
Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2013, Article ID 493678, 11 pages
http://dx.doi.org/10.1155/2013/493678

Research Article
A Fault-Tolerant Method for Enhancing Reliability of Services
Composition Application in WSNs Based on BPEL

Zhao Wu,1 NaiXue Xiong,2 Wenlin Han,3 Yan N. Huang,1

Chun Y. Hu,1 Qiong Gu,1 and Bo Hang1

1 School of Mathematics and Computer Science, Hubei University of Arts and Science, Xiangyang 441053, China
2 School of Computer Science, Colorado Technical University, Colorado Springs, CO 80907, USA
3Department of Computer and Science, University of Alabama, Tuscaloosa, AL 35487, USA

Correspondence should be addressed to NaiXue Xiong; nxiong@coloradotech.edu

Received 4 February 2013; Accepted 22 February 2013

Academic Editor: Hongju Cheng

Copyright © 2013 Zhao Wu et al.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In recent years, some approaches have been presented for the seamless integration of WSNs with the existing, widely deployed
SOA technologies such as XML, Web services, and the Business Process Execution Language (BPEL) to build a wireless sensor
networks service application. However, there a great challenge on fault tolerant in WSNs. In this paper, we present our framework
and approach to enhance the reliability of service composition applications in WSNs through modeling and analyzing a wireless
sensor networks service application based on BPEL with exception handler and compensation mechanism. At first, we analyze all
possible states during the execution of BPEL instance inWSNs.Then, we present a state framework for modeling execution context
in BPEL instance in WSNs. Based on this framework, we analyze state transition and operational semantics in the case of both
correct execution and exceptional execution of BPEL instance in WSNs. Furthermore, we propose the state transition models for
three types of activities in BPEL instance. In the end, we present a formal approach to model the execution context in BPEL for
WSNs. Using this formal model, one can describe and analyze the control flow result from the exception handler and compensation
mechanism in BPEL instance for WSNs.

1. Introduction

Despite the amount of research targeted at middleware
systems for wireless sensor networks (WSNs), they are still
not widely used in industry. Certainly, one major issue
is the different programming methodology. While WSNs
are optimized for low-power, low-cost, and a small form
factor, Enterprise-IT systems are typically equipped with
more resource and are connected to the power grid. In
Enterprise IT, it is significant to adapt business processes and
the underlying software infrastructure quickly and flexibly
to react to changes on the markets. To achieve this goal,
organizations focus on modeling, analysis, and adaptation
of business processes since the early 1990s. With the advent
of service-oriented architecture (SOA) based on Internet
standards, more and more businesses are transferred to this
architecture.

Parallel to this development, WSNs are envisioned to
become an integral part of the Future Internet where they
extend the Internet to the physical world. Combined with
each other, these two trends lay the groundwork for a new
class of applications where all kinds of devices ranging from
simple sensor nodes to large-scale application servers interact
to drive business processes which were not possible before.
That way, data stemming from a WSN may influence the
control flow of a business process in real time or even
trigger a business process. To achieve this level of integration,
WSNs must seamlessly interoperate with the existing widely
deployed SOA technologies such as XML, web Services,
and the Business Process Execution Language (BPEL) to
name only a few. In recent years, some approaches have
been presented for the seamless integration WSNs with
these SOA technologies to build a wireless sensor networks
service application successfully. In these approaches, WSNs

2 International Journal of Distributed Sensor Networks

are packaged as some standard Web services which can be
published, located, and invoked across the Web. Therefore,
based on BPEL, these WSNs services can be combined into
a workflow to fulfill some certain tasks in a web services
composition (WSC) way.

As standard Web services, the capsulated WSNs are of all
characters ofWeb services.Web services provide the basis for
the development and execution of business processes that are
distributed over the Internet and are available via standard
interfaces and protocols [1–3]. Web services have the charac-
ters of interoperation, platform independent, self-described,
and loose coupling [4]. Web service composition (WSC) is
one of the most promising ideas underlying Web services:
new functionalities can be defined and implemented by
combing and interacting with the preexisting Web services.
WSC refers to the process of composing multiple stateless
atomic Web services into statefull complex applications [5–
8].

Under satisfying the precondition of functional demands,
the fault tolerant is the key for a wireless sensor networks
service application. However, deploying a test-bed system
to evaluate WSNs application system is very expensive and
time consuming. Therefore, the performance modeling and
analysis of WSC inWSNs is the important research direction
of business process reengineering [9–17].

In our previous work [18, 19], we studied the performance
modeling and analysis methods for the basic control flow of
WSC under the circumstance that BPEL instance is executed
correctly. We presented a novel performance simulation
model for WSC, called STPM+. The STPM+ model can
support modeling and simulating the time and nontime QoS
metrics of WSC. Based on the stochastic timed colored Petri
net, the STPM+model can simulate and predictmultipleQoS
metrics such as cost, reliability, and credibility. We designed
and realized a visual performance simulation tool, called
VisualWSCPE.One can simulate and analyze the execution of
BPEL instance, assess its performance, andfindout the poten-
tial performance bottlenecks with VisualWSCPE. However
the transaction property of WSC in WSNs is not considered
during we fulfilled the above modeling and analysis. This
means that the execution context in BPEL cannot bemodeled
and analyzed based on the abovemodel. So, themodeling and
analysis for the transaction and exception handling of BPEL
instance in WSNs should be studied further.

Transaction is a very important concept related to
exception handling and compensation [18, 19]. Transaction
constitutes a single set of the logical operation unit. All
operations should be completed successfully, or fail totally
and roll back to the previous state before the transaction is
executed [20, 21]. In order to ensure its integrity, transaction
should have four properties: atomicity, consistency, isolation,
and durability, which are called ACID [22, 23].

Business processes often need to use the concept of
transaction to handle exception and compensation.Theuse of
ACID transactions is usually limited to local updates because
of trust issues in a business process. Because the invocation
of Web service cannot usually lock the resources across
different enterprises, the common transaction mechanism,
for example, two-phase commit, cannot be used to handle

this circumstance. Besides, the locks and isolation cannot
be maintained for a long period during occurrence of the
technical and business errors. Consequently, the demand of
long-running transactions (LRT) is put forward [20]. LRT
refers to a longer duration transaction, which cannot achieve
the restoration of data and state through the common roll-
back mechanism. Because the cross-organizational resources
cannot be locked, even if the invoked atomic Web services
under LRT all meet the requirements of ACID, the overall
LRT cannot still satisfy the requirements of ACID [24, 25].
Generally, when an LRT fails, the simply rollback will be used
to undo the effects resulted from these executed operations. A
reverse process is used to perform these rollback operations,
which is called “compensation” [26, 27]. Compensation is a
particular approach to the business data management. So, it
is always a part of business logics. The roll of compensation
in LRT is different from that of atomic rollback operations
provided by database management system for ACID of
transaction. The roll of compensation in LRT is reflected in
the improved security. For example, in the Internet, one may
lock a company’s data by performing an invocation operation
to a certain Web service. The invocation operation in LRT
might result in the denial of service attacks in the case of
traditional transaction handling. Compensation in LRT can
avoid this problem.The use of compensationmeans that data
will not be locked in a long duration. So, the business data
cannot be locked in a long period time and the denial of
service will never happen. However, the use of compensation
also causes a new problem simultaneously. It results in the
fact that the LRT loses ACID prosperities and the isolation
cannot be at least satisfied. It is because the business data is
visible in thewhole transition duration from the initial update
operation to compensation.

