
Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2013, Article ID 460641, 15 pages
http://dx.doi.org/10.1155/2013/460641

Research Article
��timi�ing Classi�cation �ecision �rees by
UsingWeighted Naïve Bayes Predictors to Reduce the Imbalanced
Class Problem inWireless Sensor Network

Hang Yang,1 Simon Fong,1 RaymondWong,2 and Guangmin Sun3

1 Department of Computer and Information Science, University of Macau, Taipa, Macau
2 School of Computer Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
3Department of Electronic Engineering, Beijing University of Technology, Beijing 100022, China

Correspondence should be addressed to Simon Fong; ccfong@umac.mo

Received 6 October 2012; Accepted 18 October 2012

Academic Editor: Sabah Mohammed

Copyright © 2013 Hang Yang et al. is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Standard classi�cation algorithms are oen inaccurate when used in a wireless sensor network (WSN), where the observed data
occur in imbalanced classes. e imbalanced data classi�cation problem occurs when the number of samples in one class, usually
the class of interest, is much lower than the number in the other classes. Many classi�cation models have been studied in the data-
mining research community. However, they all assume that the input data are stationary and bounded in size, so that resampling
techniques and postad�ustment by measuring the classi�cation cost can be applied. In this paper, we devise a new scheme that
extends a popular stream classi�cation algorithm to the analysis of WSNs for reducing the adverse effects of the imbalanced class
in the data. is new scheme is resource light at the algorithm level and does not require any data preprocessing. It uses weighted
naïve Bayes predictors at the decision tree leaves to effectively reduce the impact of imbalanced classes. Experiments show that our
modi�ed algorithm outperforms the original stream classi�cation algorithm.

1. Introduction

A wireless sensor network (WSN) is a distributed platform
that collects data over a broad area. It has a wide variety of
practical military, medical, and industrial applications [1].
e brain of a WSN is usually a decision-making algorithm
that is capable of correctly mapping a set of newly collected
observations from the sensors to one or more prede�ned
categories. It uses a machine-learning algorithm to recall the
classi�cation of old data and classify the new data accord-
ingly. ere is no shortage of machine-learning algorithms
available for decision making in WSNs [2, 3]. However,
the imbalanced classi�cation is a common problem. is
problem occurs when the classi�er algorithm is trained with
a dataset in which one class has only a few samples and
there are a disproportionally large number of samples in the
other classes. is kind of imbalanced data causes classi�ers
to be over�tted (i.e., produce redundant rules that describe
duplicate or meaningless concepts) and as a result perform

poorly, particularly in the identi�cation of the minority class.
In WSN applications, these rare minority classes are oen
critical. Some WSN examples include, but are not limited
to, transaction fraud detection, machine fault monitoring,
environmental anomalies, atypical medical conditions, and
abnormal habitual behaviors—situations where the class of
interest is a small sample of unusual readings. Studies [4]
have shown that using standard classi�cation algorithms
to analyze these imbalanced class distributions leads to
poor performance. An imbalanced class problem may have
another implication in WSN where it could be a symptom of
producing traffic “hot-spot” in WSN. e energy consump-
tion in the sensors may become imbalanced too, which leads
to premature drainout for some local nodes. Some solution
[5] has been proposed to better cluster the nodes and traffics
although it is aimed at the energy level.

Most of the standard classi�cation algorithms assume
that training examples are evenly distributed among different
classes. In practical applications where this was known to be

2 International Journal of Distributed Sensor Networks

untrue, researchers addressed the problem by either manip-
ulating the training data or adjusting the misclassi�cation
costs. Resizing the training datasets is a common strategy
that attempts to downsize the majority class and oversamples
the minority class. Many variants of this strategy have been
proposed [6–8]. A second strategy is to adjust the costs of
misclassi�cation errors to be biased against or in favor of
the majority and minority classes, respectively. Using the
feedback from the altered error information, researchers then
[9, 10] �ne-tune their cost-sensitive classi�ers and postprune
the decision trees in the hope of establishing a balanced
treatment of each class in the new imbalanced data collected
by the network.

e authors of this paper argue that replacing the
traditional classi�er with an optimized stream classi�er is
another effective solution. As mentioned above, the current
techniques for dealing with imbalanced data require addi-
tional data preprocessing or feedback learning and pruning
of a trained decision tree. ough they may be useful
in minimizing the impact of imbalanced data, these pre-
and postprocessing mechanisms require working through a
whole database and their operations incur certain overheads
in the data-mining environment, which may not be favorable
in a WSN. In a wireless sensor network, data mining is done
in real time with a compact device with limited memory
and processing power called a sink, and most importantly
the incoming data for classi�cation training and testing are
streaming in nature. ese data streams are nonstationary
data thatmay only be read one time at the intermediate nodes
of a sensor network and are then forgotten. Furthermore,
these nodes may be required to perform real-time classi�ca-
tion as the data �ows along the WSN. Fast prediction results
with satisfactory accuracy must be propagated from node
to node. In this dynamic environment, techniques based on
data storage and feedback style aer learning cannot be used
to correct imbalanced data. On the other hand, it has been
demonstrated that a stream classi�er is a good candidate for
WSN applications [11].

e contribution of this paper is a set of simple modi�ca-
tions that optimize an existing stream classi�cation algorithm
called Very Fast Decision Tree to handle the imbalanced class
problem at the algorithmic level. One important extension
is the use of weighted naïve Bayes predictors installed at the
decision tree leaves. e assigned weights have the effect of
countering the “biases” that are introduced by the problems
of imbalanced class found in imperfect WSN data. e paper
is organized as follows. Section 2 describes in detail the
modi�cations that tackle the imbalanced class problem. In
Section 3 a range of experiments is described, the “biased”
datasets with imbalanced classes are introduced and the
experimental results are discussed. Section 4 concludes the
paper.

2. Optimizing the Very Fast Decision Tree

2.1. Motivation and Overview. ree special modi�cations
are proposed to enhance the Very Fast Decision Tree (VFDT)
algorithm.esemodi�cations are embedded in line with the

codes that implement the classi�cation logic of the stream
classi�er. e modi�cations to reduce the imbalanced class
problem are made in four phases: the training phase, where
new nodes are created if the statistical criteria established
in the learning from the labeled samples phase are met;
the prepruning phase, in which the quali�ed nodes and
branches are tested to see whether they can indeed improve
the prediction accuracy (before they are added to the decision
tree); the prediction phase where unseen samples are being
categorized to prede�ned classes; and the pruning phase
which uses the functional tree leaf [12].emodi�cations are
in the forms of simple computation and conditional checks
that do not incur heavy resource consumption at the sensor
nodes.

e improved version of VFDT is generally called
the Optimized Very Fast Decision Tree with Functional
Leaves (OVFDT-FL). Our previous work [13] shows that
the OVFDT-FL prototype can classify data streams with the
maximum possible accuracy with the minimum tree size. In
this paper, OVFDT-FL is tested with imbalanced class data.
e design of OVFDT-FL is given as follows.

