’s low cost Android
smartphones, which generally have 512MB of ROM and
RAM; we highlight Android devices because Apache Felix
can be configured to run on Android systems, thus making
it feasible to run the adaptation middleware in them. The
plug-in platform implementation using Apache Felix is the
source of most of the RAM usage of the PLUGAM prototype.
The JVM is responsible for most of the ROM usage of
the prototype. Finally, the resulting header’s size is high
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and could be reduced by redefining the Elementldentifier
class, preferentially by omitting the use of strings in the
identification mechanism of the architecture.

6.1.2. Prototype Processing Overhead. The goal of obtaining
these measurements is to have an approximation about the
processing cost (latency) induced by using the adaptation
middleware. In the send, receive, and forward adaptation
modes, the middleware intercepts the passing of the messages
between the vehicular applications and the NL protocols and
executes an adaptation solution in between. In the case of
the CUPIB mode, the recalculation of the variables inside the
NL protocols also depends on how much time the adaptation
solution is executed in this mode. We are interested in
knowing the processing time of executing an adaptation
solution with the different variations of adaptation modes,
with the special adaptation actions, and with different types
of adaptation algorithms.

Because the instructions and operations inside an adap-
tation algorithm are defined by the plug-in developer, inside
there could be any number of instructions and complex
operations. For the purpose of obtaining measurements
with different types of adaptation algorithms, we defined
four profiles of an adaptation algorithm, we named them
“algorithm load” and they are based on quantity of operations
with floating point numbers, the devised algorithms loads are
as follows.

(i) None: an adaptation algorithm without any instruc-
tions or operations.

(ii) Low: represented by an O(rn) algorithm and imple-
mented by an average estimation algorithm of a list of
n real numbers. This load is intended to represent an
algorithm that contains some variable assignments,
comparisons, and mathematical operations with the
input context elements.

(iii) Medium: represented by an O(n’) algorithm and
implemented by a selection sort algorithm which
sorts a list of n real numbers. This load is intended
to represent adaptation algorithms that do more
sophisticated operations to the context elements.

(iv) High: represented by an O(log(n)nz) algorithm and
implemented by a selection sort algorithm done
log(n) times. An algorithm with load of HIGH is
very bulky and does high and complex number of

operations, represents an extreme case.

In addition, to associate the algorithm load concept with
the number of context elements which are the inputs of the
adaptation algorithm (NUM_CONTEXTE), as well as with
the number of adaption actions output to the algorithm
(NUM_AACTIONS), we defined » as indicated in (3), where
m = 100 represents a base size of a list containing floating
point numbers:

n=m+ 1—"8 (NUM_CONTEXTE + NUM_AACTIONS).
(3)
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The execution times of these different adaptation con-
figurations are shown in Figure 17; each measurement is the
average of running it 100 times and includes the confidence
interval of 95%. The charts (a) and (b) show the processing
times measurements of the send, forward, and receive adap-
tation modes: in (a), by fixing the number of context elements
to 5, then varying the load of the adaptation algorithm; in
(b), by fixing the algorithm load to NONE, then varying the
number of context elements used as input to the adaptation
algorithm. The SE SS, RE RS, FE and FS abbreviations in
the horizontal axis of (a) and (b) refer to a combination
of the adaptation mode and the special adaptation action
used in the adaptation configuration; the first letter refers
to the adaptation mode where the configuration is executed
(send, receive, and forward), and the second letter refers to
the special adaptation action we put in the configuration as
output to the adaptation algorithm (filter and switcher).

The charts (¢) and (d) of Figure 17 show the processing
time measurements of the CUPIB adaptation mode. The chart
(c) shows the processing times by varying the number of
adaptation actions and fixing the algorithm load to NONE
and the context elements to one. Chart (d) shows the
processing times by varying the number of contexts elements
of the algorithm, then fixing the algorithm load to NONE and
the number of adaptation actions to one.

Examining the results of the processing cost measure-
ments of the adaptation middleware, we concluded the
following.

(i) The send and receive modes have very similar pro-
cessing times; this is due to their similar implementa-
tions in the prototype. The forward mode processing
times are a little higher than the send and receive
modes, approximately 0.04 ms more.

(ii) The processing measurements in all the adaptation
modes shown in the charts are located between 0.1
to 0.6 ms. The highest processing time obtained in
the measurements was 1.6 ms of in CUPIB adaptation
mode, with an algorithm load in HIGH, 9 context
elements as input, and 9 adaptation actions as output;
this measurement does not appear in the charts of
Figure 17.

(iii) The algorithm load HIGH greatly elevates the pro-
cessing times several tenths of a millisecond.

(iv) The processing time of all the adaptation modes when
increasing the number of input context elements
in the algorithm only makes increments of a few
hundredths of milliseconds per context element.