BPEL provides some compensation mechanisms by pro-
viding the ability for flexible control of the reverse operation.
In BPEL, the fault handling and compensation can be defined
to support LRT in an application-specific manner [28, 29].
Compensation operations are triggered by the occurrence of
exception event in BPEL specification [30].

To verify the availability of exception handling and com-
pensationmechanism of BPEL instance inWSNs, we validate
the modeling and analysis methods for the execution context
of BPEL in this paper. Our contributions are threefold.

(i) We present a state framework of WSC for WSNs that
is based on BPEL. Based on this framework, we can
analyze and construct state transition model for all
kinds of BPEL activities in WSNs.

(ii) For three kinds of activities in BPEL: basic activity,
structural activity, and scope activity, we analyze
various state transitions in terms of respective mech-
anisms of exception handling and compensation in
WSNs. And we present the state transitionmodels for
each activity in BPEL. Based on our state transition
models, one can build the state transition system of
WSC for WSNs.

(iii) We present an approach to model the state transition
process with state transition system for WSNs. Using
the approach mentioned above, one can describe and

International Journal of Distributed Sensor Networks 3

verify the control flows resulted from exception han-
dler and compensation mechanism of BPEL instance
for WSNs.

This paper is organized as follows. The next section
introduces the related works on modeling and analysis of
execution context in BPEL instance for WSNs. In Section 3,
we analyze all possible states in BPEL instance for WSNs at
first. Then we present a state framework for the execution
context in BPEL by which we can analyze exception states
and compensation states of BPEL activities. In Section 4, we
analyze the state transitions of three types of activities of
BPEL based on the state framework for WSNs at first. Then
we present their state transition models, respectively. In the
end, we present a formal approach to model the execution
context of BPEL forWSNs based on the state transitionmodel
in Section 5.

2. Related Works

This paper focuses on the modeling and analysis of the
execution context of BPEL. There have been several formal
models presented in the literature. Kazhamiakin et al. [31]
made researches on the communication behaviors of different
participants in BPEL and presented an approach to model
such behaviors. It describes the different states in course
of execution of BPEL activity and the process by which
the system evolves to a new state resulting from executing
some actions. In addition, Kovács et al. [23] proposed a
formalism method for capturing the behaviors of business
process implemented in BPEL.

It uses transition system as the formal model of workflow
and presents the state transitionmodels of different activities.
Furthermore, Nakajima [32] presented a model based on the
extended finite automation to analyze the instance of BPEL,
whichmaps every control flow into individual extended finite
automation, so every activity can be modeled into different
extended finite automation.

However, there are some limitations in the above
researches. Because the above studies mainly concentrate
on the verification of the static model of the instance of
BPEL, the temporal behaviors are not considered during
the execution of BPEL instance. Besides, the state transition
model presented in [18] only describes the communication
behavior of business process. The restriction condition of
state transition is not considered. So, it is not sufficiently
complex to model and simulate the dynamic execution of
the instance of BPEL. In addition, the state transition system
proposed in [31] presents the state transition model of basic
activity and structural activity, but these models are too
simple to cover all states in the course of execution of
structural activity. And these models do not consider the
restriction condition of state transition. So, they are unable
to describe the behaviors and states during the execution of
the instance of BPEL. In the end, the model proposed in [23]
does not consider event, fault handling and compensation, so
it cannot obtain all states and behaviors during the execution
of the instance of BPEL.

To overcome the above shortcomings, we analyze all
possible states in the execution of the instance of BPEL
at first. Then, we present a sufficient state frame model to
capture the communication behavior and all states of BPEL
instance. Based on our state framemodel, we construct a state
transition system formodeling the execution context of BPEL
instance. And we analyze the operational semantics of state
transitions.

3. State Analysis of the Activities in BPEL

Web services that are modeled by WSDL are stateless.
It means that the states of Web services cannot be cap-
tured and maintained. BPEL can describe the invocation
relationships among Web services components within a
business process. So, it can be used for modeling a WSC
instance. Moreover, BPEL provides the context of behav-
iors of each activity including fault handlers, event han-
dlers, compensation handlers, data variables, and correla-
tion sets. When an activity instance is finished, the next
activity instance to be executed is selected and its state is
changed to Ready. After this, the instance of activity may
go through a number of internal states. Finally, if all the
associated processing has been performed successfully, its
state is changed to Completed. These two states are crucial
to control flow. And any formal semantics of control flow
constructs has to take at least these two states into account
explicitly.

In BPEL, the LRTmechanism is supported by an essential
concept scope. We can regard scope as a kind of special
activity which can include other activities. All the activities
in a scope have three running modes.

Mode 1. When a <scope> activity starts running, it will
execute in a normal way. So, all the activities and event
handlings within the <scope> will be executed normally.

Mode 2. During the execution of <scope> activity, once a
certain activity instance has a fault, the running mode of
<scope> activity will change from normal to fault handling.
In consequence, all the activities and event handlings will
receive the termination message to be stopped.

Mode 3. After all the activities and event handlings are
stopped successfully, the <scope> activity will execute com-
pensation handling. In this case, the compensation handling
will remove the effects of fulfilled activities within the
<scope> activity and restore them to the former state. Figure
1 shows the compensation mechanism.

Besides the <scope> activity, BPEL also provides a struc-
ture, called control link, and two kinds of labels related to
activity, called join condition and transition condition, which
are used for the definition of priority level, synchronization,
and conditional dependency. BPEL provides a mechanism,
called dead path elimination, to prevent the emergence of
death lock. Suppose that there is a control link between
activity A and activity B. Then, it indicates that B cannot
start running before A has fulfilled or has skipped. B can
start running only when the join condition is true. Otherwise,

4 International Journal of Distributed Sensor Networks

Service 1 Service 2 Service 3

Database 1 Database 2

(1) Calls

(9) Return failure

(7) Call compensation

(3) Calls

(2) Change DB

(6) Return error

(8) Apply compensation (4) Operation fails

(5) Exception thrown

Figure 1: The compensation mechanism in long-running transition.

B would be skipped.Thus, activity should have a skipped state
to support the dead path elimination mechanism.

A composite Web services must go through several inter-
nal states from ready state to completed state. It is obvious that
the running state hides in the internal states of composite web
service. Due to the conditional dependency, the composite
Web services must wait for the end of execution of other
services and then it can be instanced and executed. Thus, the
parent service of the compositeWeb services is blockedwhich
indicates that the state of the parent service is a blocked state.

Based on the above analysis, we consider that a composite
Web services owns seven states as follows.

(1) Skipped. BPEL provides a construct known as control
links which, together with the associated notions of
join condition and transition condition, supports the
definition of precedence, synchronization, and condi-
tional dependencies. A control link between activities
A and B indicates that B cannot start before A has
either completed or has been “skipped.” Moreover, B
can only be executed if its associated join condition
evaluates to true; otherwise, B is skipped.

(2) Ready. Composite Web service is initializing.

(3) Running. Composite Web service has finished initial-
ization and is running.

(4) Blocked. Due to synchronization, a composite Web
service needs to wait for the completion of other
composite Web services.

(5) Failed. CompositeWeb service has the fault during its
running.

(6) Terminated. Composite Web service completes un-
successfully or is terminated by context.

(7) Completed. CompositeWeb service performs success-
fully.

Figure 2 shows our state framework for a composite web
service. Based on this state framework, we can build state
transition model for all kinds of BPEL activities.

Failed

Terminated

Skipped Ready

Completed

Running

Blocked

Figure 2: The state framework.

