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The service-oriented architecture is considered as a new emerging trend for the future of wireless sensor networks in which different
types of sensors can be deployed in the same area to support various service requirements. The accuracy of the sensed data is one
of the key criterions because it is generally a noisy version of the physical phenomenon. In this paper, we study the node selection
problem with data accuracy guarantee in service-oriented wireless sensor networks. We exploit the spatial correlation between
the service data and aim at selecting minimum number of nodes to provide services with data accuracy guaranteed. Firstly, we
have formulated this problem into an integer nonlinear programming problem to illustrate its NP-hard property. Secondarily, we
have proposed two heuristic algorithms, namely, Separate Selection Algorithm (SSA) and Combined Selection Algorithm (CSA).
The SSA is designed to select nodes for each service in a separate way, and the CSA is designed to select nodes according to their
contribution increment. Finally, we compare the performance of the proposed algorithms with extended simulations. The results
show that CSA has better performance compared with SSA.

1. Introduction

Sensing is considered as one of the most important tech-
nologies especially in the emerging big data era. Nodes with
sensing ability can be deployed everywhere in the world
including airspace, ground, and underwater environment due
to their cheapness, simplicity, and small size. Moreover, the
wireless radio allows these sensor nodes to be organized
into a network, which is generally named as Wireless Sensor
Networks (WSN) [1], and local information about the envi-
ronment is then sensed and reported to the base station in
a periodical manner. It is obvious that the wireless sensor
networks will create a huge number of data with time ongoing
and the number of network increasing. Accordingly, one
challenging issue is how to utilize these various wireless
sensor networks in the future big data era.

The current wireless sensor networks are generally data-
centric or application-centric, which means that each sensor
node serves for one special application. However, with the
number of different applications increasing rapidly, hetero-
geneous wireless sensor networks appear and they might be

located in the same physical areas providing different data-
collection functions. How to connect these heterogeneous
wireless sensor networks efficiently is still a pioneering work
in the future ubiquitous computing environment due to
several observations. Firstly, two different applications may
be interested in the same collected data, and it is unnecessary
to place two separate nodes with identical sensing devices
but different tasks. Secondary, in case that one application
is concerned with several different types of sensed data
simultaneously, such a requirement is not guaranteed since
current solutions work only in a separate way. Finally, the
emergence of powerful sensors, which can provide different
types of data sensing, has introduced new issues in the
research of wireless sensor networks since they can support
different applications simultaneously.

Accordingly, the service-oriented architecture appears
as a new emerging trend for the future of wireless sen-
sor networks, in which sensor networks are considered as
the services provider and sensors as the data sources for
these services [2]. Users and programmers can access the
service-oriented wireless sensor networks by using a simple
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FIGURE 1: An example of a service-oriented wireless sensor network
in which service s, is supported by nodes p;, p,, ps, p, and ps,
service s, by nodes p,, ps, pg> p; and py.

service-oriented interface and utilizing encapsulation of the
low-level implement details. Services in wireless sensor net-
works may be the sensing capabilities for example, tem-
perature and humidity or software components provided
by nodes, for example, the operations of in-network data
aggregation, time synchronization, and data processing [2-
5]. The data sensing of nodes can also be defined as the
sensing services, and sensed data as the service data similarly.
Furthermore, the sensor nodes can be equipped with multiple
types of sensing units used to collect environmental informa-
tion. For example, the MICA2 mote [6] can provide services
such as light, sound, and vibration.

In the heterogeneous applications scenarios, different
types of sensors can be deployed in the same area to support
various service requirements. Figure 1 shows an example of
a service-oriented wireless sensor network including eight
sensor nodes. The sensed sources are assumed to be located
at positions s, and s,, and each sensed target is assumed
one different service. Nodes p;, p,, and p; can only support
service s;, and nodes ps, p,, and pg support service s,.
However, nodes p, and ps; can support service s, and
s, simultaneously. In this example, there are several ways
to select nodes while providing the services s, and s, by
assuming that at least two nodes are required for each service,
that is, nodes p,, p, for service s; and nodes ps, p; for s,,
or nodes p,, ps for both of them simultaneously. Note that
sensor networks are generally deployed in dense manner and
a huge number of nodes can be provided to collect data from
the environment. It leads to the problem of how to select
nodes in an efficient way to provide the required services.