OVFDT, which is based on the original VFDT design, is
implemented using a test-then-train approach for classifying
a continuously arriving data stream, even𝑁𝑁 𝑁 𝑁 where𝑁𝑁
is the total number of training instances as shown in Figure 1.
e whole test-then-train process is synchronized so that
when the data stream arrives one segment at a time, the
decision tree is tested �rst for prediction output and training
(which is also known as updating) of the decision tree model
then occurs incrementally. Suppose that 𝑋𝑋 is a vector of 𝑑𝑑
attributes and 𝑘𝑘 is the number of classes included in the data
streams. When a new data sample (𝑋𝑋𝑋 𝑋𝑋𝑘𝑘) arrives, it travels
from the root of the decision tree to an existing leaf via the
current decision tree structure, provided that the root existed
initially. Otherwise, a heuristic function is used to construct a
treemodel with a single root node using the procedure shown
in Pseudocode 1. Suppose that a decision tree model HT can
give a prediction to a class 𝑦𝑦′𝑘𝑘 according to the functional tree
leaf ℱ, where HT(𝑋𝑋𝑋 𝑋 𝑋𝑋′𝑘𝑘. Comparing the predicted class
𝑦𝑦′𝑘𝑘 to the actual class 𝑦𝑦𝑘𝑘, the statistics of the true, 𝐶𝐶𝑇𝑇, and
false, 𝐶𝐶𝐹𝐹, predictions are updated immediately. Meanwhile,
the sufficient statistics 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖, which are a count of the attribute
𝑥𝑥𝑖𝑖 with value 𝑗𝑗 that belong to class 𝑦𝑦𝑘𝑘, are updated for each
node. is series of actions is called the testing phase.

e training phase immediately follows the testing phase.
Node-splitting estimation is used to initially decide if HT
should be updated or not, depending on the number of
samples received that can potentially be represented by
additional underlying rules in the decision tree. In prin-
ciple, the node-splitting estimation should apply to every
single new sample that arrives. However, this would be
too resource expensive and would slow down the tree
building process. Instead, VFDT proposes a parameter 𝑛𝑛min
that only carries out the node-splitting estimation when
𝑛𝑛min examples have been observed on a leaf. In the node-
splitting estimation, the tree model should be updated
when a heuristic function 𝐺𝐺𝐺𝐺𝐺 chooses the most appro-
priate attribute, with the highest heuristic function value

International Journal of Distributed Sensor Networks 3

OVFDT algorithm

Node-splitting estimation

New leaf creation

Testing TrainingData stream Decision tree

F 1: A test-then-train OVFDT work�ow.

INPUT:
S: A stream of sample
X: A set of symbolic attributes
G(⋅): Heuristic function using for node-splitting estimation
𝛿𝛿: One minus the desired probability of choosing a correct attribute at any given node
𝑛𝑛min: e minimum number of samples between check node-splitting estimation
ℱ: A functional tree leaf strategy
OUTPUT:
HT: A decision tree

PROCEDURE: initializeHT(S, X, G(⋅), 𝛿𝛿, 𝑛𝑛min)
(1) Let HT be a tree with a single leaf l (the root). Let𝑋𝑋𝑙𝑙 =𝑋𝑋 𝑋 𝑋𝑋𝑋∅}
(2) Let 𝐺𝐺𝑙𝑙 (𝑋𝑋∅) be the G(⋅) obtained by predicting the class in S, according toℱ.
(3) FOR each class 𝑦𝑦𝑘𝑘
(4) //𝑦𝑦𝑘𝑘 is the class lable y with the kth label
(5) FOR each value𝑋𝑋𝑖𝑖𝑖𝑖, of attribute𝑋𝑋𝑖𝑖 ∈ 𝑋𝑋
(6) Reset OCD: 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖(l) = 0
(7) //𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖(l) is the count of attribute with𝑋𝑋𝑖𝑖𝑖𝑖 and 𝑦𝑦𝑘𝑘 at leaf l
(8) END-FOR
(9) END-FOR
(10) Return HT with a single root

P 1: e pseudocode of initializing an OVFDT model.

𝐺𝐺𝐺𝐺𝐺𝑎𝑎), as a splitting node, according to Hoeffding’s bound
and the tie-breaking threshold. e heuristic function is
implemented as an information gain here. is in situ
system of node-splitting estimation constitutes our training
phase.

Two modi�cations are proposed for the training phase of
OVFDT to manage imbalanced data classes. e �rst is to
dynamically adjust the tie-breaking function in the splitting-
node determination using the mean value of Hoeffding’s
bound. e growth of the tree is in�uenced by the mean
value of the traffic �uctuation (which was found to correlate
with Hoeffding’s bound in our previous work) rather than
the imbalanced data class. e second modi�cation is to
use prepruning to test if the leaf chosen to be split, and
therefore increase tree growth, is indeed a valid choice given
the imbalanced data class. In this way, we can assume that
the expansion of the tree is a result of genuinely accurate
predictions. us, postpruning on the decision tree is not
necessary. Section 2.2 presents the details of the functional
leaf strategy for handling the imbalanced data class, and the

details of the modi�cations to the training phase are given in
Section 2.3.

2.2. Functional Tree Leaf Prediction in Testing Phase. e
sufficient statistics 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 is an incremental count number stored
in each node in the OVFDT. Suppose that a node Node𝑖𝑖𝑖𝑖 in
HT is an internal node labeledwith attribute 𝑥𝑥𝑖𝑖𝑖𝑖. Suppose that
𝑘𝑘 is the number of classes distributed in the training data,
where 𝑘𝑘 𝑘 𝑘. A vector 𝑉𝑉𝑖𝑖𝑖𝑖 is constructed from the sufficient
statistics 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖 inNode𝑖𝑖𝑖𝑖 such that𝑉𝑉𝑖𝑖𝑖𝑖 = {𝑛𝑛𝑖𝑖𝑖𝑖𝑖, 𝑛𝑛𝑖𝑖𝑖𝑖𝑖,… , 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖}.𝑉𝑉𝑖𝑖𝑖𝑖
is the observed class distribution (OCD) vector of Node𝑖𝑖𝑖𝑖.
OCD stores the count of the distributed class at each tree node
in OVFDT. It helps to keep track of the occurrences of the
instances of each attribute.

For the actual classi�cation, OVFDT uses HT(𝑋𝑋𝑋𝑋𝑋𝑋′𝑘𝑘 to
predict the class label when a new sample (𝑋𝑋, 𝑦𝑦) arrives. e
predictions are made according to the OCD in the leaves,
which is called the functional tree leafℱ. Originally, inVFDT
the prediction used only themajority class functional tree leaf

4 International Journal of Distributed Sensor Networks

PROCEDURE: traverseHT(S, HT,ℱ)
(1) Sort S from the root to a leaf by HT. Update OCD in each node: 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖(l) ++
(2) Switch (ℱ)
(3) CaseℱMC: predict the class 𝑦𝑦′𝑘𝑘 with max 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖(l)
(4) CaseℱNB: predict the class 𝑦𝑦′𝑘𝑘 with max NB prob.
(5) CaseℱWNB: predict the class 𝑦𝑦′𝑘𝑘 with max WNB prob.
(6) CaseℱAdaptive: predict the class 𝑦𝑦′𝑘𝑘 usingℱ with Errormin
(7) IF 𝑦𝑦′𝑘𝑘 equals to the actual class label in S, THEN 𝐶𝐶𝑇𝑇++
(8) ELSE 𝐶𝐶𝐹𝐹++
(9) ΔC = 𝐶𝐶𝑇𝑇 − 𝐶𝐶𝐹𝐹
(10) Return Δ𝐶𝐶

P 2: e pseudocode of OVFDT testing phase.

ℱMC.emajority class only considers the counts of the class
distribution, but not the decisions based on combinations
of attributes. e naïve Bayes functional tree leaf ℱNB was
proposed to compute the conditional probabilities of the
attribute values given a class at the tree leaves by naïve
Bayes. As a result, the prediction at the leaf is re�ned by the
consideration of the probabilities of each attribute. To handle
imbalanced class distribution in a stream, a weighted naïve
Bayes functional tree leaf ℱWNB and an adaptive functional
tree leafℱAdaptive are proposed in the paper.