4. State Transition Model of Activities in BPEL

There are three kinds of activities in BPEL: basic activity,
structural activity, and scope activity. We analyze the state
transitions in terms of their respective mechanisms of excep-
tion handling and compensation handling.

4.1. State Transition Model of Basic Activity. Given that the
initial state of a basic activity 𝑥 is Ready, which indicates that
its initialization has not completed. If 𝑥 has a synchronization
dependency on y and its join condition is false through
evaluating this condition, and suppress join failure prosperity
of BPEL instance is set to true, 𝑥 will be skipped and will
not be performed. Therefore, its state will be changed to
Skipped from Ready, or 𝑥 will complete initialization and its
state will be also changed from Ready to Running. Because
the main role of basic activity is the data processing and
communications between other activities, Failed state of the
basic activity is related to itself, for example, the failure of
network communication or database operation. If the fault
has occurred, basic activity 𝑥 will capture and throw this
exception, and its state will be also changed from Running
to Failed. Moreover, these exceptions always register their

International Journal of Distributed Sensor Networks 5

Ready

Skipped

Running

Completed Failed

Terminated

Sk
ip

Initialize Terminate

Com
ple

te
su

cc
ess

ful
ly

Th
row fault

Figure 3: The state transition model of common basic.

immediate scope activity as fault event, the corresponding
scope activity will execute the fault handler, and it can forward
termination event to the executing inner activities.Therefore,
its state will be also changed fromRunning toTerminated. If 𝑥
has completed successfully, its state will be also changed from
Running to Completed. In consequence, Figure 3 describes
the state transition model of common basic activity.

However, there are several special basic activities, for
example, <empty> activity, <wait> activity, <throw> activity,
and <exit> activity.Their state transitionmodels are different
from others. <empty> activity cannot be terminated or
skipped. It cannot also own failed state because it does not
perform any operators. Therefore, <empty> activity owns
Ready, Running, and Completed as shown in Figure 4(a).

According to BPEL specification, <wait> activity cannot
be skipped, because it does not own Failed state as shown in
Figure 4(b).

The <throw> activity will explicitly throw exceptional
event to its immediate <scope> activity. Generally speaking,
this type of activity does not have aCompleted state. And after
throwing fault, it directly sets its state as Failed.

Similarly, according to BPEL specification, <throw>
activity cannot be skipped and terminated. Therefore, it does
not own Skipped and Terminated states. Its state transition
model is described in Figure 4(c).

The<exit> activity will cancel the whole process instance.
Its execution will trigger a termination event to Process. So
when it has completed, its statewill be changed toTerminated.
Its state transition model is described in Figure 4(d).

The state transition of basic activity is triggered by
the message events sent to its execution context, such as
termination event or fault event. In general, the execution
context of basic activity will receive the messages from its
ancestor activities. Consequently, these messages will trigger
the change of its state.

4.2. State Transition Model of Structural Activity. There
are several structural activities in BPEL such as <flow>

Running Completed
Initialize

Complete
successfully

Ready

(a) The state transition models of <empty> activity

Ready Running

Completed

Terminated

Initialize

Terminate

Complete successfully

(b) The state transition models of <wait> activity

Running Failed
Initialize Throw fault

Ready

(c) The state transition models of <throw> activity

Running Terminated
Initialize Terminate

Ready

(d) The state transition models of <exit> activity

Figure 4: The state transition models of special basic activities.

activity, <sequence> activity, <if> activity, <while> activ-
ity, <repeatuntil> activity, serial <foreach> activity, and
<foreach> activity.

In this subsection, we mainly analyze the state transitions
of these structural activities.

The <flow> activity provides concurrency and synchro-
nization. Given a <flow> activity 𝑥, its initial state is Ready,
which indicates that it has not finished initialization. If any
branch of 𝑥 has finished initialization; that is, the state of
an inner activity within 𝑥 is Running, the state of 𝑥 is also
changed from Ready to Running. If the state of 𝑥 is Running,
only when the states of all inner activities are changed
to Completed, the state of 𝑥 is changed from Running to
Completed. If any inner activity of𝑥 throws the exception; that
is, its state is Failed, the state of 𝑥 is also changed to Failed,
and 𝑥 will send termination event for other inner activities,
and if 𝑥 receives termination event, it will also forward this
event for its inner activities, only when all inner activities of
𝑥 are Terminated successfully, and the state of 𝑥 is changed
to Terminated. If the state of 𝑥 is Ready before finishing the
initialization, and 𝑥 has the synchronization dependencies
on other activities, and its <joinCondition> is evaluated to
false, its state is changed from Ready to Skipped. If the state
of 𝑥 is Running, and when the state of its all inner activities
is Blocked, the state of 𝑥 will also be changed to Blocked from
Running as shown in Figure 5.

6 International Journal of Distributed Sensor Networks

Ready Running

Completed

Terminated

Initialize
Te

rm
ina

te

Blocked

Skipped
Sk

ip
Com

plet
e

succe
ssf

ully

Failed

Th
row fault

Terminate

Synchronization
complete

Synchronization
wait

Figure 5: The state transition model of <flow> activity.

The <sequence> activity contains one or more activities
that are performed sequentially. Given a <sequence> activity
𝑥, its initial state is Ready, and if the first inner activity has
finished initialization and its state is Running, the state of 𝑥 is
changed fromReady toRunning. Only if the last inner activity
has completed successfully; that is, its state is Completed, the
state of 𝑥 is changed from Running to Completed. If an inner
activity in activity 𝑥 throws fault, the state of 𝑥 is also changed
to Failed. If 𝑥 receives termination event, it will also forward
this event for its inner activities, when only one inner activity
of 𝑥 is terminated successfully, and the state of 𝑥 is changed
to Terminated. In the course of the execution of 𝑥, if an inner
activity z in activity 𝑥 has the synchronization dependence
on activity y (y is not the inner activity of 𝑥), z needs to wait
for the successful completion of y. Therefore, activity 𝑥 can
be blocked because of the execution of y. In consequence, the
state of 𝑥 is changed from Running to Blocked. The transition
process of its Skipped state is similar to <flow> activity. So
the sate transition model of <sequence> activity is the same
as <flow> activity, but the operational semantics of its state
transition is only different from <flow> activity.

The <if> activity provides conditional behavior. The
activity consist of an ordered list of one or more conditional
branches defined by the <if> and optional<else if> elements.
So the sate transition model of <if> activity is the same as
<sequence> activity, but only the operational semantics of its
state transition is different from <sequence> activity. When
it selects one branch to execute, its state is changed from
Ready to Running, and the state of the inner activities in other
branches will be set to Skipped. Only when the state of the
inner activity in any one branch is Blocked, its state will also
be changed to Blocked.

The <while> activity, <repeatuntil> activity, and serial
<foreach> activity provide iterative behavior. In BPEL speci-
fication, they cannot have the synchronization dependencies
on other activities, so there is no the transition from Ready to
Skipped in their state transition models.

Ready Running

Compensated

Fault
handling

Initialize

Failed

Fault handler
complete

Complete
successfully

Completed

Compensation
complete

Throw fault

Under
compensation

Compensate

Figure 6: The state transition model of <scope> activity.

And when their state transition semantic from Running
to Completed is different from <sequence> activity, such
transition must be satisfied with the completion condition
and the successful completion of only one inner activity.

Parallel <foreach> activity will dynamically create and
execute 𝑁+1 instances of the <foreach>’s enclosed <scope>
activity as children in parallel until completion condition is
satisfied. When completion condition is satisfied, if there are
still the executing instances in the context, these instanceswill
be forced to terminate. Because parallel <foreach> activity
executes in parallel, its state transition model is the same as
<flow> activity, but only its state transition semantic from
Running to Completed is different from <if> activity, its
transition must be satisfied with the completion condition or
all instances’ successful completion.