(v) In the CUPIB mode, the processing time increments
are more steep in relation with the number adaptation
actions as output that when we add more context
elements in the input of the adaptation algorithm.

Additionally, using the previous measurements frame-
work we estimate the processing cost for the Case Study
1 example, which uses one context element as input, one
adaptation action as output, and an algorithm load of LOW
because the algorithm is a simple mapping of speed to
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FIGURE 17: Measurement results of the processing overhead of the adaptation middleware prototype.

HELLO interval values. The processing time for Case Study
1 example resulted in 0.191 ms; this latency was introduced in
the simulation of Case Study 1 in Section 6.2.

The measured time to initiate the middleware resulted in
654 ms. The initiation step covers from when the adaptation
middleware bundle is started in Apace Felix to when the NL
protocols, applications, and adaptation solutions in all the
adaptation modes are started by the middleware.

Finally, based on the processing delay measurements of
the adaptation modes (presented in Figure 17), we described
the end-to-end delay incurred by the PLUGAM middleware.
For each adaptation mode the end-to-end delay is affected in
the following way.

(i) In case of executing an adaptation solution in the
CUPIB mode, the end-to-end delay of a message is
not affected because the execution of CUPIB is con-
current to the NL protocols, vehicular applications,
and message passing between them.

(ii) Inall the end-to-end path of a message, the send mode
only adds a processing delay in the source node.

(iii) As for the receive mode, through all the end-to-end
path of a message, this mode only adds a processing
delay in the destination node.

(iv) In forward mode, the adaptation solution is executed
in each node of the end-to-end path which relays the
message; hence, the processing delay of the forward
mode must be multiplied by the number of relay
nodes of the path, in order to get the end-to-end delay
of the middleware.

Figure 3 of Section 3.3 is useful to understand the end-to-
end delay of the send, receive, and forward modes, because it
shows their location in the end-to-end path of a message.

We present an analytical estimation of the end-to-end
delay overhead of the middleware for two common types
of NL protocols: unicast and dissemination. We assume that
only one adaptation solution is defined either in the send,
receive, or forward adaptation modes. These estimations are
shown in Table 2. For the unicast estimation, we assume that
the end-to-end route of the message consists of R nodes. For
the dissemination protocol estimation, we defined RN as the
number of nodes participating in the retransmission of the
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TABLE 2: Estimation of end-to-end delay of PLUGAM middleware
for a general unicast and dissemination type NL protocol.

Adaptation Unicast protocol Dissemination protocol
mode

Send SC * (R) + CS SC+ (DR+D+1)+CS
Receive SC % (R) + CR SC+*(DR+D+1)+CR* D
Forward (SC+CR)*R SCx*(DR+D+1)+CF=*DR

message (this number depends on the specific dissemination
protocol) and DN as the number of destination nodes that
transfer the message to the vehicular application.

In addition, SC refers to the processing cost of the
search operation for an active adaptation configuration in the
adaptation mode. This processing cost must be made even
if no configurations are defined in the adaptation mode by
the user. CS stands for the processing cost of executing an
adaptation configuration defined in the send mode, CR in the
receive mode, and CF in the forward mode.

6.1.3. Plug-In Platform Memory and Processing Overhead. A
major aspect to consider about our proposed middleware
architecture is the impact and feasibility of introducing a
plug-in platform to a software system such as a middle-
ware for vehicular systems, being that the plug-in platforms
found in the software community are complex systems by
themselves. We are particularly interested to see if adding a
plug-in platform to communicate the internal middleware
components does not add enough latency to the process.

In this particular plug-in platform implementation based
on OSGi and iPOJO, in addition to the code written by
the developer to implement a plug-in interface, in the
compilation step extra code is automatically injected to the
CLASS files in order to support the plug-in platform. This
obviously increases the size of the plug-in binary (the JAR
file) created by the developer. To measure this aspect, we took
the ROM measurements from five plug-ins developed for the
implementation of the Case Study 1 in the prototype; then
we compiled them without OSGi and iPOJO functionality,
only with OSGi functionality (making it an OSGi bundle),
and with OSGi and iPOJO functionality. From these mea-
surements, we found that the OSGi overhead code is small, in
average only adding 345 Bytes to the plug-in binary; this small
value is due to the fact that creating an OSGi bundle involves
only adding some OSGi metainformation to the manifest file
inside the JAR file.

In regard to the iPOJO code overhead, we found that
it adds an average of 3.5KB of code to the plug-in binary.
Moreover, it increases the size of the class file implementing
the iPOJO service by 86.84%; this code overhead originates
because adding iPOJO functionality involves an injection of
iPOJO specific methods to the original CLASS file; this code
injection is done automatically by the Apache Ant compiler.