2.2.1.Majority Class Functional Tree Leaf. In theODCvector,
the majority class functional tree LeafℱMC chooses the class
with the maximum distribution as the predictive class in a
leaf, whereℱMC: argmax𝑓𝑓 𝑓 𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖,… , 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,… , 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖},
and where 0 < 𝑟𝑟𝑟𝑟𝑟 .

2.2.2. Naïve Bayes Functional Tree Leaf. In the OCD vector
𝑉𝑉𝑖𝑖𝑖𝑖𝑖 = {𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖,… , 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,… , 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}, where 𝑟𝑟 is the number
of observed classes and 0 < 𝑟𝑟𝑟𝑟𝑟 , the naïve Bayes functional
tree leafℱNB chooses the class with themaximumpossibility,
as computed by the naïve Bayes, as the predictive class in
a leaf. 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is updated to 𝑛𝑛′𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 by the naïve Bayes function
such that 𝑛𝑛′𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = P(𝑋𝑋 𝑋 𝑋𝑋𝑓𝑓) ⋅ P(𝐶𝐶𝑓𝑓)/P(𝑋𝑋𝑋, where 𝑋𝑋 is
the new arrival instance. Hence, the prediction class isℱNB:
argmax 𝑖𝑖 𝑖𝑖𝑖𝑖 ′𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑛𝑛

′
𝑖𝑖𝑖𝑖𝑖𝑖𝑖,… , 𝑛𝑛′𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,… , 𝑛𝑛′𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}.

2.2.3. Weighted Naïve Bayes Functional Tree Leaf. In the
OCD vector 𝑉𝑉𝑖𝑖𝑖𝑖𝑖 = {𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖,… , 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,… , 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}, where 𝑘𝑘
is the number of observed classes and 0 < r < k, the
weighted naïve Bayes functional tree leaf ℱWNB chooses
the class with the maximum possibility, as computed by
the weighted naïve Bayes, as the predictive class in a leaf.
𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is updated to 𝑛𝑛′𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 by the weighted naïve Bayes func-
tion such that 𝑛𝑛′𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜔𝜔𝑟𝑟 ⋅ P(𝑋𝑋 𝑋 𝑋𝑋𝑓𝑓) ⋅ P(𝐶𝐶𝑓𝑓)/P(𝑋𝑋𝑋,
where 𝑋𝑋 is the new arrival instance, and the weight is the
probability of class 𝑖𝑖 distribution amongst all the observed
samples such that 𝜔𝜔𝑟𝑟 = ∏𝑘𝑘

𝑟𝑟𝑟𝑟(𝑣𝑣𝑟𝑟/∑
𝑘𝑘
𝑟𝑟𝑟𝑟 𝑣𝑣𝑟𝑟), where 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is

the count of class 𝑟𝑟. Hence, the prediction class is ℱWNB:
argmax f = {𝑛𝑛′𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑛𝑛

′
𝑖𝑖𝑖𝑖𝑖𝑖𝑖,… , 𝑛𝑛′𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,… , 𝑛𝑛′𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}.

2.2.4. Adaptive Functional Tree Leaf. In a leaf, suppose that
𝑉𝑉ℱMC is the observed class distribution vector with the
majority class functional tree leaf ℱMC, suppose that 𝑉𝑉ℱNB

is the observed class distribution vector with the naïve Bayes
functional tree leaf ℱNB, and suppose that 𝑉𝑉ℱWVB is the
observed class distribution vector with the weighted naïve
Bayes functional tree leaf ℱWNB. Suppose that 𝑦𝑦 is the true
class of a new instance 𝑋𝑋. Suppose that 𝐸𝐸ℱ is the prediction
error rate using a functional tree leafℱ. 𝐸𝐸ℱ is calculated by
the average 𝐸𝐸 𝐸 error𝑖𝑖/𝑛𝑛, where 𝑛𝑛 is the number of examples
and error𝑖𝑖 is the number of examples mispredicted usingℱ.
e adaptive functional tree leaf chooses the class with the
minimum error rate predicted by the other three strategies,
whereℱAdaptive: argminℱ = {𝐸𝐸ℱMC , 𝐸𝐸ℱNB , 𝐸𝐸ℱWVB}.

According to the functional tree leaf strategy, the current
HT sorts a newly arrived sample (𝑋𝑋𝑋𝑋𝑋 𝑘𝑘) from the root to
a predicted leaf 𝑦𝑦′𝑘𝑘. Comparing the predicted class 𝑦𝑦′𝑘𝑘 to
the actual class 𝑦𝑦𝑘𝑘, the statistics of truly 𝐶𝐶𝑇𝑇 and falsely 𝐶𝐶𝐹𝐹
prediction are updated immediately. 𝐶𝐶𝑇𝑇 and 𝐶𝐶𝐹𝐹 are used in
the model-training phase. Pseudocode 2 is a �owchart of the
modi�ed testing phase.

2.3. Dynamic Splitting Test and Prepruning in the Training
Phase. e node-splitting control is modi�ed to use a
dynamic tie-breaking threshold 𝜏𝜏, which restricts the
attribute splitting at a decision node. e 𝜏𝜏 parameter
traditionally is precon�gured with a default value de�ned
by the user. e optimal value is usually not known until
all of the possibilities in an experiment have been tried.
Longitudinal testing of different values in advance is
certainly not favorable in real-time applications. Instead, we
assign a dynamic tie threshold, equal to the dynamic mean
of the HB value at each pass of stream data, as the splitting
threshold, which controls the node splitting during the
tree-building process. Tie breaking that occurs close to the
HB mean can effectively narrow the variance distribution.
e HB mean is calculated dynamically whenever new data
arrives and the HB value is updated.

International Journal of Distributed Sensor Networks 5

e estimation of splits and ties is only executed once for
every 𝑛𝑛min (a user-supplied value) sample that arrives at a leaf.
Instead of a pre-con�gured tie, OVFDT uses an adaptive tie
that is calculated by incremental computing. At the 𝑖𝑖th node-
splitting estimation, Hoeffding’s bound 𝜀𝜀 estimates whether
there are sufficient statistics from a large enough sample size
to split a new node, which corresponds to the leaf 𝑙𝑙. Let 𝑇𝑇𝑙𝑙 be
an adaptive tie corresponding to leaf 𝑙𝑙, within 𝑘𝑘 estimations
seen so far. Suppose that 𝜇𝜇𝑙𝑙 is a binary variable that takes the
value of 1 if 𝜀𝜀 relates to leaf 𝑙𝑙 and 0 otherwise. T𝑙𝑙 is computed
by (1). To constrain HB �uctuation, an upper bound 𝑇𝑇UPPER

𝑙𝑙
and a lower bound 𝑇𝑇LOWER

𝑙𝑙 are proposed in the adaptive tie
mechanism. e formulas are presented in (2) and (3) as
follows:

T𝑙𝑙 =
1
𝑘𝑘

𝑘𝑘
󵠈󵠈
𝑖𝑖𝑖𝑖
𝜇𝜇𝑙𝑙 × 𝜀𝜀𝑖𝑖, (1)

𝑇𝑇UPPER
𝑙𝑙 = argmaxT𝑙𝑙, (2)

𝑇𝑇LOWER
𝑙𝑙 = argminT𝑙𝑙. (3)

For resource-light operations, we propose an error-based
prepruning mechanism for the OVFDT, which stops nonin-
formative node splitting before it splits into a new node. e
prepruning takes into account both global and local node-
splitting errors.