4.3. State Transition Model of Scope Activity. The <scope>
activity provides the context of execution for its inner activi-
ties. Its difference from other structural activities is its special
state transition model. The initial state of <scope> activity
is Ready. When the main activity of <scope> activity has
finished initialization and its event handler is also activated,
its state is changed to Running from Ready. If in the course
of execution the inner activities throw the exception, the fault
handler will be triggered, and the state of<scope> activity will
be changed to fault handling. In the course of such process,
compensation handler is prohibited. When the fault handler
has completed, its state is changed from fault handling
to Failed. If <scope> activity has completed successfully, it
means that this <scope> activity may be allowed to execute
the compensation handler, once the compensation handler is
triggered, its state is changed to under compensation from
Completed. Until the compensation handler has completed,
its state is also changed to compensated. Figure 6 shows the
sate transition model of <scope> activity.

International Journal of Distributed Sensor Networks 7

5. Modeling the Context of BPEL with
State Transition System

In the above section, we discuss the temporal behavior of
state transition and the transition conditions in BPEL activity.
In general, the discussed state transition models correspond
to state transition system, and such system may describe the
dynamic process of the execution of BPEL, and the emerging
states in the context can be evolved into new states after
executing an action. The state transition of whole system
is related to the following factors. The first factor is action.
Action decides the state change of system, and the state
transitions vary from the actions. Generally speaking, the
system is related to input action and output action. Secondly,
restriction also plays an important role in the state transition.
If and only if the restriction conditions are satisfied, action
can trigger the state transition of system, for example, in
term with <flow> activity, the restriction of its successful
completion is that its all inbuilt activities have completed
successfully. Finally, the current state of system decides on
the direction of state transition.Therefore, in this section, we
present a state transition system which is used for modeling
the context of BPEL activity.

Definition 1. The execution context of BPEL activity is a state
transition system, which is defined as in the following seven
tuples:

𝐶𝑜𝑛𝑡𝑒𝑥𝑡 = (S,S
0
, 𝐴
𝑖
, 𝐴
𝑜
,R, 𝛿, 𝜃) , (1)

where

(1) S represents the finite state set of activity. If the type
of activity is basic activity, then |S| = 1; if the type of
activity is structural activity, then |S| > 1,

(2) S
0
is an initial set of system, S

0
⊆ S,

(3) 𝐴
𝑖
is a finite set of input action,

(4) 𝐴
𝑜
is a finite set of output action,

(5) R is a finite restriction set of state transition,
(6) 𝛿 is a function of state transition:S×(𝐴

𝑖
∪𝐴
𝑜
)×R →

S,
(7) 𝜃 is a mapping function: CWS → 𝐶𝑜𝑛𝑡𝑒𝑥𝑡, and

it will add an execution context for every composite
Web service and uses the prosperities of composite
Web service.

According to the above definition, the state transition
semantic discussed in Section 4 may be formally described.
And this section also presents the approaches to construct
such state transition system.

5.1. Constructing the State Transition System of Basic Activity.
Figure 3 represents the state transition model of the most
basic activities. Their state transition results from fault event,
compensation event, termination event, message event, and
alarm event in BPEL activity. Therefore, it is necessary to
define the message and action related to these events.

Action may be classified to two types: input action
and output action, which correspond to send and receive
operations. In terms of state transition system discussed in
this paper, we need to do a research on the relations of
state transition in the same activity or different activities. In
general, input and output action will send the notifications or
command of state transition, so action in Definition 1 may be
defined as follows:

A = (M,O) , (2)

where

(1) M is a message or event, M = (E,TM), TM =

{𝑁𝑜𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝐶𝑜𝑚𝑚𝑎𝑛𝑑}. E is command or notifi-
cation. If E is command, it will send events such as
message, alarm, fault, compensation, or termination. If
E is notification, it will send states such as Skipped,
Ready, Running, Blocked, Failed, Terminated, or Com-
pleted.

(2) O is a composite Web service, namely, activity. O is
the source object of the sent message for input action,
while it is the target object of the sent message for
output action.

According to the above definition, we are able to formally
describe the construction process of state transition system of
basic activity. Let 𝑆𝑡(𝑥) be a predication, which indicates that
activity 𝑥 is in state t as

𝑡 ∈ {𝑅𝑒𝑎𝑑𝑦, 𝑅𝑢𝑛𝑛𝑖𝑛𝑔, 𝐵𝑙𝑜𝑐𝑘𝑒𝑑, 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑,

𝐹𝑎𝑖𝑙𝑒𝑑, 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑, 𝑆𝑘𝑖𝑝𝑝𝑒𝑑}

∪ {𝐹𝑎𝑢𝑙𝑡ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔, 𝑈𝑛𝑑𝑒𝑟𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛, 𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑒𝑑}

(3)

(A) Ready → Running (𝑥 ∈ A𝑏𝑎𝑠𝑖𝑐)

(a) 𝑅(𝑥): 𝑆𝑅𝑒𝑎𝑑𝑦(𝑥),
(b) 𝐴

𝑖
(𝑥):None,

(c) 𝐴
𝑜
(𝑥): (M, 𝑧), M = (𝑅𝑢𝑛𝑛𝑖𝑛𝑔,𝑁𝑜𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛),

𝑧 = 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑥),
where

(i) TA = {sequence, flow, pick, if, while, repea-
tuntil, foreach, scope, invoke, receive, reply,
wait, assign, empty, throw, compensate,
exit}.

(ii) ∀𝑡 ∈ TA, A𝑡 = {𝑎 ∈ A | 𝑇𝑦𝑝𝑒 (𝑎) = t} is
a set of all activities of type t.

(iii) A𝑏𝑎𝑠𝑖𝑐 = A
𝑟𝑒𝑐𝑒𝑖V𝑒 ∪ A

𝑟𝑒𝑝𝑙𝑦
∪ A
𝑖𝑛V𝑜𝑘𝑒 ∪

A
𝑤𝑎𝑖𝑡

∪ A
𝑒𝑚𝑝𝑡𝑦

∪ A
𝑡ℎ𝑟𝑜𝑤

∪ A
𝑎𝑠𝑠𝑖𝑔𝑛

∪

A
𝑐𝑜𝑚𝑝𝑒𝑚𝑠𝑎𝑡𝑖𝑜𝑛

∪ A
𝑒𝑥𝑖𝑡

is a set of basic
activities.

(iv) parents(𝑥) is a set of immediate ancestor of
𝑥.

8 International Journal of Distributed Sensor Networks

(B) Running → Completed (𝑥 ∈ A𝑏𝑎𝑠𝑖𝑐\(A
𝑡ℎ𝑟𝑜𝑤

∪A
𝑒𝑥𝑖𝑡

))

(a) 𝑅(𝑥): 𝑆𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑥),
(b) 𝐴

𝑖
(𝑥):None,

(c) 𝐴
𝑜
(𝑥): (M, 𝑧), M = (Completed,

Notification), z = parents(𝑥).

(C) Running → Terminated

(a) <exit> activity (𝑥 ∈ A
𝑒𝑚𝑝𝑡𝑦

)

(i) 𝑅(𝑥): 𝑆𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑥),
(ii) 𝐴

𝑖
(𝑥):None,

(iii) 𝐴
𝑜
(𝑥): (M, 𝑧), M = (Termination, Com-

mand), 𝑦 = Process.