The accuracy of the sensed data is one of the key criterions
while choosing nodes to provide required service. It is also
known that sensor nodes are generally designed under the
guideline of cheapness and simplicity and that they are mostly
deployed in a dynamic and rough terrain for continuous
environmental monitoring. The sensing equipment on sensor
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nodes is expected to be unreliable and the collected data to
be distorted. Furthermore, some physical attributes exhibit a
gradual and continuous variation over the two-dimensional
Euclidean space due to the diffusion property and, thus, each
observer has different distorted data. To collect all related
data around the same sensing sources can help to eliminate
or minimize the distortion. However, it might lead to heavy
energy consumption in the network. Some applications only
are concerned with approximate observations rather than
exact results [7, 8], and it is unnecessary to gather data
from all nodes in the network in this case. It shall also be
mentioned that the diffusion property of physical attributes
results in spatial correlation among sensed data observed by
nodes closer to the same sensing source. Exploiting the spatial
correlation can help to improve the network performance by
selecting a subset of nodes to provide the required service
with data accuracy guaranteed [9, 10].

Although the service-oriented architecture for the wire-
less sensor networks has already been introduced recently in
related works [4, 5, 11-14], most of them are concerned with
the practical architecture framework, such as middleware
and platforms. Some works [13, 14] considered the node
scheduling to support services query with network lifetime
prolonged, and some others are concerned with the spatial
correlationship among the sensed data with the service
unconsidered [15-17]. To provide accurate service to users is
an important issue and it is generally one criterion for the
applications. In this paper, we focus on the heterogeneous
service supporting problem in the future wireless sensor
networks and aim at providing efficient node selection
algorithms with data accuracy guarantee for the service-
oriented sensor networks. Different from previous works,
we consider the data accuracy for services by following the
observation that sensed data is a noisy version of the physical
phenomenon. And we have explored the data accuracy
according to their spatial correlation for the same sensing
sources.

Due to the inaccuracy and spatial correlation of the
sensed data, it is a new and challenging issue to provide
the required services with data accuracy guarantee in an
energy-efficient way for the service-oriented wireless sensor
networks. So far, as we know, this is the first paper concerned
with both the data inaccuracy and spatial correlation in the
sensor networks, and we aim at providing node selection
algorithms so as to improve the network performance. The
main contributions of this paper are summarized as follows.
(1) We have proposed the node selection problem with
data accuracy guarantee for service-oriented wireless sensor
networks via bipartite graph and formulated it as an integer
nonlinear programming problem to illustrate its NP-hard
property. (2) We have also presented two efficient heuristic
algorithms for this problem; namely, Separate Selection
Algorithm (SSA) and Combined Selection Algorithm (CSA)
with low-time complexity.

The rest of this paper is organized as follows. In Section 2,
we summarize the related works. Section 3 describes the
system model and the problem formulation. Sections 4
and 5 have introduced the integer nonlinear programming
formulation and two heuristic selection algorithms. Section 6
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describes and analyzes the simulation results. We conclude
this paper in Section 7.

2. Related Works

This paper focuses on the node selection problem in service-
oriented wireless sensor networks. Several works have been
done to develop service-oriented architecture specific to
the sensor networks, and the architecture has shown many
advantages in the heterogeneous applications scenarios.
Gracanin et al. [2] proposed a service-centric model that
focuses on services provided by a wireless sensor networks
and views a wireless sensor networks as a service provider.
This model consists of mission, network, region, sensor, and
capability layers. Within each layer, there are four planes
or functionality sets: communication, management, applica-
tion, and generational learning. Rezgui and Eltoweissy [4]
introduced the service-oriented architecture as an approach
for building a new generation of open, efficient, interoperable,
scalable, application-aware sensor-actuator networks. In this
vision, sensor-actuator networks would not be deployed
to provide sensing and actuation capabilities to a specific
application but, rather, to provide sensing and actuation
services to any application. King et al. [5] developed a service-
oriented sensor and actuator platform called Atlas, which
enables self-integrative, programmable pervasive spaces. This
platform has shown the advantage of improving communi-
cation and interoperability between heterogeneous devices
in pervasive computing environments. Authors of [11] pro-
posed TinySOA, a service-oriented architecture that allows
programmers to access wireless sensor networks from their
applications by using a simple service-oriented API via the
language of their choice. The main advantage of TinySOA is
relieving application developers from dealing with the low-
level technical details of the wireless sensor networks to get
sensors data. Corchado et al. [12] proposed a service-oriented
telemonitoring system for healthcare using heterogeneous
wireless sensor networks, which aimed at improving health-
care and assistance for dependent people.