Lemma 1 (Monitoring Global Accuracy). e model’s accu-
racy varies whenever a node splits and the tree structure is
updated. Overall accuracy of a current tree model is monitored
during node splitting by comparing the number of correctly
and incorrectly predicted samples. e numbers of correctly
predicted instances and otherwise are recorded as current
global performance indicators. is monitoring allows the
determination of global accuracy.

When a new instance arrives, it will be sorted to a
leaf by the current HT structure before the node-splitting
estimation. is is the “testing” phase in OVFDT. Suppose
that 𝐶𝐶𝑇𝑇 is the number of correctly predicted instances in the
current HT and 𝐶𝐶𝐹𝐹 is the number of incorrectly predicted
instances. Aer the 𝑖𝑖th node-splitting estimation, let Δ𝐶𝐶𝑖𝑖 be
the difference between 𝐶𝐶𝑇𝑇 and 𝐶𝐶𝐹𝐹, then Δ𝐶𝐶𝑖𝑖 is computed
by (4), which re�ects the global accuracy of the current HT
prediction on the newly arrived data streams. If Δ𝐶𝐶𝑖𝑖 ≥ 0, the
number of correct predictions is no less than the number of
incorrect predictions in the current tree structure; otherwise,
the current tree graph needs to be updated by node splitting.

Lemma 2 (Monitor Local Accuracy). e global accuracy can
be tracked by comparing the number of correctly predicted
samples with the number of incorrectly predicted samples.
Likewise, comparing the global accuracy as measured at the
current node-splitting estimation with the global accuracy
measured at the previous splitting, means that the variation in
accuracy is being tracked dynamically. is monitoring allows
us to check whether the current node splitting is advantageous
at each step by comparing it with the previous step.

Suppose that GainAccu is the gain in accuracy of the 𝑖𝑖th
and the (𝑖𝑖 𝑖 𝑖𝑖th estimations, as calculated in (5), which
re�ects a local accuracy of changes. If GainAccu(HT𝑖𝑖) ≥ 0, the
measurement of accuracy at the 𝑖𝑖th splitting HT structure is
noworse than the accuracy at the (𝑖𝑖𝑖𝑖𝑖th splitting; otherwise,
the old tree structure needs to be updated. e splitting
estimation is implemented once for every 𝑛𝑛min sample that
arrives at a leaf. e tree size increases by 𝑙𝑙 when a new node
splits. e number of samples that meets the �rst pruning
condition is (𝑛𝑛min⋅𝑝𝑝𝑝, where𝑝𝑝 is the probability of the optimal
node splitting calculated in (8). Only one value of 𝑝𝑝 can be
chosen at one splitting estimation.e calculation of tree size
at estimation 𝑖𝑖 is given in (6). 𝐶𝐶𝑇𝑇 and 𝐶𝐶𝐹𝐹 in the 𝑖𝑖th splitting
estimation give feedback on the tree’s current classifying
accuracy. By continually comparing this with (𝑖𝑖 𝑖 𝑖𝑖th, the
pruning maintains the accuracy sequentially. In other words,
the optimum result is obtained by comparing the current tree
status to its previous status as follws:

Δ𝐶𝐶𝑖𝑖 = 𝐶𝐶𝑇𝑇 − 𝐶𝐶𝐹𝐹, (4)

GainAccu 󶀡󶀡HT𝑖𝑖󶀱󶀱 = Δ𝐶𝐶𝑖𝑖 − Δ𝐶𝐶𝑖𝑖𝑖𝑖, (5)

𝐿𝐿𝑖𝑖 = 𝐿𝐿𝑖𝑖𝑖𝑖 + 𝑛𝑛min ⋅ 𝑝𝑝𝑝 (6)

GainTree Size 󶀡󶀡HT𝑖𝑖󶀱󶀱 = 𝐿𝐿𝑖𝑖 − 𝐿𝐿𝑖𝑖𝑖𝑖, 󶀡󶀡𝐿𝐿0 = 1󶀱󶀱 , (7)

𝑝𝑝 𝑝

󶀂󶀂󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒
󶀊󶀊󶀒󶀒󶀒󶀒󶀒󶀒󶀒󶀒
󶀚󶀚

Prob 󶁢󶁢Δ𝐺𝐺 𝐺 𝐺𝐺LOWER
𝑙𝑙 󶁲󶁲 ⋅ Prob 󶁡󶁡Δ𝐶𝐶𝑖𝑖 < Δ𝐶𝐶𝑖𝑖𝑖𝑖󶁱󶁱 or

Prob 󶁢󶁢Δ𝐺𝐺 𝐺 𝐺𝐺LOWER
𝑙𝑙 󶁲󶁲 ⋅ Prob 󶁡󶁡Δ𝐶𝐶𝑖𝑖 < 0󶁱󶁱 or

Prob 󶁢󶁢𝑇𝑇LOWER
𝑙𝑙 <Δ𝐺𝐺 𝐺𝐺𝐺UPPER

𝑙𝑙 󶁲󶁲⋅Prob 󶁡󶁡Δ𝐶𝐶𝑖𝑖 < Δ𝐶𝐶𝑖𝑖𝑖𝑖󶁱󶁱 .
(8)

Figure 2 shows why our proposed prepruning takes
into account both the local and the global accuracy in the
incremental pruning. At the 𝑖𝑖th node-splitting estimation, the
difference between correctly and incorrectly predicted classes
wasΔ𝐶𝐶𝑖𝑖, andΔ𝐶𝐶𝑖𝑖𝑖𝑖 at the 𝑖𝑖𝑖𝑖th estimation. GainAccu(HT𝑖𝑖𝑖𝑖)
was negative, indicating that the local accuracy of 𝑖𝑖 𝑖𝑖 th
estimationwas worse than that at the previous node-splitting,
although both were on a globally increasing trend. us, if
accuracy is declining locally, it is necessary to update the HT
structure even if accuracy is increasing globally.

e optimal node splitting control consists of a dynamic
tie for node splitting and a prepruning mechanism that
tries to hold the tree growth in neutral with respect to
the imbalanced class distribution. In each node-splitting
estimation process, the Hoeffding bound (HB) value that
relates to leaf 𝑙𝑙 is recorded. e recorded HB values are used
to compute the adaptive tie, which uses themean of the values
for each leaf 𝑙𝑙 instead of a �xed user-de�ned value as inVFDT.
Using all the prediction statistics gathered in the testing
phase for implementing prepruning, Pseudocode 3 presents
the pseudocode of the training phase used by OVFDT for
building an upright tree.

6 International Journal of Distributed Sensor Networks

67
00

79
00

91
00

10
30

0

11
50

0

12
70

0

13
90

0

15
10

0

16
30

0

17
50

0

18
70

0

19
90

0

21
10

0

22
30

0

23
50

0

24
70

0

25
90

0

27
10

0

28
30

0

29
50

0

Number of instances

60

65

70

75

80

Accuracy

Local accuracy: decline

Global accuracy: increase

GainAccu() < 0HT

F 2: Example of incremental pruning.

3. Experiments

3.1. Bias Generator. For our experiments, we adopted and
customized massive online analysis (MOA), one of the
most popular data stream-mining toolkits, by including the
aforementioned modi�cations into the OVFDT algorithm.
However, the latest version of the MOA simulation environ-
ment is not able to simulate a biased data stream with an
imbalanced class. A bias generator was therefore written in
JAVA code and integrated into MOA for the purpose of eval-
uating the performance of stream-mining algorithms under
imbalanced class data. Using either a simple command-line
console or a graphic user, of which an example is shown
in Figure 3, the generator injected biased instances from a
speci�c imbalanced class into a given A�FF �le. e input
parameters are as follows:

(i) biased class index (BCI): the class index that the bias-
added instances belong to,

(ii) bias change from class index (CCI): the class index that
the bias instances will replace,

(iii) change reduction percentage (CP): the proportion of
instances that will change to biased instances.