(b) Other basic activities (𝑥 ∈ A𝑏𝑎𝑠𝑖𝑐 \ (A
𝑡ℎ𝑟𝑜𝑤

∪

A
𝑒𝑥𝑖𝑡

∪A
𝑒𝑚𝑝𝑡𝑦

∪A
𝑤𝑎𝑖𝑡

))

(i) 𝑅(𝑥): 𝑆𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑥),
(ii) 𝐴

𝑖
(𝑥): (M, 𝑦), M = (Termination,

Command), 𝑦 = parents(𝑥),
(iii) 𝐴

𝑜
(𝑥): (M, 𝑧), M = (Terminated,Notifica-

tion), 𝑧 = parents(𝑥).

(D) Running → Failed (𝑥 ∈ A𝑏𝑎𝑠𝑖𝑐 \ (A
𝑒𝑥𝑖𝑡

∪A
𝑒𝑚𝑝𝑡𝑦

))

(a) <throw> activity (𝑥 ∈ A
𝑡ℎ𝑟𝑜𝑤

)

(i) 𝑅(𝑥): 𝑆𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑥),
(ii) 𝐴

𝑖
(𝑥):None,

(iii) 𝐴
𝑜
(𝑥): (M, 𝑧), M = (Failed, Notification),

z = parentscope(𝑥),
where
parentscope(𝑥) represents its immediate
father <scope> activity.

(b) Other basic activities (𝑥 ∈ A𝑏𝑎𝑠𝑖𝑐 \ (A
𝑒𝑥𝑖𝑡

∪

A
𝑒𝑚𝑝𝑡𝑦

∪A
𝑡ℎ𝑟𝑜𝑤

))

(i) 𝑅(𝑥): 𝑆𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑥),
(ii) 𝐴

𝑖
(𝑥):None,

(iii) 𝐴
𝑜
(𝑥): (M, 𝑧), M = (Failed, Notification),

z = parents(𝑥).

5.2. Constructing the State Transition System of Structural
Activity. Section 4.2 represents the state transition model
of structural activities. The state transition of structural
activities results from the state of their inner activities, input
action and output action.The state of inner activities restricts
the state transition of structural activity and partly decides the
input action of structural activity. In consequence, wewill dis-
cuss the restriction condition of state transition of structural
activity, and input actions result in state transition and output
actions. Because <scope> activity is special structural activity,
so we will discuss how to construct its state transition system
in the next subsection.

(A) Ready → Running (𝑥 ∈ A𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑑)

(a) 𝑅(𝑥): 𝑆𝑅𝑒𝑎𝑑𝑦(𝑥) ∧ ∃𝑦(𝑦 ∈ children(𝑥) ∧ 𝑆
𝑅𝑢𝑛𝑛𝑖𝑛𝑔

(𝑦)) ⇒ 𝑆
𝑅𝑢𝑛𝑛𝑖𝑛𝑔

(𝑥),

(b) 𝐴
𝑖
(𝑥): (M, 𝑦), M = (Running, Notification), y

∈ children(𝑥),
(c) 𝐴
𝑜
(𝑥): (M, 𝑧), M = (Running, Notification), z

= parents(𝑥),
where
(i) A𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑑 = A

𝑠𝑞𝑢𝑒𝑛𝑐𝑒
∪ A
𝑓𝑙𝑜𝑤

∪ A
𝑖𝑓
∪

A
𝑝𝑖𝑐𝑘

∪ A
𝑤ℎ𝑖𝑙𝑒

∪ A
𝑠𝑐𝑜𝑝𝑒

∪ A
𝑟𝑒𝑝𝑒𝑎𝑡𝑢𝑛𝑡𝑖𝑙

∪

A
𝑓𝑜𝑟𝑒𝑎𝑐ℎ

is a set of structured activities,
(ii) 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑥) is a set of immediate descen-

dant of 𝑥.

(B) Running → Completed

(a) <sequence> activity (𝑥 ∈ A
𝑠𝑞𝑢𝑒𝑛𝑐𝑒

)

(i) 𝑅(𝑥): 𝑆𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑥) ∧ 𝑦 = 𝑡𝑎𝑖𝑙(𝑥) ∧

𝑆
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

(𝑦) ⇒ 𝑆
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

(𝑥),
(ii) 𝐴

𝑖
(𝑥): (M, 𝑦), M = (Completed, Notifica-

tion), 𝑦 ∈ children(𝑥),
(iii) 𝐴

𝑜
(𝑥): (M, 𝑧), M = (Completed, Notifica-

tion), z = parents(𝑥).
(b) <flow> activity (𝑥 ∈ A

𝑓𝑙𝑜𝑤
)

(i) 𝑅(𝑥): 𝑆𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑥) ∧ ∀𝑦(𝑦 ∈ children(𝑥) ∧

𝑆
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

(𝑦)) ⇒ 𝑆
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

(𝑥),
(ii) 𝐴

𝑖
(𝑥) and𝐴

𝑜
(𝑥) is the same as <sequence>

activity.
(c) Iterative activity (𝑥 ∈ A

𝑟𝑒𝑝𝑒𝑎𝑡𝑢𝑛𝑡𝑖𝑙
∪ A
𝑤ℎ𝑖𝑙𝑒

∪

A
𝑓𝑜𝑟𝑒𝑎𝑐ℎ

)
(i) 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑑(𝑥) represents the com-

pletion condition of activity,
(ii) 𝑅(𝑥): 𝑆𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑥) ∧ ∃!𝑦(𝑦 ∈ children(𝑥) ∧

𝑆
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

(𝑦)) ∧ CompletionCond(𝑥)
⇒ 𝑆
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

(𝑥),
(iii) 𝐴

𝑖
(𝑥) and𝐴

𝑜
(𝑥) is the same as <sequence>

activity.
(iv) 𝑅(𝑥): 𝑆𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑥) ∧ ∃!𝑦(𝑦 ∈ children(𝑥)

∧ 𝑆
𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑

(𝑦)) ⇒ 𝑆
𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑

(𝑥),
(v) 𝐴

𝑖
(𝑥) and𝐴

𝑜
(𝑥) is the same as <sequence>

activity.
(d) <if > activity (𝑥 ∈ A

𝑖𝑓
)

(i) 𝑅(𝑥): 𝑆𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑥) ∧ ∃𝑦(𝑦 ∈ children(𝑥) ∧
𝑆
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

(𝑦)) ⇒ 𝑆
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

(𝑥),
(ii) 𝐴

𝑖
(𝑥) and𝐴

𝑜
(𝑥) is the same as <sequence>

activity.

(C) Running → Terminated

(a) <flow> activity (𝑥 ∈ A
𝑓𝑙𝑜𝑤

)

(i) 𝑅(𝑥): 𝑆𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑥) ∧ ∀𝑦(𝑦 ∈ children(𝑥)
∧ 𝑆
𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑

(𝑦)) ⇒ 𝑆
𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑

(𝑥),
(ii) 𝐴

𝑖
(𝑥): (M, 𝑦), M = (Termination, Com-

mand), 𝑦 = parents(𝑥), (M, 𝑦
󸀠
), M =

(Terminated, Notification), 𝑦󸀠 = children
(𝑥),

International Journal of Distributed Sensor Networks 9

(iii) 𝐴
𝑜
(𝑥): (M,Z), M = (Termination, Com-

mand),

where
∀𝑧 ∈ Z, 𝑆

𝑅𝑢𝑛𝑛𝑖𝑛𝑔
(𝑧) ∧Z ⊆ children(𝑥).