As we mentioned in previous sections, the plug-in
platform communicates the extension components (added
NL protocols, applications, etc.) to the middleware, this
communication using the plug-in platform adds a processing
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overhead or extra latency that we think is interesting to
measure. To calculate this latency, we recreated a scenario
in which we have two iPOJO components A and B, where
A uses the B component and both components are located
in different bundles or JAR files. Then at run time, we
measured the time between when component A calls the
method of component B and until it immediately enters the
method of component B. The resulted latency was 0.009 ms,
which is a very small latency. However, we noticed a bigger
latency (1.74 ms) when an iPOJO method is called for the
first time; this behavior occurs because at run time iPOJO
delays loading the iPOJO components until the component
methods are actually called by another and not at initiation
time (iPOJO calls this “lazy object creation”).

Finally, we measured the initiation time of the proto-
type’s plug-in platform; we measured the time since the
Apache Felix OSGi container is started by calling the “java
-jar felix.jar” command until when Apache Felix loads the
PLUGAM plug-ins and gives execution control to the adap-
tation middleware. The measured time was 2.4 seconds, from
which 0.986 ms are needed by Apache Felix to start the OSGi
container, and the rest is spent on loading the plug-ins from
a specific folder of Apache Felix.

In summary, the code required to encapsulate the exten-
sion component functionality into a plug-in is small, a few
KB, and most of this extra code comes from iPOJO. In
contrast, the extra code required to create an OSGi bundle is
minimum. Moreover, this plug-in platform implementation
is very light and adds very little latency when communicating
the plug-ins with the middleware; however, the first time
these two modules communicate generates a significant
latency. Furthermore, the 2.4s initiation time of this plug-
in platform implementation is lengthy, which in addition to
the middleware’s initiation time (presented in Section 6.1.2)
sums up a total of approximately 3 seconds of initiation time
before the NL protocols and applications start working. This
start-up delay must be taken into account when deploying the
vehicular system in the target vehicles.

6.2. Evaluation of Case Study 1. In this section, we present
an evaluation of the adaptive protocol proposed for the Case
Study 1 example throughout simulation. The idea of this
evaluation is to show a brief quantitative evaluation on the
impact of specific proposed adaptation, which is built with
our middleware. We want to assess if even this simplistic
adaptation proposal indeed generates a performance increase
as reported by Huang et al. [26].

Moving on to the details of this evaluation, essentially
we compared two protocols, the default OLSR protocol and
the adaptive OLSR protocol which includes the adapta-
tion proposed for Case Study 1. Both are based on UM-
OLSRv0.8.8 (http://masimum.inf.um.es/fjrm/?page_id=116),
an OLSR implementation for NS-2. We measured the follow-
ing metrics in the simulation to compare the performance of
the two protocols.

(i) Average goodput of all data connections in the sim-
ulation: the goodput is defined as the amount of
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FIGURE 18: Chosen road network for the simulation of Case Study 1.

useful data delivered (in bytes) divided by the data

connection transfer time.

(ii) Normalized routing overhead (NRO), which is defined
as the ratio between the number of control packets
propagated by every node in the network and the
number of data packets received by the destination
nodes. This metric is strongly related to the control
packet overhead of the NL protocol.

We also measured the average end-to-end delay; however,
the resulted delay values were too scattered, thus not useful
when comparing the two protocols; this can be explained
because the OLSR protocol itself is not sensitive to delay.

For the NS-2 simulation, the speed context element
for each node is obtained from the speed value in the
MobileNode class in the NS-2 code; this speed value has 100%
precision contrary to the speed values obtained from a real
world GPS. Moreover, instead of porting the entire middle-
ware to NS-2, we only added the CUPIB mode functionality
to the adaptive OLSR protocol; more specifically, we added
a delay of 0.1916 ms obtained from the cost evaluation of the
prototype, in order to emulate the processing overhead of the
adaptation middleware when executing the CUPIB mode.

In addition, to simulate a city scenario we used real data
(roads specification) concerning an urban area of the city
of Ensenada in Mexico, this data was exported from open-
streetmap (Openstreetmap: http://www.openstreetmap.org/)
and it is shown in Figure 18. For the simulation of vehicles
and their movements (considering traffic lights), we used
the SUMO tool (Simulation for Urban Mobility: http://sumo
.sourceforge.net/). We generated the flow of vehicles from
41 routes in the map by defining the begin and end points
of the routes. The internal vertices of routes were generated
automatically by the SUMO Duarouter program that uses
Dijkstra’s shortest route algorithm, where the edge weights are
a combination of the max speed of a street and the distance
to the destination and also from traffic situation. To emulate
real world vehicle movements, the vehicles can enter and get
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TABLE 3: Simulation of Case Study 1 parameters.