Aer the generator con�guration, the instances with CCI
class are replaced by BCI instances according to the CP
setting. For example, in the snapshot belowBCI = 5, CCI = 4,
and CP = 80%; this means that 80% of CCI instances are
replaced by BCI instances (the original settings are BCI =
10% and CCI = 10%, aer BCI = 18% and CCI = 2%).

3.2. Experiment Datasets and Visualization. Six datasets
were used to test the performance of OVFDT + FL ver-
sus ordinary VFDT. e datasets included those generated
by the biased simulator and naturally imbalanced real-life
data downloaded from the UCI machine-learning archive
(http://www.ics.uci.edu/∼mlearn). Table 1 describes these
experimental datasets in detail, and Figure 4 provides a group
of class distribution visualizations.

e following charts visualize the bias-included datasets
with the imbalanced class. e pie charts on the le show the

class distribution in the full experimental datasets and the
charts on the right show the class distribution being progres-
sively updated as new data streams arrive. For example, from
Table 1 we see that the biased classes in the LED24 dataset
are Class 2 (18%) and Class 4 (18%). ere are 80% more
data samples for these two classes than for the other classes.
Originally the data distributions over all classes were equal.
e charts representing the other datasets show at least one
class, which has a larger percentage of data distribution than
others.

3.3. Experiment Results Comparing VFDT and OVFDT.
VFDT is deemed to be a suitable candidate for real-time
classi�cation inwireless sensor networks, because of its incre-
mental learning nature based on a test-and-train approach.
In this paper, we extend the design of VFDT to OVFDT,
which has superior mechanisms for dealing with imbalanced
data classes. is following comparison is between VFDT
and OVFDT, which use the same types of functional tree
leaf in the imbalanced datasets. e goal is to observe the
comparative impact of the imbalanced classes on VFDT and
OVFDT. For VFDT, the �xed tie breaking threshold (range
from 0 to 1) is an important prede�ned parameter 𝜏𝜏, which
controls the node-splitting speed. In the experiment, 𝜏𝜏was set
at different values from 0.1 to 1.0 to test several different trails
of VFDT, as a priori information for 𝜏𝜏 values is unavailable
until the model is actually put to the test. e number of
correctly classi�ed instances measures the accuracy over the
total number of arrived instances.

e results show, on the one hand, that OVFDTAdaptive
has better performance results than any other method,
for imbalanced data streams. e highlighted areas in
Figure 5 show that OVFDT consistently outperformed
VFDT. OVFDTMC had lower accuracy than other functional
tree leaf strategies inOVFDT.e advantage of the functional
tree leaf approach is more apparent in the analysis of
imbalanced data streams that have a signi�cantly large bias
in class distribution. is means that the modi�cation at the
testing phase is substantially effective, even when processing
highly imbalanced data classes. On the other hand, the
advantage of the other two modi�cations to the training
phase, prepruning and dynamic node splitting, shows their
usefulness in reducing the over�tting problem caused by
imbalanced class data streams.

e radar chart in Figure 6 demonstrates that OVFDT
results in a much smaller tree size than VFDT in all cases. A
small tree size means lower runtime memory requirements,
which makes it suitable for operating sensor node devices
in WSNs. Tree size is measured by the number of leaves in
a decision tree. Ideally there should be just enough leaves
and corresponding branch paths to correctly classify the
samples. Having too many leaves is a symptom of over�tting,
which results in a decision tree that cannot make meaningful
predictions and uses up memory space.

As these experimental results show, OVFDT with a
functional tree leaf handles imbalanced data streams more
effectively than VFDT. For this reason, VFDT will not be
considered in the following experiments. Instead, we will

International Journal of Distributed Sensor Networks 7

PROCEDURE doNodeSplittingEstimation(ΔC, S,X, G(⋅), 𝛿𝛿)
(1) FOR each attribute𝑋𝑋𝑖𝑖 ∈ 𝑋𝑋𝑙𝑙 − {𝑋𝑋∅} at the leaf l
(2) Compute 𝐺𝐺𝑙𝑙(𝑋𝑋𝑖𝑖)
(3) Let𝑋𝑋𝑎𝑎 be the attribute with highest 𝐺𝐺𝑙𝑙(⋅) and𝑋𝑋𝑏𝑏, with the 2nd highest 𝐺𝐺𝑙𝑙(⋅)
(4) Compute HB with 𝛿𝛿
(5) Let Δ𝐺𝐺𝑙𝑙 = 𝐺𝐺𝑙𝑙(𝑋𝑋𝑎𝑎) − 𝐺𝐺𝑙𝑙(𝑋𝑋𝑏𝑏)
(6) END-FOR
(7) IF (Δ𝐺𝐺𝑙𝑙 > HB) or (Δ𝐺𝐺 𝐺𝐺𝐺𝑙𝑙

LOWER and Δ𝐶𝐶𝑖𝑖 < Δ𝐶𝐶𝑖𝑖𝑖𝑖) or (Δ𝐺𝐺 𝐺 𝐺𝐺𝑙𝑙
LOWER and Δ𝐶𝐶𝑖𝑖 < 0) or (𝑇𝑇𝑙𝑙

LOWER < ΔG ≤𝑇𝑇 𝑙𝑙
UPPER and Δ𝐶𝐶𝑖𝑖 <Δ𝐶𝐶𝑖𝑖𝑖𝑖)

(8) Replace l by an internal node splits on𝑋𝑋𝑎𝑎
(9) Update Adaptive tie 𝑇𝑇𝑙𝑙

LOWER and 𝑇𝑇𝑙𝑙
UPPER

(10) FOR each branch of splitting
(11) Add a new leaf 𝑙𝑙𝑚𝑚 and let𝑋𝑋𝑚𝑚 = X−{𝑋𝑋𝑎𝑎}
(12) Let 𝐺𝐺𝐺𝐺𝐺∅) be G(⋅) obtained by predicting the class in S, according toℱ at 𝑙𝑙𝑚𝑚
(13) FOR each class 𝑦𝑦𝑘𝑘 and each value 𝑥𝑥𝑖𝑖𝑖𝑖 of each attribute
(14) 𝑋𝑋𝑖𝑖 ∈ 𝑋𝑋𝑚𝑚 − {𝑋𝑋∅} and reset OCD: 𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖(l) = 0
(15) END-FOR
(16) END-FOR
(17) END-IF
(18) Return updated HT

P 3: e pseudocode of OVFDT model training.

F 3: Snapshot of the Bias generator for generating data with imbalanced class, on MOA platform.

T 1: Datasets with imbalanced class used in the experiment.