(M, 𝑧
󸀠
), M = (Terminated, Notification),

𝑧
󸀠
= parents(𝑥).

(b) <sequence> activity and <if> activity (𝑥 ∈

A
𝑠𝑞𝑢𝑒𝑛𝑐𝑒

∪A
𝑖𝑓
)

(i) 𝑅(𝑥): 𝑆𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑥) ∧ ∃𝑦(𝑦 ∈ children(𝑥) ∧
𝑆
𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑

(𝑦)) ⇒ 𝑆
𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑

(𝑥),
(ii) 𝐴

𝑖
(𝑥): (M, 𝑦), M = (Termination, Com-

mand), 𝑦 = parents(𝑥),
(M, 𝑦

󸀠
), M = (Terminated, Notification),

𝑦
󸀠 = children(𝑥),

(iii) 𝐴
𝑜
(𝑥): (M, 𝑧), M = (Termination, Com-

mand), 𝑧 = children(𝑥),
(M, 𝑧

󸀠
), M = (Terminated, Notification),

𝑧
󸀠 = parents(𝑥).

(c) Iterative activity (𝑥 ∈ A
𝑟𝑒𝑝𝑒𝑎𝑡𝑢𝑛𝑡𝑖𝑙

∪ A
𝑤ℎ𝑖𝑙𝑒

∪

A
𝑓𝑜𝑟𝑒𝑎𝑐ℎ

)

(i) 𝑅(𝑥): 𝑆𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑥) ∧ ∃!𝑦(𝑦 ∈ children(𝑥)
∧ 𝑆
𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑

(𝑦)) ⇒ 𝑆
𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑

(𝑥),
(ii) 𝐴

𝑖
(𝑥) and𝐴

𝑜
(𝑥) is the same as <sequence>

activity.

(D) Running → Failed

(a) 𝑅(𝑥): 𝑆𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑥) ∧ ∃𝑦(𝑦 ∈ children(𝑥) ∧
𝑆
𝑓𝑎𝑖𝑙𝑒𝑑(y)) ⇒ 𝑆

𝑓𝑎𝑖𝑙𝑒𝑑
(𝑥),

(b) 𝐴
𝑖
(𝑥): (M, 𝑦), M = (Failed, Notification), 𝑦 ∈

children(𝑥),
(c) 𝐴
𝑜
(𝑥): (M, 𝑧), M = (Failed, Notification), 𝑧 =

parents(𝑥).

(E) Running → Blocked

(a) <sequence> activity (𝑥 ∈ A
𝑠𝑞𝑢𝑒𝑛𝑐𝑒

)

(i) 𝑅(𝑥): 𝑆𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑥) ∧ ∃!𝑦∀z(y ̸= head(𝑥) ∧ (z
∈ LR(𝑧, 𝑙, 𝑦) ∧ (𝑆

𝑅𝑢𝑛𝑛𝑖𝑛𝑔
(𝑧) ∨ 𝑆

𝑅𝑒𝑎𝑑𝑦
(𝑧)) ∨

𝑆
𝐵𝑙𝑜𝑐𝑘𝑒𝑑

(𝑦)) ⇒ 𝑆
𝐵𝑙𝑜𝑐𝑘𝑒𝑑

(𝑥),
(ii) 𝐴

𝑖
(𝑥): (M, 𝑦),M = (Blocked, Notification),

y ∈ children(𝑥),
(iii) 𝐴

𝑜
(𝑥): (M, 𝑧),M = (Blocked, Notification),

𝑧 = parents(𝑥).
(iv) 𝑅(𝑥): 𝑆𝐵𝑙𝑜𝑐𝑘𝑒𝑑(𝑥) ∧ ∃!y ∀z(y ̸= head(𝑥)

∧ 𝑆
𝑅𝑢𝑛𝑛𝑖𝑛𝑔

(𝑥) ∧ (z ∈ 𝐿R(𝑧, 𝑙, 𝑦) ∧ 𝑆
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

(𝑧)) ⇒ 𝑆
𝑅𝑢𝑛𝑛𝑖𝑛𝑔

(𝑥),
(v) 𝐴

𝑖
(𝑥): (M, 𝑦), M = (Completed, Notifica-

tion), 𝑦 ∈ 𝐿𝑅(𝑦, 𝑙, 𝑥
󸀠
), 𝑥󸀠 ∈ children(𝑥),

(vi) 𝐴
𝑜
(𝑥): (M, 𝑧), M = (Running, Notifica-

tion), z = parents(𝑥).

(b) Other structural activities (𝑥 ∈ A𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑑 \
A
𝑠𝑞𝑢𝑒𝑛𝑐𝑒

)

(i) 𝑅(𝑥): 𝑆𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑥) ∧ ∃𝑦(𝑦 ∈ children(𝑥)
∧ 𝑆
𝐵𝑙𝑜𝑐𝑘𝑒𝑑

(𝑦)) ⇒ 𝑆
𝐵𝑙𝑜𝑐𝑘𝑒𝑑

(𝑥),
(ii) 𝐴

𝑖
(𝑥) and𝐴

𝑜
(𝑥) is the same as <sequence>

activity.

(F) Blocked→Running

(a) <sequence> activity (𝑥 ∈ A
𝑠𝑞𝑢𝑒𝑛𝑐𝑒

)

(i) 𝑅(𝑥): 𝑆𝐵𝑙𝑜𝑐𝑘𝑒𝑑(𝑥) ∧ ∃!y ∀z(y ̸= head(𝑥)
∧ 𝑆
𝑅𝑢𝑛𝑛𝑖𝑛𝑔

(𝑥) ∧ (z ∈ 𝐿R(𝑧, 𝑙, 𝑦)
∧ 𝑆
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

(𝑧)) ⇒ 𝑆
𝑅𝑢𝑛𝑛𝑖𝑛𝑔

(𝑥),
(ii) 𝐴

𝑖
(𝑥): (M, 𝑦), M = (Completed, Notifica-

tion), 𝑦 ∈ 𝐿𝑅(𝑦, 𝑙, 𝑥
󸀠
), 𝑥󸀠 ∈ children(𝑥),

(iii) 𝐴
𝑜
(𝑥): (M, 𝑧), M = (Running, Notifica-

tion), z = parents(𝑥).

(b) Other structural activities (𝑥 ∈ A𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑑 \
A
𝑠𝑞𝑢𝑒𝑛𝑐𝑒

)

(i) 𝑅(𝑥): 𝑆𝐵𝑙𝑜𝑐𝑘𝑒𝑑(𝑥),
(ii) 𝐴

𝑖
(𝑥): (M, 𝑦),M= (Running,Notification),

y ∈ children(𝑥),
(iii) 𝐴

𝑜
(𝑥): (M, 𝑧), M = (Running, Notifica-

tion), z = parents(𝑥).

5.3. Constructing the State Transition System of Scope Activity.
Section 4.3 presents the state transition model of <scope>
activity. The <scope> activity is equivalent to the scope of
program language. It provides long-running transaction for
process fragment in its scope. Because <scope> activity is
also belonging to structural activity, its state depends on
the states of its inner activities. According to Figure 6, the
state transition system of <scope> activity is generated by the
following approach.