Simulation parameters

NS-2.34
100 seconds
Approx 1km x 1km

Simulator
Simulation time

Simulation area

MAC layer IEEE 802.11b
Traffic type CBR/UDP
CBR data payload 512KB
CBR rate 100 kps
Number of runs 5

out of the simulation area. The city max speed and hence the
vehicles max speed was set to 40 kph. The wireless range were
set to 150 m, instead of the default 250 m of 802.11, in order to
emulate the buildings of the city center.

Furthermore, we compared the two protocols in different
scenarios varying the global network density (GND) and
average global node speed (GNS). By global network density
we mean the total number of vehicles in the entire simulation
time; the network density was varied between 100, 150, and
250 vehicles. We only simulated up to 250 vehicles due to
computational resources and time constrains. For example,
doing a simulation run with 250 vehicles took around 5 days
and simulating 350 vehicles generated simulation runs taking
awhole month. Extending the simulations results with higher
GND values is desirable thus regarded as future work.

As for the average node speed, we are referring to the
average speed of all the vehicles in the network, during all the
simulation time; we present results with GNS of 10, 15, 20,
25, and 30 kph. The reason the speed values were so small
is because the vehicles spent a lot of time in stops and
traffic lights. In addition, we generated the maximum feasible
number of CBR connections between the vehicles in the
simulation area, which is less than half the total number
of nodes in the simulation, and the CBR connections were
active during all the simulation time. Additional simulation
parameters are shown in Table 3.

In Figure 19, we present the results comparing the adap-
tive OLSR versus the normal OLSR. In the upper charts, we
measured the goodput of the two protocols with respect to the
various speed (GNS) values, and we did this for each of the
three node density (GND) scenarios taken into account. In
the lower charts, we measured the normalized routing over-
head (NRO) between the two protocols with respect to the
different values of GNS.

Concerning the goodput metric, we can say that the
goodput of the adaptive OLSR closely mirrors that of the
normal OLSR, nonetheless generating less goodput. Doing an
overview analysis of all the measurements with the different
GNS and GND values, we concluded that in average the
adaptive OLSR goodput is 1.42% less than the normal OLSR;
this means that the adaptation of Case Study 1 generated
worse performance than the normal OLSR. However this
conclusion lacks precision because the resulting confidence
intervals are not small enough. Increasing the number of runs
is needed to provide this certainty.



22 International Journal of Distributed Sensor Networks
With GND = 150 With GND = 200 With GND = 250
1600 2500 - 1800
1400 1 1600 -
2 1200 - ~ 2000 4 5 1400 1
8 2 2 1200 -
I} 13 1
1000 1
f% & 1500 1 E 1000
ER ] 2 800
53 ] 2. 1000 A & I
g o K 2 600
G 400 - S ol 8 4ol
200 200 4
0 0 0
10 15 20 25 30 10 15 20 25 30 10 15 20 25 30
GNS (kph) GNS (kph) GNS (kph)
With GND = 150 With GND = 200 With GND = 250
4 R < 9 - S 5 8 S
g Pl <
g 351 EER g,
< = =
3} | L 7 4 54 6
2 3 3z z
o
25 1 ks 2 1 ¥s
! 25 g
g 2] 4] g4
= 1.5 1 T 3 23
S B S,
s 17 g 2 g
E 0 =] s 1
5 .5 5 J Zo
Z 0 Z 0 0
10 15 20 25 30 10 15 20 25 30 10 15 20 25 30
GNS (kph) GNS (kph) GNS (kph)

—e— Normal OLSR
—=— Adaptive OLSR

—— Normal OLSR
—=— Adaptive OLSR

—— Normal OLSR
—=— Adaptive OLSR

FIGURE 19: Simulation results of Case Study 1.

Regarding the NRO metric, we can see a clear advantage
of the adaptive OLSR in every scenario because it produces
less control packets. In this case the confidence intervals are
small enough to provide us with this certainty in spite of
only doing five runs. Nevertheless, we notice that the bigger
the speed (GNS) value, the advantage of the adaptive OLSR
begins to diminish. Doing an overview analysis of all the
measurements with the different GNS and GND values, the
adaptive OLSR NRO value was an average of 20.78% less than
normal OLSR; this means that the adaptation of Case Study 1
generates 20% less control packages given that both generated
almost the same goodput.

In summary, the adaptation of Case Study 1 generated
an improvement by reducing by 20% the number of control
packages of OLSR, at the cost of reducing its goodput by
approximately 2%.

6.3. Scalability of the PLUGAM Architecture and Comparison
against an Existing Adaptive Protocol. Finally, to get a better
grasp of the performance and efficiency of the adaptation
middleware architecture, in this section we discuss its scal-
ability and make a comparison with an existing adaptive
protocol.

We refer to the scalability of the PLUGAM in two aspects:
firstly based on the number of nodes in the network, and
secondly based on the number of NL protocols used in the
middleware instance by the user. Regarding the scalability

with respect to the number of nodes/vehicles in the network,
we observed the following.