It is an important issue to provide services efficiently
with resource-constrained sensor nodes. Node scheduling
is considered as an efficient technique to implement the
service-supporting schemes, in which sensor nodes should be
selected to provide requested services. Recently, Wang et al.
[13] investigated the service-availability-aware sleep schedul-
ing design in service-oriented wireless sensor networks. The
purpose of this study is to minimize the energy consumption
and guarantee that enough sensors are active to ensure service
availability at all times. The authors had proven this problem
to be NP-hard and presented heuristic linear-programming
based-solutions. However, they assumed that each service has
a known requirement on the number of active sensors based
on the historical service composition requests in the system,
which may not be the case in practice. Furthermore, they
only consider the sleep scheduling design for the sensors in
the service provider overlay network and neglect the routing
cost of service data. Authors of [14] try to identify the service
composition that is less likely to be invalid in the near future
due to nodes going to sleep mode. The goal is to minimize

the recomposition cost. They make use of the dynamic pro-
gramming to reduce total service composition cost when the
minimum number of required service composition solutions
is derived. However, the dynamic programming is unsuitable
for large-scale problems.

The distributed nature of wireless sensor network results
in spatial correlation among the sensed data. And data
accuracy is accordingly influenced by the spatial corre-
lationship. Under different assumptions, researchers have
proposed several mathematical models for spatial correlation
in wireless sensor networks. Some [18] assume that the
sensed data follow diffusion property, and some [17] use an
empirically obtained approximation function for the joint
entropy of sensed data. The most commonly used model is
the jointly Gaussian [9, 19, 20], which assumes the data to
be jointly Gaussian with the correlation being a function
of the distance. The jointly Gaussian model is easy to use
and analyze. However, the chief limitation is that it forces
the joint probability density function of the data values to
be jointly Gaussian. Some researchers [21] use variograms
to analyze spatial correlation in wireless sensor networks.
The proposed model is Markovian in nature and can capture
correlation in data irrespective of the node density, the
number of source nodes, or the topology. Furthermore, this
model derives the data value at a node from other correlated
nodes whose data values have already been derived. However,
it is not always the case that a given spatial process will
be Markovian. Some others proposed correlation model for
specific applications, such as soil moisture measurement in
wireless underground sensor networks [10]. The presence
of spatial correlation among sensor network data has been
exploited for solving different problems. The authors in [15]
proposed a traffic model for wireless sensor networks, which
takes into account the statistical patterns of node mobility
and spatial correlation. In [16, 17], spatial correlation was
used to design energy-efficient data aggregation algorithms.
Ma et al. [16] proposed a distributed clustering algorithm
based on the dominating set theory to choose the cluster
heads nodes and construct clusters by measuring the spatial
correlation between sensors. Pattem et al. [17] studied the
correlated data gathering problem and followed the idea of
using an empirically obtained approximation function for the
joint entropy of sources.

It is important and challenging to provide different
services with data accuracy guaranteed through unreliable
sensors nodes. Fault tolerance is one of the most important
techniques, which has been taken into consideration in
many works [22-27]. Han et al. [22] addressed the problem
of deploying minimum number of relay nodes to achieve
diverse levels of fault tolerance with higher network con-
nectivity in the context of heterogeneous wireless sensor
networks. However, they adopted the network model that
in which nodes possess different transmission radius, while
all of the relay nodes use an identical transmission radius.
Banerjee et al. [23] investigated the event detection scheme
with fault tolerance for multiple events occurring simultane-
ously. They proposed the use of polynomial-based scheme
that addresses the problems of event region detection by
having an aggregation tree of sensor nodes. However, their



work is limited to static sensor and the network topology
cannot adapt to the dynamic nature of simultaneous events
with varied priorities.