(A) Ready → Running (𝑥 ∈ A
𝑠𝑐𝑜𝑝𝑒

)

(a) 𝑅(𝑥): 𝑆𝑅𝑒𝑎𝑑𝑦(𝑥) ∧ ∃𝑦(𝑦 ∈ A𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑛𝑐(𝑥) ∧ 𝑆
𝑅𝑢𝑛𝑛𝑖𝑛𝑔

(𝑦)) ⇒ 𝑆
𝑅𝑢𝑛𝑛𝑖𝑛𝑔

(𝑥),
(b) 𝐴

𝑖
(𝑥): (M, 𝑦), M = (Running, Notification),

𝑦 ∈ A𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑛𝑐(𝑥),
(c) 𝐴
𝑜
(𝑥): (M, 𝑧), M = (Running, Notification), z

= parentscope(𝑥),

where

A𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑛𝑐(𝑥) is the set of all activities that are
directly enclosed in scope 𝑥.

(B) Running → Faulthandling (𝑥 ∈ A
𝑠𝑐𝑜𝑝𝑒

)

(a) 𝑅(𝑥): 𝑆𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑥) ∧ ∃𝑦(𝑦 ∈ A𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑛𝑐(𝑥) ∧ 𝑆
𝐹𝑎𝑖𝑙𝑒𝑑

(𝑦)) ⇒ 𝑆
𝐹𝑎𝑢𝑙𝑡ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔

(𝑥),
(b) 𝐴

𝑖
(𝑥): (M, 𝑦), M = (Failed, Notification), 𝑦 ∈

A𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑛𝑐(𝑥),
(c) 𝐴
𝑜
(𝑥): (M, 𝑧), M = (Termination, Command)

∀𝑧 ∈ Z, 𝑆
𝑅𝑢𝑛𝑛𝑖𝑛𝑔

(𝑧) ∧Z ⊆ A𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑛𝑐(𝑥).

10 International Journal of Distributed Sensor Networks

(C) Faulthandling → Failed (𝑥 ∈ A
𝑠𝑐𝑜𝑝𝑒

)

(a) 𝑅(𝑥): 𝑆𝐹𝑎𝑢𝑙𝑡ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔(𝑥)∧∀𝑦∀𝑧(𝑦 ∈ A𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑛𝑐(𝑥)∧

(𝑆
𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑑

(𝑦) ∨ 𝑆
𝐹𝑎𝑖𝑙𝑒𝑑

(𝑦) ∨ 𝑆
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

(𝑦)) ∧ (𝑧 ∈

A
𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛

H
(𝑥) ∧ 𝑆

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑
(𝑧))) ⇒ 𝑆

𝐹𝑎𝑖𝑙𝑒𝑑
(𝑥),

(b) 𝐴
𝑖
(𝑥): (M, 𝑦), M = (Terminated, Notification),

𝑦 ∈ A𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑛𝑐(𝑥),
(c) 𝐴
𝑜
(𝑥): (M, 𝑧), M = (Failed, Notification), z

= parentscope(𝑥).

(D) Running → Completed (𝑥 ∈ A
𝑠𝑐𝑜𝑝𝑒

)

(a) 𝑅(𝑥): 𝑆𝑅𝑢𝑛𝑛𝑖𝑛𝑔(𝑥) ∧∀𝑦(𝑦 ∈ (𝐴
𝑚𝑎𝑖𝑛𝑠𝑒𝑡

(𝑥)∪A
𝑓𝑐𝑡

H
)∧

𝑆
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

(𝑦)) ⇒ 𝑆
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

(𝑥),
(b) 𝐴

𝑖
(𝑥): (M, 𝑦), M = (Completed, Notification),

𝑦 ∈ A𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑛𝑐(𝑥) ∪A
𝑓𝑐𝑡

H
,

(c) 𝐴
𝑜
(𝑥): (M, 𝑧),M = (Completed, Notification), z

= parentscope(𝑥).

(E) Completed → Under compensation (𝑥 ∈ A
𝑠𝑐𝑜𝑝𝑒

)

(a) 𝑅(𝑥): 𝑆𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑(𝑥) ∧ ∃𝑦(𝑦 ∈ A
𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛

H
∧

𝑆
𝑅𝑒𝑎𝑑𝑦

(𝑦)) ⇒ 𝑆
𝑈𝑛𝑑𝑒𝑟 𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛

(𝑥),
(b) 𝐴

𝑖
(𝑥): (M, 𝑦),M= (Compensation,Command),

y = parentscope(𝑥),
(c) 𝐴
𝑜
(𝑥): (M, 𝑧), 𝐴

𝑜
(𝑥):(M, 𝑧), M = (Compen-

sation, Command), ∀𝑧 ∈ Z, 𝑆
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

(𝑧) ∧

Z ⊆ childrenscope(𝑥),

where

childrenscope(𝑥) are <scope> activities immedi-
ately enclosed by 𝑥.

(F) Under compensation → Compensated (𝑥 ∈ A
𝑠𝑐𝑜𝑝𝑒

)

(a) 𝑅(𝑥): 𝑆𝑈𝑛𝑑𝑒𝑟𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛(𝑥) ∧ ∀𝑦∀𝑧(𝑦 ∈ children-
scope(𝑥)) ∧ 𝑆

𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑒𝑑
(𝑦) ∧ (𝑧 ∈

A
𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛

H
(𝑥) ∧ 𝑆

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑
(𝑧))) ⇒

𝑆
𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑒𝑑

(𝑥),
(b) 𝐴

𝑖
(𝑥): (M, 𝑦), M = (Compensated, Notifica-

tion), 𝑦 ∈ childrenscope(𝑥)
(M, 𝑦

󸀠
), M = (Completed, Notification), 𝑦󸀠 ∈

A
𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛

H
(𝑥),

(c) 𝐴
𝑜
(𝑥): (M, 𝑧), M= (Completed,Notification), z

= parentscope(𝑥).

6. Conclusion and Future Work

In order to enhance the reliability of service composition
applications inWSNs, we study themodeling approach of the
execution context in the instance of BPEL for verifying the
availability and operational semantics of exception handling
and compensation mechanisms in BPEL instance for WSNs
in this paper. At first, we discuss the possible states of

a BPEL activity during the execution of the instance of
BPEL. Secondly, we propose the respective state transition
models for three types of BPEL activities and analyze the
operational semantics for the state transitions. Finally, we
present an approach tomodel state transition process by state
transition system in order to describe and analyze the control
flow resulted from exception handler and compensation
mechanism for WSNs.

In the future, we plan to study how to evaluate the avail-
ability, operational semantics, and the efficiency of exception
handling and compensation in BPEL instance for WSNs
based on a rule system. So, a set of rules based on operational
semantics for finding out the problems in exception handling
and compensation are the key content in our future work.
Simultaneously, we also plan to transform a state transition
system of the instance of BPEL to a Petri net model. Thus, we
can use Petri net theory and method to analyze and evaluate
the availability, operational semantics, and efficiency of the
state transition system easily.

Acknowledgments

This work was supported by the National Natural Science
Funds Fund of China (61172084), the National High-tech
R&D Program of China (2007AA01Z138), Natural Science
Foundation of Hubei Province of China (2010CDB5201),
Education Commission of Hubei Province, China
(Q200625001), Xiangfan Municipal Science and Technique
Foundation (2008GG1C41).

References

[1] E. Cerami, Web Services Essentials: Distributed Applications
with XML-RPC, SOAP, UDDI WSDL, O’Reilly Associates,
Sebastopol, Calif, USA, 2002.

[2] F. Curbera, W. A. Nagy, and S. Weerawarana, “Web services:
why and how,” in Proceedings of the OOPSLA Workshop on
Object-Oriented Web services, pp. 34–40, ACM, 2001.

[3] A. Tsalgatidou and T. Pilioura, “An overview of standards and
related technology in web services,” Distributed and Parallel
Databases, vol. 12, no. 2-3, pp. 135–162, 2002.