(i) Each node in the network has one middleware
instance installed, each one contains the same con-
text elements, NL protocols, plug-ins, adaptation
solutions, applications, and so forth. The current
focus of this architecture is offering only node-local
adaptations, this means that PLUGAM architecture
is a purely distributed system, which in principle
has better scalability than a centralized system. The
definitions of node-local and distributed adaptations
can be found in Section 2.

(ii) If the architecture was to be extended to deal with dis-
tributed adaptations (regarded by us as future work),
then it would not be a purely distributed system
anymore. Distributed or global adaptations need cen-
tralization or additional interactions between nodes
to coordinate adaptations, this would surely impact
the scalability with respect to the number of nodes.

Regarding the scalability with respect to the number of
NL protocols used in PLUGAM middleware, the generic
aspect of the architecture generates extra overhead in contrast
to particular adaptive protocol solutions, every NL protocol
added generates the following extra costs.
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O

IContextEPlugin

GetNumContextElements( ): int
PluginSupportsGetContextsEvent(): boolean

GetUpdatePeriod( ): long

GetContextsInfo(contextsNames: String[ |, contextsTypes: Class| |, contextsAdditionalInfo: String[ ])
GetContextsType( ): String] ]

GetErrorPercentage( ): Double[ ]

GetContexts(msg: AdaptationMiddlewareMessage, contexts: ContextElementValue[ |)

GetContext(contextld: int, msg: AdaptationMiddlewareMessage): ContextElementValue
SubscribeToContextsEvent(subscriber: IContextSubscriber)

UnsubscribeToContextsEvent(subscriber: IContextSubscriber)

Start( )
Stop()

IApplicationPlugin

GetAppDeclaredProtocols( ): ElementIdentifier| ]
SetMiddlewareProxy(middlewareProxyObject: IMiddlewareProxy)
GetNumContextElements( ): int
PluginSupportsGetContextsEvent(): boolean
GetUpdatePeriod( ): long
GetContextsInfo(contextsNames: String[ |, contextsTypes: Class| ], contextsAdditionalInfo: String] ])
GetContextsType( ): String| |

GetErrorPercentage( ): Double] |
GetContexts(msg: AdaptationMiddlewareMessage, contexts: ContextElementValue][ ])
GetContext(contextld: int, msg: AdaptationMiddlewareMessage): ContextElementValue

SubscribeToContextsEvent(subscriber: IContextSubscriber)

UnsubscribeToContextsEvent(subscriber: IContextSubscriber)

OnReceiveMessage(senderProtocol: ElementIdentifier, message: AdaptationMiddlewareMessage)

StartApp( )
StopApp()

O

IProtocolPlugin

GetLocalAdress( ): String
GetProtocolType( ): String
SendMessage(message: AdaptationMiddlewareMessage)

SubscribeToReceiveEvent(subscriber: IProtocolReceiveSubscriber)

UnsubscribeToReceiveEvent(subscriber: IProtocolReceiveSubscriber)

F1GURE 20: Continued.

23



24 International Journal of Distributed Sensor Networks

SubscribeToForwardEvent(subscriber: IProtocolForwardSubscriber)

UnsubscribeToForwardEvent(subscriber: IProtocolForwardSubscriber)
GetNumA Actions( ): int
GetAAction(aactionId: int): AdaptationActionValue

SetAAction(aactionld: int, aaction: AdaptationActionValue)

GetMechanismsInfo(aactionNames: String| ], aactionTypes: Class[ ], aactionInfo: String[ ])
GetNumContextElements( ): int
PluginSupportsGetContextsEvent(): boolean
GetUpdatePeriod( ): long
GetContextsInfo(contextsNames: String[ |, contextsTypes: Class| ], contextsAdditionalInfo: String] ])
GetContextsType( ): String[ ]
GetErrorPercentage( ): Double| ]
GetContexts(msg: AdaptationMiddlewareMessage, contexts: ContextElementValue[ |)
GetContext(contextld: int, msg: AdaptationMiddlewareMessage): ContextElementValue
SubscribeToContextsEvent(subscriber: IContextSubscriber)

UnsubscribeToContextsEvent(subscriber: IContextSubscriber)
Start( )
Stop()

O

IAlgorithmPlugin

GetAlgorithmInformation( ): String
GetNumContextElementsInAlgorithm( ): int
GetNumMechanismsInAlgorithm( ): int
GetInputContextsInfo(names: String[ ], types: Class[ ], info: String[ ])
GetOutputMechanismInfo(names: String[ |, types: Class[ ], info: String][ ])
ExecuteAlgorithm(contextValues: IContextElement[ ]): IMechanism[ ]

FIGURE 20: Definition of the service interfaces for all the different types of plug-ins in the PLUGAM architecture.