Name Type Source Nom. attr. no. Num. attr. no. CLS no. Bias CLS Inst no.
LED24 Nominal Synthetic 24 0 10 2, 4 106

Connect-4 Nominal UCI 42 0 7 “Draw” 67,557
Waveform 21 Numeric Synthetic 0 21 3 1 106

Radial bias function (RBF) Numeric Synthetic 0 50 10 1, 3, 5, 8, 10 106

Random tree (RT) Mixed Synthetic 50 50 10 4, 5, 10 106

COVTYPE Mixed UCI 42 12 7 2, 7 581,012

8 International Journal of Distributed Sensor Networks

Class1

10%

Class2

18%

Class3

10%

Class4

18%

Class5

10%

Class6

10%

Class7

10%

Class8

2%

Class9

2% Class10

10%

class distribution

LED24NP10 bias-included dataset

(a)

0

100

200

300

400

500

600

700

800

900

1000

1

4
7

9
3

1
3

9

1
8

5

2
3

1

2
7

7

3
2

3

3
6

9

4
1

5

4
6

1

5
0

7

5
5

3

5
9

9

6
4

5

6
9

1

7
3

7

7
8

3

8
2

9

8
7

5

9
2

1

9
6

7

Time interval

Class distribution: LED24

CLS: 9

CLS: 8

CLS: 7

CLS: 6

CLS: 5

CLS: 4

CLS: 3

CLS: 2

CLS: 1

CLS: 0

In
s
ta

n
c
e
s
 n

u
m

b
e
r

(b)

Win

9%

Lost

25%

Draw

66%

class distribution

Connect-4 dataset

(c)

0

10

20

30

40

50

60

70

1

4
7

9
3

1
3

9

1
8

5

2
3

1

2
7

7

3
2

3

3
6

9

4
1

5

4
6

1

5
0

7

5
5

3

5
9

9

6
4

5

6
9

1

7
3

7

7
8

3

8
2

9

8
7

5

9
2

1

9
6

7

In
s
ta

n
c
e
s
 n

u
m

b
e
r

Time interval

Class distribution: connect-4

CLS: loss

CLS: draw

CLS: win

(d)

Class1

57%

Class2

10%

Class3

33%

class distribution

Wave 21 bias-included dataset

(e)

0

100

200

300

400

500

600

700

800

900

1000

1

4
9

9
7

1
4

5

1
9

3

2
4

1

2
8

9

3
3

7

3
8

5

4
3

3

4
8

1

5
2

9

5
7

7

6
2

5

6
7

3

7
2

1

7
6

9

8
1

7

8
6

5

9
1

3

9
6

1

In
s
ta

n
c
e
s
 n

u
m

b
e
r

Time interval

Class distribution: waveform 21

CLS: class3

CLS: class2

CLS: class1

(f)

F 4: Continued.

International Journal of Distributed Sensor Networks 9

Class1
15%

Class2
5%

Class3
16%

Class4
2%

Class5
13%

Class6
5%

Class7
7%

Class8
15%

Class9
6%

Class10
16%

class distribution

Radial bias function (RBF) dataset

(g)

0

100

200

300

400

500

600

700

800

900

1000

1

4
9

9
7

1
4

5

1
9

3

2
4

1

2
8

9

3
3

7

3
8

5

4
3

3

4
8

1

5
2

9

5
7

7

6
2

5

6
7

3

7
2

1

7
6

9

8
1

7

8
6

5

9
1

3

9
6

1

In
s
ta

n
c
e
s
 n

u
m

b
e
r

Time interval

Class distribution: RBF

CLS: class10

CLS: class9

CLS: class8

CLS: class7

CLS: class6

CLS: class5

CLS: class4

CLS: class3

CLS: class2

CLS: class1

(h)

Class1

10%

Class2

7%

Class3

6%

Class4

13%

Class5
14%

Class6

8%

Class7
7%

Class8

9%

Class9
4%

Class10

22%

Random tree dataset

class distribution

(i)

0

100

200

300

400

500

600

700

800

900

1000

1

4
9

9
7

1
4

5

1
9

3

2
4

1

2
8

9

3
3

7

3
8

5

4
3

3

4
8

1

5
2

9

5
7

7

6
2

5

6
7

3

7
2

1

7
6

9

8
1

7

8
6

5

9
1

3

9
6

1

In
st

a
n

c
e
s

n
u

m
b

e
r

Time interval

Class distribution: RT

CLS: class10

CLS: class9

CLS: class8

CLS: class7

CLS: class6

CLS: class5

CLS: class4

CLS: class3

CLS: class2

CLS: class1

(j)

Type1
2%

Type2
49%

Type3

4%

Type4
6%Type5

3%

Type6
0%

Type7

36%

class distribution
CoverType bias-included dataset

(k)

0

100

200

300

400

500

600

1 47 93 13
9

18
5

23
1

27
7

32
3

36
9

41
5

46
1

50
7

55
3

59
9

64
5

69
1

73
7

78
3

82
9

87
5

92
1

96
7

In
st

an
ce

s
n

u
m

b
er

Time interval

Class distribution: CoverType

CLS: 7
CLS: 6
CLS: 5
CLS: 4

CLS: 3
CLS: 2
CLS: 1

(l)

F 4: A collection of visualizations of the datasets that have different degrees of imbalanced class distribution.

analyze in detail the experimental results of OVFDT using
different types of functional tree leaves.

3.4. Experiment Results Comparing OVFDT Functional Tree
Leaf Accuracy. Comparing the classi�cation accuracy of

four different types of functional tree leaves, we �nd
that OVFDTMC always obtains the lowest accuracy and
OVFDTAdaptive has consistently better accuracy than the
other methods. In addition, OVFDTWNB is better than
OVFDTNB in experiments that weight the probabilities of
each attribute occurrence (see Figure 8).

10 International Journal of Distributed Sensor Networks

65

70

75

80

85

90

95

100

Methods

OVFDT versus VFDT: accuracy

LED

Connect-4

Wave

RBF

RT

COVTYPE

V
F

D
T

T
1

V
F

D
T

T
2

V
F

D
T

T
3

V
F

D
T

T
4

V
F

D
T

T
5

V
F

D
T

T
6

V
F

D
T

T
7

V
F

D
T

T
8

V
F

D
T

T
9

V
F

D
T

T
10

O
V

F
D

T
M

C

O
V

F
D

T
N

B

O
V

F
D

T
W

N
B

O
V

F
D

T
A

d
p

F 5: Accuracy of the classi�cation experiments by VFDT and
OVFDT with datasets of imbalanced data class.

0

500
1000

1500

2000

2500

3000

3500

4000

OVFDT versus VFDT: tree size (number of leaves)

LED

Wave

RBF

RT

COVTYPE

Connect-4

OVFDTMC

OVFDTNB

OVFDTWNB

OVFDTAdaptive

VFDTT1

VFDTT2

VFDTT3
VFDTT4

VFDTT5

VFDTT6

VFDTT7

VFDTT8

VFDTT9

VFDTT10

F 6: Tree size of the classi�cation experiments by VFDT and
OVFDT with datasets of imbalanced data class.

Another good performance benchmark is the receiver
operating characteristic (ROC), which is a standard method
for analyzing and comparing classi�ers when the costs of
misclassi�cation are unknown. In a stream-mining scenario,
it is not possible to know the misclassi�cation costs, because
themining process is incremental over running data streams,
and does not analyze a full dataset. e ROC provides a
convenient graphical display of the tradeoff between the true

TP1 FN1

Prediction outcomes

A
c
tu

a
l

v
a
lu

e
s

F 7

68

73

78

83

88

93

98

LED Connect 4 Wave 21 RBF COVTYPE RT

A
cc

u
ra

cy

Accuracy for bias-included datasets

OVFDTMC

OVFDTNB

OVFDTWNB

OVFDTAdaptive

F 8: Tree size of the classi�cation experiments by different F�
types of OVFDT with datasets of imbalanced data class.

and false positive classi�cation rates for two class problems
[11�. In the decision tree classi�cation, however, there are
more than two classes. erefore, we extend the standard
ROC model to a multiclass ROC analysis to evaluate the tree
learning algorithm’s performance.