Our work in this paper is concerned with the node
selection algorithms, which is similar to the works that aim
at dealing with node selection and assignment problems.
Cai et al. [28] addressed the multiple directional cover sets
problem of organizing the directions of sensors into a group
of nondisjoint cover sets to extend the network lifetime. The
directional sensors are different from common sensors that
have a limited angle of sensing range. The authors proved
this problem is NP-complete and presented three heuristic
approaches. Lin et al. [29] proposed an adaptive energy-
efficient multisensor scheduling scheme for collaborative
target tracking in wireless sensor networks. The challenging
issue of this problem is how to achieve energy efliciency
and track reliability while satisfying the tracking accuracy
requirement. In their algorithm, a number of sensors are
selected to form a temporary tasking cluster, and the optimal
sampling interval is determined to satisfy the given tracking
accuracy. Johnson et al. [30] considered sensor-mission
assignment problem in wireless sensor networks. In this
problem, multiple missions compete for sensor resources.
They showed that this problem is NP-hard even to approx-
imate, and presented several heuristic algorithms. Liu et al.
[31] studied the topology control problem using a proba-
bilistic network model. They attempted to find a minimal
transmission range for each node while the global network
reachability satisfies certain threshold. Different from these
previous works, we aim at providing efficient node selection
algorithms with data accuracy guaranteed for the service-
oriented wireless sensor networks by exploring the spatial
correlation among the sensed data and the advantages of
diverse services provided by different sensor nodes.

3. System Model and Problem Formulation

In this section, we have firstly introduced the network model
for the service-oriented wireless sensor networks. Secondly,
we have described the spatial correlation model for single
as well as multiple services in the network. Finally, we have
formulated a definition for the node selection problem with
data accuracy guaranteed in the service-oriented wireless
sensor networks.

3.1. Network Model. We consider a wireless sensor network in
the plane with stationary nodes P = {p;, p,,..., p,}, which
are built to provide a series of services S = {s;,8;,...,5,,}-
Each node p; can provide one or more service S;, which is
a subset of §; that is, §; € S. One service, for example, s;,
can be provided by a group of nodes P;, and P; = {p; |
s; € S;}. It is obvious that the set size |P;| demonstrates the
number of nodes in the network which can provide service s .
The relationship between nodes and services can be further
described as a bipartite graph G = (P, S, E), where P denotes
the set of nodes, S denotes the set of services, and E denotes
the set of edges. There is an edge (p;, s;) between p; and s; in
case that p; can provide service s;; thatis, (p;, s;) € E. Figure 2
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FIGURE 2: An example of the bipartite graph in which each service
is supported by three distinct nodes.

has shown an example of the proposed model for service-
oriented sensor network with five nodes and each service is
supported by three distinct nodes.

To be convenient, the symbols used in this work are
summarized in Table 1.

3.2. Spatial Correlation Model. Researchers have proposed
several mathematical models for spatial correlation in wire-
less sensor networks under different assumptions. Pattem et
al. [17] proposed to use an empirically obtained approxima-
tion function for the joint entropy of sensed data. In [18],
the sensed data is assumed to follow the diffusion property
and the diffusion is formulated as a function of the distance.
The jointly Gaussian is adopted in many related works [9,
19, 20], which assumes the data to be jointly Gaussian with
the correlation as a function of the distance. The jointly
Gaussian model is easy to use and analyze by forcing the joint
probability density function of the data values to be jointly
Gaussian. Jindal and Psounis [21] analyzed the spatial cor-
relation among sensed data by using variograms in wireless
sensor networks. The proposed model is a special case of
Markov random field. In this model, the data value at a node
is derived from other correlated nodes whose data values
have already been derived. However, it is not always the fact
that a given spatial process will be Markovian. In this paper,
we are concerned with the data accuracy with the spatial
correlation model. The jointly Gaussian model proposed in
[9] has considered the measurement noise of nodes and given
the distortion function, which is suitable for our problem.

In the senor networks, the observation result of each node
is in fact a noisy version of the physical phenomenon located
at the sensing source, and it can be modeled as Gaussian
random variable Vof zero mean and variable oy; that is,
V ~ . (0,07). Similarly, the sensed data for the physical
phenomenon at node p; can also be modeled as Gaussian
variable V;, V; ~ /" (0, 0‘2,). Assume that the sensed data for
node p;/p; is denoted as V;/V; accordingly. The correlations
between V and V;, V; and V; are described as

corr {V,Vi} = p,; =Ky (d, ;)

¢))
corr {Vi,Vj} =p; =Ko (di,j) )
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where d,,; denotes the Euclidean distance between p; and the
sensing source V, d; ; denotes the Euclidean distance between
piand p;, Ky(-) is the covariance function concerned with the
Euclidian distance d and it is formulated as

Ky(d)=e“, >0, )

where 0 controls the correlation between the distances of
sensor nodes. In addition, we can see that Ky(-) =1 in case
that d = 0, and Ky(:) = 0 in case that d = +00.