(i) Each NL protocol, same as the other extension com-
ponents of the architecture (context elements, vehic-
ular applications, adaptation configurations, etc.),
incurs additional memory overhead due to the need
to attach metainformation that the middleware uses
to manage them. This is the cost of modularization
and low coupling design of the extension compo-
nents.

(ii) Each NL protocol, same as the other extension com-
ponents of the architecture, is encapsulated in a
plug-in. To create a plug-in extra special code and
instructions need to be added in order to enable a
communication channel with the plug-in platform.
In addition, extra memory overhead is needed in
order to implement the protocol plug-in interface.
Measurements for Section 6.1.3 indicate around a
3.5 KB increase in code size.

Related to having a high number of adaptation solutions
in the middleware, this increases the probability of having

adaptations interfere with each other producing unexpected
results; thus, special care and experimentation are needed
to calibrate the effects of the adaptation solutions added in
them. The scalability of the architecture is also dependent on
the plug-in platform efficiency in regard to loading a high
number of plug-ins, especially in the initiation step in which
all the plug-ins are loaded (our prototype gave us initiation
times of around two seconds). In the case of the prototype’s
plug-in platform based on OSGi/iPOJO, no serious scalability
analysis has been found in the literature; however, OSGi has
been used to build programs (e.g., Eclipse) supporting a high
number of modules.

Furthermore, to get a more comprehensive view of the
performance and efficiency of PLUGAM we emphasize on
the extra overhead generated by our generic solution in
contrast with a particular adaptive protocol. We will use as
example the proposal of Chen et al. [14] which performs
an adaptation based on switching between two different
NL protocols (more information can be seen in Table 4
of Section 7). The extra overhead generated by our generic
solution is the following.
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TABLE 4: Comparative analysis of some adaptive protocols found in the literature.
Context elements Adaptation actions  Adaptation algorithm  Adaptation modes

Adaptive protocols

Field of research

used

used

used

used

Adler et al. [3]

Delot et al. [6]

Ramasubramanian et al.

(71

Giannoulis et al. [8]

Zhao and Cao [9]

Abuelela and Olariu
[10]

Eichler et al. [11]

Al-Doori et al. [12]

Mariyasagayam et al.
(13]

Chen et al. [14]

VANETs

VANETs

MANETs

Ad hoc networks

Ad hoc networks

VANETs

VANETs

VANETs

VANETs

VANETs

No specific context
elements, general

approach by relevance

parameters

Mobility and
direction vector of
event and vehicle

Perceived packet

overhead, packet loss

rate, and jitter
between neighbor

Routing failure and
number of nodes in
zone

No specific context
elements, only gives
examples like degree
to which channel is

busy

Local traffic
conditions

No specific context
elements, general
approach by context
parameters

Road direction and
vehicles velocity

Neighbor density

Time of traffic lights,
max speed of road,
speed of neighbor
vehicles, and the
predicting slope

Forward decision,
priority to send

Message relevance

Send, receive, and

message, and special ~ function defined by forward
filter adaptation authors
action
Forward decision, use Encounter probability
of filter special function Forward
adaptation action defined by authors
Three heuristics to
calculate each
Zone radius of each  perceive metric, then CUPIB
destination modify the zone
radius when certain
threshold is reach
. Decision to modify
Zonueplzaizuisnigiz(l)ute radius zone if resultis ~ CUPIB and send
outside of threshold
Selecting routing
module, tuning Doesn’t have specific
routing algorithm algorithms, gives CUPIB

parameters, and
adjusting routing
metric

Switch between
mulling or unicast

examples of threshold
algorithms

By detecting presence
of path to next
oncoming cluster on

Forward and send

routing protocols the road
L Message benefit
Priority to send function defined by Send
message
authors
Simple threshold
between velocity
Broa(rlzeeiz;:lfLLO values and detection CUPIB
8 algorithm of change
of direction
Forward decision, use Forwardine sectors
of the filter special '8 Forward
. . algorithm
adaptation action
Algorithm based on
Forward decision, use  value of predicting
of the switcher special ~ slope and three Forward

adaptation action

scenarios of traffic
light

(i) An additional processing cost exists due to the in-
direct access between the extension components in-
volved in the adaptation solution, contrary to partic-
ular adaptive protocols like Chen et al. where these
elements are tightly integrated and directly commu-
nicating. This processing cost mostly depends on
the communication delay between plug-ins and the
middleware passing through the plug-in platform, in
our prototype implementation this delay is very small,
around 0.009 ms as seen in Section 6.1.3.