[4] S. Agarwal, S. Handschuh, and S. Staab, “Annotation, composi-
tion and invocation of semantic web services,” Web Semantics,
vol. 2, no. 1, pp. 31–48, 2004.

[5] WSDL, “Web Service Definition Language 1.1,” http://www.w3
.org/TR/wsdl.

[6] J. Koehler and B. Srivastava, “Web service composition: current
solutions and open problems,” in Proceedings of Workshop on
Planning for Web Services (ICAPS ’03), pp. 28–35, ACM, 2002.

[7] M. Singh and M. Huhns, Service-Oriented Computing: Seman-
tics, Processes, Agents, John Wiley & Sons, New York, NY, USA,
2005.

[8] R. Khalaf, N. Mukhi, and S. Weeravarana, “Service oriented
composition in BPEL4WS,” in Proceedings of the International
Conference on World Wide Web (WWW ’03), ACM, 2003.

[9] M. Pistore, P. Traverso, P. Bertoli, and A. Marconi, “Automated
synthesis of composite BPEL4WS web services,” in Proceedings
of the IEEE International Conference on Web Services (ICWS
’05), pp. 293–301, IEEE Computer Society, July 2005.

International Journal of Distributed Sensor Networks 11

[10] K. H. Kim and C. A. Ellis, “Workflow performance and scalabil-
ity analysis using the layered queuing modeling methodology,”
in Proceedings of International ACM SIGGROUP Conference on
Supporting Group Work, pp. 135–143, ACM, October 2001.

[11] J. Jin and K. Nahrstedt, “On exploring performance optimiza-
tions in web service composition,” in Proceedings of the 5th
ACM/IFIP/USENIX international Conference on Middleware,
vol. 78, pp. 115–134, Springer, 2004.

[12] D. Rud, A. Schmietendorf, and R. Dumke, “Performance
modeling of WS-BPEL-based web service compositions,” in
Proceedings of IEEE Services Computing Workshops (SCW ’06),
pp. 140–147, IEEE Computer Society, September 2006.

[13] S. Chandrasekaran, S. Ch, J. A. Miller, G. Silver, I. B. Arpinar,
and A. Sheth, Composition, Performance Analysis and Simula-
tion of Web Services, University of Georgia, Athens, Ga, USA,
2002.

[14] J. Q. Li, Y. S. Fan, and M. C. Zhou, “Performance modeling and
analysis of workflow,” IEEE Transactions on Systems, Man, and
Cybernetics Part A: Systems andHumans., vol. 34, no. 2, pp. 229–
242, 2004.

[15] T. Liu, A. Behroozi, and S. Kumaran, “A performance model
for a business process integration middleware,” in Proceedings
of IEEE Conference on eCommerce, pp. 191–198, IEEE Computer
Society, 2003.

[16] A. K. Schomig and H. Rau, “A petri net approach for the
performance analysis of business process,” Tech. Rep. 116,
Universität Würzburg, Schloss Dagstuhl, Germany, 1995.

[17] K. H. Kim and C. A. Ellis, “Performance analytic models
and analyses for workflow architectures,” Information Systems
Frontiers, vol. 3, no. 3, pp. 339–355, 2001.

[18] Z. Wu, N. Xiong, J. H. Park, T. H. Kim, and L. Yuan, “A
simulation model supporting time and non-time metrics for
web service composition,”The Computer Journal, vol. 53, no. 2,
pp. 219–233, 2010.

[19] Z. Wu, Y. He, L. Zhao, and X. Peng, “A modeling method
for web service composition on business layer,” in Proceedings
of 4th International Conference on Networked Computing and
Advanced InformationManagement (NCM ’08), pp. 81–86, IEEE
Computer Society, September 2008.

[20] M. Butler and C. Ferreira, “An operational semantics for StAC,
a language for modeling long-running business transactions
coordination models and languages,” in Proceedings of the 6th
International Conference on Coordination Models and Lan-
guages (COORDINATION ’04), vol. 2949 of Lecture Notes in
Computer Science, pp. 87–104, Springer, Pisa, Italy, 2004.

[21] Y. He, L. Zhao, Z. Wu, and F. Li, “Modeling web services
composition with transaction extension for performance eval-
uation,” in Proceedings of IEEE Asia-Pacific Services Computing
Conference, pp. 476–481, IEEE Computer Society, 2008.

[22] L. Bocchi, C. Laneve, and G. Zavattaro, “A calculus for long
running transactions,” in FMOODS, vol. 2884 of Lecture Notes
in Computer Science, pp. 124–138, Springer, NewYork, NY, USA,
2003.

[23] M. Kovács, D. Varró, and L. Gönczy, “Formalmodeling of BPEL
workflows including fault and compensation handling,” in
Proceedings of Workshop on Engineering Fault Tolerant Systems
(EFTS ’07), ACM, Dubrovnik, Croatia, September 2007.

[24] A. Charfi, B. Schmeling, and M. Mezini, “Transactional BPEL
processes with AO4BPEL aspects,” in Proceedings of the 5th
EuropeanConference onWeb services (ECOWS ’07), pp. 149–158,
IEEE Computer Society, November 2007.

[25] R. Lanotte, A. Maggiolo-Schettini, P. Milazzo, and A. Troina,
“Design and verification of long-running transactions in a
timed framework,” Science of Computer Programming, vol. 73,
no. 2-3, pp. 76–94, 2008.

[26] L. 5. Caires, C. Ferreira, and H. Vieira, “A process calculus
analysis of compensations,” in Proceedings of the 4th interna-
tional Symposium on Trustworthy Global Computing (TGC ’08),
C. Kaklamanis and F. Nielson, Eds., vol. 5474 of Lecture Notes
in Computer Science, pp. 87–103, Springer, Barcelona, Spain,
November 2008, Revised Selected Papers.

[27] B. Limthanmaphon and Y. Zhang, “Web service composition
transaction management,” in Proceedings of the 15th Aus-
tralasian Database Conference, K. Schewe and H. Williams,
Eds., vol. 52 of ACM International Conference Proceeding
Series, pp. 171–179, Australian Computer Society, Dunedin, New
Zealand, 2004.

[28] R. Bruni, H. Melgratti, and U. Montanari, “Theoretical foun-
dations for compensations in flow composition languages,” in
Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’05), pp. 209–220,
ACM, Long Beach, Calif, USA, January 2005.

[29] C. Eisentraut and D. Spieler, “Fault, compensation and termi-
nation in BPEL 2.0—a comparative analysis,” in Proceedings of
the 5th International Workshop on Web Services and Formal
Methods (WS-FM ’08), R. Bruni and K. Wolf, Eds., vol. 5387 of
Lecture Notes in Computer Science, pp. 107–126, Springer, Milan,
Italy, September 2008, Revised Selected Papers.

[30] C. Ouyang, E. Verbeek, W. M. P. van der Aalst, S. Breutel, M.
Dumas, and A. H. M. ter Hofstede, “Formal semantics and
analysis of control flow in WS-BPEL,” Science of Computer
Programming, vol. 67, no. 2-3, pp. 162–198, 2007.

[31] R. Kazhamiakin, M. Pistore, and L. Santuari, “Analysis of
communication models in web service compositions,” in Pro-
ceedings of the 15th International Conference onWorldWideWeb
(WWW ’06), pp. 267–276, ACM, Edinburgh, Scotland, May
2006.

[32] S. Nakajima, “Model-checking behavioral specification of BPEL
applications,” Electronic Notes in Theoretical Computer Science,
vol. 151, no. 2, pp. 89–105, 2006.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