Suppose that there is a𝐷𝐷-class classi�cation system, with
𝑑𝑑-dimensional classes that need to be classi�ed by the tree
learning algorithm. A 𝑑𝑑 𝑑 𝑑𝑑-dimensional confusion matrix
or contingency table 𝐶𝐶, which summarizes the results of the
classi�cations, presents the true positives and false positives
for the multi-class analysis. Each entry 𝐶𝐶𝑖𝑖𝑖𝑖 of the matrix 𝐶𝐶
gives the number of examples, whose true class was 𝐴𝐴𝑖𝑖, that
were actually assigned to 𝐴𝐴𝑖𝑖, where 1 ≤ 𝑖𝑖 𝑖𝑖𝑖 . Each entry
𝐶𝐶𝑖𝑖𝑖𝑖 of the matrix𝐶𝐶 gives the number of examples, whose true
class was𝐴𝐴𝑖𝑖, that were actually assigned to𝐴𝐴𝑗𝑗, where 𝑖𝑖 𝑖 𝑖𝑖 and
1 ≤ 𝑖𝑖, 𝑗𝑗𝑗𝑗𝑗 :

𝐶𝐶 𝐶 󶀄󶀄

󶀜󶀜

𝐶𝐶11 ⋯ 𝐶𝐶1𝑑𝑑
⋮ ⋱ ⋮
𝐶𝐶𝑑𝑑𝑑 ⋯ 𝐶𝐶𝑑𝑑𝑑𝑑

󶀅󶀅

󶀝󶀝
. (9)

To use two-class ROC statistics, each class 𝑖𝑖 to 𝑑𝑑 in the
multi-class ROC is assigned a negative or positive value.
Samples with class 𝑖𝑖 are positive; otherwise, negative. True
positives (TP) are examples correctly labeled as positives.
False positives (FP) refer to negative examples incorrectly
labeled as positive. True negatives (TN) are negatives cor-
rectly labeled as negative. Finally, false negatives (FN) refer
to positive examples incorrectly labeled as negative. Each

International Journal of Distributed Sensor Networks 11

OVFDTMC

OVFDTNB

OVFDTWNB

OVFDTAdaptive

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

LED24 Connect-4 Waveform 21 RBF RT COVTYPE

Precision: all experimental datasets

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LED24 Connect-4Waveform 21 RBF RT COVTYPE

Recall: all experimental datasets

OVFDTMC

OVFDTNB

OVFDTWNB

OVFDTAdaptive

(b)

F 9: Precision and Recall values of the classi�cation experiments by di�erent FL types of OVFDTwith datasets of imbalanced data class.

0.4

0.5

0.6

0.7

0.8

0.9

1

OVFDTMC

OVFDTNB

OVFDTWNB

OVFDTAdaptive

F1-measure: all experimental datasets

LED24 Connect-4 Waveform 21 RBF RT COVTYPE

F 10: F1-measure of the classi�cation experiments by di�erent
FL types of OVFDT with datasets of imbalanced data class.

class 𝑖𝑖 can be converted into a two-class problem, with the
corresponding values of True Positive (10), False Positive (11),
False Negative (12), and True Negative (13) (see Figure 7):

TP𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖 , (10)

FP𝑖𝑖 = 󶀨󶀨
𝑑𝑑
󵠈󵠈
𝑗𝑗𝑗𝑗
𝐶𝐶𝑗𝑗𝑗𝑗󶀸󶀸 − 𝐶𝐶𝑖𝑖𝑖𝑖, (11)

FN𝑖𝑖 = 󶀨󶀨
𝑑𝑑
󵠈󵠈
𝑗𝑗𝑗𝑗
𝐶𝐶𝑖𝑖𝑖𝑖󶀸󶀸 − 𝐶𝐶𝑖𝑖𝑖𝑖, (12)

TN𝑖𝑖 = 󶀨󶀨
𝑑𝑑
󵠈󵠈
𝑖𝑖𝑖𝑖

𝑑𝑑
󵠈󵠈
𝑗𝑗𝑗𝑗
𝐶𝐶𝑖𝑖𝑖𝑖󶀸󶀸 − TP𝑖𝑖 − FP𝑖𝑖 − FN𝑖𝑖. (13)

Precision-Recall is a well-known method of analyzing
ROC. In pattern recognition, precision is the fraction of
retrieved instances that are relevant, while recall is the

fraction of relevant instances that are retrieved. e values of
precision and recall range from 0 to 1. A precision score of
1 for a class 𝑖𝑖 means that every item labeled as belonging to
class 𝑖𝑖 does indeed belong to class 𝑖𝑖. A recall score of 1 means
that every item from class 𝑖𝑖 was labeled as belonging to class
𝑖𝑖. Precision-Recall scores are not analyzed in isolation. F𝛽𝛽-
measure [12] is a weighted harmonic mean of the Precision-
Recallmeasure.eF1-measure evenlyweights precision and
recall scores. e best value for the F1-measure is 1 and the
worst score is 0. In addition, the true positive rate (TPR) and
the false positive rate (FPR) are commonbenchmarks inROC
analysis:

Precision𝑖𝑖 =
TP𝑖𝑖

󶀡󶀡TP𝑖𝑖 + FP𝑖𝑖󶀱󶀱
=

𝐶𝐶𝑖𝑖𝑖𝑖

󶀢󶀢∑𝑑𝑑
𝑗𝑗𝑗𝑗 𝐶𝐶𝑗𝑗𝑗𝑗󶀲󶀲

,

Recall𝑖𝑖 =
TP𝑖𝑖

󶀡󶀡TP𝑖𝑖 + FN𝑖𝑖󶀱󶀱
=

𝐶𝐶𝑖𝑖𝑖𝑖

∑𝑑𝑑
𝑗𝑗𝑗𝑗 𝐶𝐶𝑖𝑖𝑖𝑖

,

𝐹𝐹1Measure𝑖𝑖 =
2TP𝑖𝑖

TP𝑖𝑖 + FN𝑖𝑖 + TP𝑖𝑖 + FP𝑖𝑖

=
2𝐶𝐶𝑖𝑖𝑖𝑖

∑𝑑𝑑
𝑗𝑗𝑗𝑗 𝐶𝐶𝑖𝑖𝑖𝑖 + ∑

𝑑𝑑
𝑗𝑗𝑗𝑗 𝐶𝐶𝑗𝑗𝑗𝑗

.

(14)

We analyze the Precision-Recall for each class for all the
imbalanced class datasets. Due to limited space, the detailed
charts are given in the Appendix. e average Precision-
Recall values are described in Figures 9, and 10.

ese charts illustrate that the average precision of
OVFDTMC is worse than those of the other methods.
OVFDTAdaptive obtains the highest precision in homoge-
nous (nominal only and numeric only) datasets. All meth-
ods have the same average values of recall (the lines
appear to overlap). We then apply the F1-measure to
evaluate the experiment result. As the chart below shows,
the value ranges from 0 to 1; OVFDTMC again has the
lowest F1-measure value. However, because the datasets

12 International Journal of Distributed Sensor Networks

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Class10

Precision: LED24

OVFDTMC

OVFDTNB

OVFDTWNB

OVFDTAdaptive

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Win Lost Draw

Precision: connect-4

OVFDTMC

OVFDTNB

OVFDTWNB

OVFDTAdaptive

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Win Lost Draw

Recall: connect-4

OVFDTMC

OVFDTNB

OVFDTWNB

OVFDTAdaptive

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Class10

Recall: LED24

OVFDTMC

OVFDTNB

OVFDTWNB

OVFDTAdaptive

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Win Lost Draw

OVFDTMC

OVFDTNB

OVFDTWNB

OVFDTAdaptive

F1-measure: connect-4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9

OVFDTMC

OVFDTNB

OVFDTWNB

OVFDTAdaptive

Class10

F1-measure: LED24

F 11

contained biased instances in imbalance classes, the aver-
age Precision-Recall analysis is not sufficient to determine
accuracy. We must consider the Precision-Recall for the
distributed class in every different data stream. From the

above experiments, we observe that OVFDTAdaptive always
achieves higher precision, recall, and F1-measure values than
OVFDTMC, but this was not the case for OVFDTNB and
OVFDTWNB.