(ii) The overhead generated by the middleware header
(132 bytes) must be taken into account because it
lowers the throughput of the protocols by taking
bytes for useful data. The middleware header helps
to support a multiple-applications multiple NL pro-
tocols environment and identifies the NL protocol
and application attached to the message. The work of
Chen et al. [14], not being a generic approach, treats
these two NL protocols as a single super protocol and
hence does not need this header.
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TABLE 5: Definition of the Elementldentifier class (a) and the
meaning of its attributes (b).

()

Elementldentifier

(i) name: String

(ii) hash: long

(iii) secondName: String

(®)

Elementldentifier instance

name NP
hash HP
SecondName NE

TaBLE 6: Contents of an adaptation configuration.

Adaptation configuration

Field Data type
configurationName String
adaptationAlgorithm ElementIdentifier
contextElements List of ElementIdentifier
adaptationActions List of ElementIdentifier
adaptationMode {“Send”, “Receive”, “Forward”, “CUPIB”}
protocol ElementIdentifier
application ElementIdentifier
CUPIBTime Long integer

(iii) PLUGAM architecture generates a processing delay to
setup and execute an adaptation solution; a particular
solution like Chen et al. has direct access to the con-
text elements values and only executes the adaptation
algorithm. From Section 6.1.2, the processing time
to setup and execute an adaptation solution in the
prototype is inferred to be less than 0.2 ms.

(iv) Particular adaptation solutions like Chen et al. do not
include a concurrent processing overhead generated
by the context manager subsystem.

7. Related Work

There have been several adaptive protocols proposals for
mobile networks which have shown their efficiency in dealing
with changing environments. In Table 4, we present a few of
these adaptive protocols by highlighting their association to
their possible implementation using our adaptation middle-
ware architecture.

We found that most of these adaptive protocol proposals
were self-contained, meaning that the proposals are usually
promoted as another novel network layer protocol which
handles better the dynamism of the network, nevertheless
no work is done to relate their adaptation solutions to other
proposals nor to propose a common adaptation model; this
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makes it difficult to promote the reuse of parts of their
solution or ideas. Furthermore, we also notice that their
adaptation solutions are very specific to a particular NL
protocol. That is why the aim of our work is to promote
the generalization of adaptation solutions independent of the
NL protocols and context variables by means of proposing
a subsystem in the form of a middleware and based on an
adaptation model.

Besides the adaptive protocols found in MANETs and
VANETS;, there is some related work on subsystems or mid-
dleware proposals aiming to improve the performance of NL
protocols and applications to dynamic conditions.

From the point of view of using context information to
produce more dynamic applications and communications,
Peddemors et al. [28] proposed a platform to express and
provide context information to mobile applications; the
platform allows applications to read the context variables
or act upon them by adapting their behavior. Salber et
al. [24] proposed the use of a context widget to represent
and provide applications access to context information. The
context widget platform provides a standard subscription
mechanism and a polling mechanism. The context widget
architecture includes composition of context information or
context fusion acquired from multiple distributed sources.

The previous context platforms only focused on offering
context to applications and not to network layer protocols as
we are proposing, and the authors gave no further details on
how to perform the adaptation of the application behavior
once the context information is obtained. However, their
context model is more complex than ours.

On the other hand, there are other subsystem type
proposals which offer a way to adapt the communication
system by switching network protocols or reconfiguring them
from within (using a compositional adaptation approach).
For example, Nundloll et al. [5] proposed a framework for
run time reconfiguration of routing protocols for VANETS.
This framework encapsulates a network layer protocol in a
component and also separates it in subcomponents using a
control-forward-state (CFS) pattern. This framework adapts
or reconfigures the protocols by making changes at two levels:
add/remove the protocol components (switching NL pro-
tocols) or change CFS subcomponents within the protocol.
The authors also identified some common network layer
protocol operations where adaptations can be performed;
these operations are the send, receive messages, scheduling
tasks, and neighbor discovery. This framework for protocol
reconfiguration has also been applied to other types of
networks (wireless sensor networks [29] and MANETSs [30]).
Furthermore, MANET researchers have developed a number
of reconfigurable ad hoc protocol frameworks, prominent
among which are ASL [31] and PICA [32].

Comparing these compositional adaptation proposals
to our adaptation middleware, these works require a full
reimplementation of NL protocols to take advantage of inter-
changing their internal components at run time. In contrast,
our adaptation middleware architecture is based on the
parameter adaptation approach, and porting already existing
NL protocols is more simple because it only requires to
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implement the protocol plug-in interface. Another difference
is that our middleware proposes the use of multiple NL pro-
tocols running concurrently in the network stack, contrary
to these other works which only consider having one active
NL protocol at a time. Finally, Nundloll et al. [5] framework
proposal also does not offer a concrete solution on how to
express and use the obtained context information, as does our
middleware solution.