The collected data by the sensor node p; is often subject
to noise interference originated from the environment, and it
can be represented as

X;i=V;+N, 3)

where N; is the additive white Gaussian noise, N; ~
(0, 012\,). We assume that the noise that each sensor node
encounters is independent of each other.

According to [9], the distortion of the estimation for V is

formulated as
4
_ 2 _
=0y — L(UV+GN) ( vaz >

ZZPIJ’

i=1 j#i

)

(4)

LZ(oV +0%)

where L (L > 0) is the number of sensor nodes.
We use O'V to normalize 8, and the estimated data
accuracy is calculated as

a=1-

L(ﬁ+1)< va,z_ > (5)
z ZZP’J’

zl]#z

L[ o

[3+1

where 8 = 03 /a7, denotes the Signal-to-Noise Ratio (SNR).

3.3. Problem Definition. In this paper, we study the problem
of node selection in the service-oriented wireless sensor
networks with the data accuracy requirement guaranteed
for the services. The number of nodes is considered as the
optimizing object due to the following considerations. Firstly,
there are fewer packets to be transmitted in the network if
we select less number of nodes to provide services, which is
also helpful to reduce the energy consumption. Secondarily,
it will increase the collision probability in the contention-
based wireless network if too many nodes are kept awake, and
significant retransmission cost and additional delay occur
accordingly. Finally, it helps to reduce the overhead of data
transmission to allow one node to provide multiple services
simultaneously. In case that the data of different services is
correlated, it can be compressed into a smaller packet; even

in the uncorrelated case, it can still be transmitted in a single
packet, and thereby it is helpful to reduce overhead in the
network [32].

In this paper, we aim at providing node strategies with
the number of selected nodes minimized. Let a; be the data
P one subset of

!
»Bios Py
and aj(Pj) the estlmated data accuracy of service s; when

accuracy requirement of each service s,

nodes selected from P; to provide service s;

service s; is provided by nodes in set P;. The node selection
problem for the service-oriented wireless sensor networks
can be defined as follows: given a bipartite graph G = (P, S, E),
in which P denotes the set of nodes, S denotes the set of
services, and E denotes the set of edges between P and S,
and given the required data accuracy requirement a; of each
service s; € S and spatial correlation among these nodes
and corresponding sensing sources, the problem is to find a
subgraph G' = (P',S,E'), P' € P, E' C E, and the objective
is to minimize the number of selected nodes in P’ under the
constraint that a; (PJ{) >ajis satisfied for each service s i €8

4. Integer Nonlinear Programming
Formulation

In this section, we present an Integer Nonlinear Program-
ming (INLP) formulation for the node selection problem.
Integer programming is a mathematical optimization or a
feasibility program in which some or all of the variables are
restricted to be integers. INLP is a special case of integer
programming, where some of the constraints or the objective
functions are nonlinear. INLP is considered as an efficient
technique to solve the optimization problem with nonlinear
constraint, so that it is feasible to express the node selection
problem as INLP. This paper is concernd with the node
selection problem, and the objective is to minimize the
total number of selected nodes with nonlinear data accuracy
constraint. We use the following set of binary integer (0 or 1)
variables and constraints in the INLP formulation.

(1) Variables e; ; for each node p; € P and service s; € S.
The variable e; ; is 1if and only if (p;, s;) € E; that is, node p;
can provide service s;:

1, if node p; can provide service Sj»
€ij = . (6)
0, otherwise.

The variables e; ; can be obtained when the topology graph
and the set of services provided by nodes are given. Obviously,
the selected nodes for services s; shall be selected from these
nodes withe; ; = 1.