International Journal of Distributed Sensor Networks 13

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Class1 Class2 Class3

Precision: waveform 21

OVFDTMC

OVFDTNB

OVFDTWNB

OVFDTAdaptive

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Class1 Class2 Class3

Recall: waveform 21

OVFDTMC

OVFDTNB

OVFDTWNB

OVFDTAdaptive

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Class10

Precision: Radias bias function (RBF)

OVFDTMC

OVFDTNB

OVFDTWNB

OVFDTAdaptive

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Class10

Recall: Radias bias function (RBF)

OVFDTMC

OVFDTNB

OVFDTWNB

OVFDTAdaptive

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Class1 Class2 Class3

F1-measure: waveform 21

OVFDTMC

OVFDTNB

OVFDTWNB

OVFDTAdaptive

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Class10

F1-measure: Radias bias function (RBF)

OVFDTMC

OVFDTNB

OVFDTWNB

OVFDTAdaptive

F 12

4. Conclusion

Imbalanced data classi�cation is a challenging problem that
generally refers to a learning model created for a dataset that
has far more samples in one class than in the others. In an

ubiquitous environment such as a wireless sensor network,
it is not uncommon for the data of interest to fall into a
small minority class. Previous researchers have tackled this
problem by using techniques that inevitably create additional
computation overheads. ese techniques usually include

14 International Journal of Distributed Sensor Networks

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Class10

Precision: random tree

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9 Class10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Class1 Class2 Class3 Class4 Class5 Class6 Class7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Class1 Class2 Class3 Class4 Class5 Class6 Class7

Precision: CoverType

Recall: random tree

Recall: CoverType

OVFDTMC

OVFDTNB

OVFDTWNB

OVFDTAdaptive

OVFDTMC

OVFDTNB

OVFDTWNB

OVFDTAdaptive

OVFDTMC

OVFDTNB

OVFDTWNB

OVFDTAdaptive

OVFDTMC

OVFDTNB

OVFDTWNB

OVFDTAdaptive

F 13

resampling the observations from a bounded archive so as
to balance the imbalance. Others may resort to postpruning
the decision tree and redistributing the classi�cation costs in a
backward-learning process. All of these proposed techniques
worked well in traditional data mining but might not suit a
real-time stream-mining scenario, where all the data arrive in
a single pass; at a sensor sink it is neither practical nor feasible
to archive a stationary set of data, let alone to resample.

In this paper, a novel solution is introduced at the
algorithmic level, which is based on a popular stream-mining
algorithm called the Very Fast Decision Tree (VFDT). ree
modi�cations are proposed for VFDT as a means to reduce
the e�ect of imbalanced class data. e modi�cations are
implemented at the training phase prior to expanding the
decision tree and at the testing phase, where prediction
accuracy is �ne-tuned by weighting the leaves of the decision
trees according to the probabilities of the arriving data. e
overall solution is called the Optimized VFDT with Func-
tional Tree Leaf (OVFDT + FL). e mechanism of Function
Tree Leaf is implemented by using weighted naïve Bayes
predictors, installed at the decision tree leaves of the OVFDT.
Speci�cally, perturbed datasets that include �biased� class

distribution are used for experiments for illustrating the
efficacy of the new algorithm. OVFDT + FL is shown to
outperform VFDT in a series of experiments where datasets
are deliberately biased by a custom-made data generator
soware program. In particular, two variants of FL called
adaptive and weighted naïve Bayes performed consistently
better than other techniques. OVFDT succeeded inminimiz-
ing the impacts of imbalanced class data, while maintaining
high accuracy and a compact decision tree size.is contrasts
with the known over-�tting problems of poor accuracy and
huge tree size usually caused by imbalanced class data. e
OVFDT + FL is validated as a good classi�cation model for
wireless sensor networks.

Appendix

A. Precision-Recall Charts for Each Dataset

A.1. Homogenous Data: Nominal Only. See Figure 11.

A.2. Homogenous Data: Numeric Only. See Figure 12.

A.3. Both Nominal and Numeric Attributes. See Figure 13.

International Journal of Distributed Sensor Networks 15

Acknowledgments

�e authors are thankful for the �nancial support from the
research Grant “Real-time Data Stream Mining,” Grant no.
RG070/09-10S/FCC/FST, offered by the University ofMacau,
FST, and RDAO.

References

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: a survey,” Computer Networks, vol.
38, no. 4, pp. 393–422, 2002.

[2] M. Di and E. M. Joo, “A survey of machine learning in
wireless sensor netoworks—from networking and application
perspectives,” in Proceedings of the 6th International Conference
on Information, Communications and Signal Processing (ICICS
’07), pp. 1–5, Singapore, December 2007.

[3] Y. L. Borgne and G. Bontempi, “Round robin cycle for predic-
tions in wireless sensor networks,” in Proceedings of the 2nd
International Conference on Intelligent Sensors, Sensor Networks
and Information Processing, pp. 253–258, December 2005.

[4] J. Zhang, E. Bloedorn, L. Rosen, and D. Venese, “Learning rules
from highly unbalanced data sets,” in Proceedings of the 4th
IEEE International Conference on Data Mining (ICDM ’04), pp.
571–574, November 2004.

[5] J. Yu, Y. Qi, G. Wang, Q. Guo, and X. Gu, “An energy-aware
distributed unequal clustering protocol for wireless sensor
networks,” International Journal of Distributed Sensor Networks,
vol. 2011, Article ID 202145, 8 pages, 2011.

[6] H. M. Nguyen, E. W. Cooper, and K. Kamei, “Borderline
over-sampling for imbalanced data classi�cation,” International
Journal of Knowledge Engineering and So Data Paradigms, vol.
3, no. 1, pp. 4–21, 2011.

[7] J.Wang,M. Xu, H.Wang, and J. Zhang, “Classi�cation of imbal-
anced data by using the SMOTE algorithm and locally linear
embedding,” in Proceedings of the 8th International Conference
on Signal Processing (ICSP ’06), pp. 16–20, November 2006.

[8] Y. Zhai, N. Ma, B. An, and D. Ruan, “An effective over-sampling
method for imbalanced data sets classi�cation,” Chinese Journal
of Electronics, vol. 20, no. 3, pp. 489–494, 2011.

[9] P. Domingos, “MetaCost: a general method for making clas-
si�ers cost-sensitive,” in Proceedings of the 5th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, pp. 155–164, San Diego, Calif, USA, 1999.

[10] M. Kubat, R. C. Holte, and S. Matwin, “Machine learning for
the detection of oil spills in satellite radar images,” Machine
Learning, vol. 30, no. 2-3, pp. 195–215, 1998.

[11] Y. Hang, S. Fong, G. Sun, and R.Wong, “A very fast decision tree
algorithm for real-time datamining of imperfect data streams in
a distributed wireless sensor network,” International Journal of
Distributed Sensor Networks, vol. 2013, Article ID 863545, 2013.

[12] J. A. O. Gama, R. Rocha, and P. Medas, “Accurate decision
trees for mining high-speed data streams,” in Proceedings of
the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’03), pp. 523–528, New York,
NY, USA, August 2003.

[13] Y. Hang and S. Fong, “OVFDT with functional tree
leaf—majority class, naive bayes and adaptive hybrid
integrations,” in Proceedings of the 3rd International Conference
on Data Mining and Intelligent Information Technology
Applications (ICMIA ’11), IEEE Press, Macau, China, October
2011.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