8. Conclusions and Future Work

We have presented PLUGAM, a middleware that handles
the adaptation of the network layer protocols in a vehicular
system; the aim of this paper was to explain the middleware
architecture in detail. In particular, a novel modeling of the
adaptation concept applied to NL protocols is presented,
and this model is used as the basis of the middleware.
The adaptation middleware is a general solution to help
build a set of adaptive protocols found in the literature. Not
all the adaptive protocol proposals can be built with our
architecture; however, the architecture is flexible enough to
be easily extended by adding more adaptation modes, and
special adaptation actions. The definition of the architecture
is guided by the provision of two key types of adaptations to
NL protocols: one is to modify the NL protocol behavior by
adaptation based on context information of the node, and the
second is to propose a multiple NL protocols environment
(where more than one are running concurrently in the
system) and allowing adaptations where a selection between
them can be made based on context information.

Furthermore, we assess the feasibility of our approach
with two distinct case study examples of adaptive protocols
which can be built with the middleware, and each represents
the key types of adaptations mentioned previously. We also
conducted via simulation a short analysis of the performance
of the Case Study 1 adaptation in order to assess the reported
improvements. Although the proposed Case Study 1 adapta-
tion was far too simplistic, the results show that the adaptive
version of OLSR produces 20% less control overhead than
normal OLSR, and only lowering the goodput by 2% to that of
Normal OLSR. In addition, to demonstrate feasibility of the
middleware architecture, we implemented a prototype along
with a set of plug-ins examples, our main concern was to
see if using a plug-in platform to interconnect the extension
components of an adaptive protocol is a feasible solution. The
chosen plug-in platform for the prototype was implemented
using OSGi and iPOJO technologies.

To get a rough idea on the cost and performance of the
adaptation middleware, we presented some measurements
done to the prototype and analyzed the memory and pro-
cessing overhead of using the middleware. Results show that
the prototypes RAM (20 MB) and ROM (111 MB) usage is
small enough to make it viable to implement the adaptation
middleware in hardware similar to today’s medium entry
level smartphones having a Java virtual machine. In terms
of processing overhead of the prototype, the results indicated
that the latency to execute an adaptation solution in each of
the adaptation modes is around 0.5 to 1.5 ms, which in terms
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of network protocols is acceptable. These times were mea-
sured on a 1.6 GHz dual core processor, which corresponds to
the processing power of today’s high-end smartphones; this
means that to guarantee similar latencies the future vehicular
systems need at least this processing power. We think that
vehicular systems with similar hardware specs are feasible to
appear in a few years.

We also analyzed the cost/performance of only the plug-
in platform of the prototype. The analysis shown, in particular
that of OSGi and iPOJO technologies, has a very small pro-
cessing overhead; we think this was the main reason of the
small processing overhead results of the adaptation middle-
ware prototype. Although we have noticed that other plug-
in platforms are not as lightweight as the OSGi and iPOJO
technologies.

The adaptation middleware architecture we have pre-
sented is part of an ongoing project, and we are working
to accommodate a wider range of adaptive protocols and
improve the basic context and multiple NL protocols environ-
ments. Specific aspects we want to explore and thus regarded
as future work are the following.

(i) The adaptation middleware is limited to building
node-local adaptations, as future work we want to
explore extending the architecture to also allow dis-
tributed or global scope adaptations.

(ii) Explore using a more complex context environment,
in particular explore the use of context ontologies to
allow the declaration of a type of context element
to fit an input slot of an adaptation algorithm with-
out specifying the context source; also explore the
fusion of context information to produce new context
information, and finally add context information
history to refer to the last values of a context element.

(iil) Introduce message-specific context elements in which
the current value of the context is tied to a message.
For example, have a priority of the message context
element and have the location context information of
the node that relays the message.

(iv) Introduce mechanisms to validate the run time effects
of an adaptation in the system, or at least provide
some feedback of the effects. This could help speed up
the calibration of adaptation solutions built with our
middleware in order to improve performance.

(v) A mechanism to deal with possible NL protocols
interference if they use the same communication
channel.

(vi) Propose a general node addressing scheme to unify
or translate source and destination addresses between
the different types of NL protocols supported by the
middleware (to remember why this is useful see
Section 3.7).

(vii) Introduce new adaptation modes; for example, one
that executes an adaptation solution in an NL protocol
or vehicular application event, or when certain values
of context elements are met.
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Appendix
Plug-In Type Interface Definitions

In this appendix we present the definition of all the different
plug-in interfaces in the architecture which were mentioned
at the end of Section 3.4. These interface definitions are
shown in Figure 20. The IContextEPlugin interface contains
the methods to build a contextE plug-in. The IProtocolPlugin
interface contains the methods to build a protocol plug-
in. The IAlgorithmPlugin interface contains the methods to
build an algorithm plug-in. And finally, the IApplicationPlu-
gin interface contains the methods to build an application
plug-in.
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