(2) Variables x;
S. The variable x; ;

provide service s ;:

Ik
1)
X = :
7)

As we can see, the set {xi)j li=12,...,nj=12,...,m}
had indicated one scheduling scheme for the given wireless

ij for each node p; € P and service s; €

is 1 if and only if node p; is assigned to

if node p; is assigned to provide service s,

otherwise.



sensor networks, in which each node p; is assigned to provide
service s; if x; ; = 1. Note that x; ; equals 0 in case thate; ; =
0, which means that node p; cannot be assigned to provide
service s; since it is not supported. In this way, we have the

j
following constraint:

e.—x;;=>0,

X 20, Vi=12..

n, j=1,2...,m.  (8)

Let a; be the estimated data accuracy of service s, and a; can
be obtained via formula (5), which can be further described
as follows:

ﬁ+1 ( szjpvz_ >

a,= B . )
7 -_— X; X P 1 L;#0
Lﬁ<ﬁ+l>2§k§ e 1
0, if L;=0,
where L ; = PHPES jand L ; denotes the number of selected

nodes which are assigned to provide service s;.
In order to satisfy the required data accuracy for all
services in the network, we have the following constraint:

aza, VYj=12...,m. (10)

(3) Variables y;. The variable y; is 1 if and only if node p;
is selected to provide services required in the network:

Yi
— O’
=11

By following the above definition, y; equals 0 if node p; is not
selected to provide any service, and otherwise it equals 1. As
mentioned above, the variable x; ; denotes the case that node
pi € P can provide service s; € S or not, and we have the
following constraint:

if node p; is not selected to provide any services,
otherwise.

(11)

m
mylZZx,)]Zyl, Vl=1,2,n (12)
j=1

The objective of node selection problem is to minimize
the total number of nodes that are selected to provide the
required services, and the number of selected nodes can be
calculated as )| y;.
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Then the node selection problem discussed in this paper
can be formulated as

n
Minimized Z ¥;
i=1

Subject to
x;;€{0,1}, Vi=L2...,n j=12....m
y; €1{0,1}, Vi=1,2...,n,
a;za;, Vj=12...m

e i—x;:20, Vi=1,2...,n, j=12...,m

i,j i,j =
m

my; 2 Y x, 2y, Vi=12...,n
=

(13)

In this section, we have introduced an Integer Nonlinear
Programming (INLP) formulation for the node selection
problem. The proposed INLP is generally considered as
an efficient way to provide an accurate description on the
problem formulation. This formulation is useful to find the
optimal solution in case that the solution space is small
enough with the help of some well-known tools, such as
LINGO and MATLAB. However, INLP is a special case of
integer programming which is proved to be NP-hard, and
accordingly the INLP problem is NP-hard. Many related
works have also been proposed to find the suboptimal
solution for a given INLP problem [33-35]. Although INLP
has shown its good performance in the practical applications,
it results in some well-known deflects such as computation as
well as space complexity, especially in case that the solution
space is very large. Unfortunately, the wireless sensor network
generally includes hundreds to thousands of nodes; the vari-
ables required by the INLP mentioned above might increase
exponentially with the node number. Another problem is that
for a random network, it is hard to gather all the constraints
mentioned above since these nodes are heterogonous and
constraints for each node are fully different from each other.
Moreover, in the practical applications, the sink is almost
impossible to get the accurate information in the harsh
environment by following the observation that the sensed
data is generally a noisy version of the physical phenomenon.
It is more practical to adopt a suboptimal solution with
the data accuracy guaranteed instead of optimal one that
is hard to find for an NP-hard problem. In this way, it is
reasonable and necessary to develop heuristic algorithms for
the node selection problem in the service-oriented wireless
sensor networks.

5. Heuristic Algorithms

Heuristic algorithms are generally considered as an impor-
tant way to solve the NP-hard problem. In this section,
we propose two heuristic algorithms for the node selection
problem in the service-oriented wireless sensor networks,
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namely, the Separate Selection Algorithm (SSA) and the
Combined Selection Algorithm (CSA).

5.1. Separate Selection Algorithm (SSA). The basic idea of
the Separate Selection Algorithm (SSA) is that we select a
minimum number of nodes for each required service with the
data accuracy guaranteed in a separate way, and the union of
selected nodes for all services is considered as the problem
solution. The key process for the SSA is how to select nodes
for each service. Here we follow the idea with which nodes are
selected in a sequence way, and in each step, we will choose
the node that is potential to improve the data accuracy.
Assume that the current node selection solution is G' =
(P',S,E"), in which P' = {P] | j = 1,2,...,m}, S = {s; |
j=1,2,...,m} is the set of services, and E = {(p,-,sj) | p; €
P',sj € S}. Let us consider the general case that one node,
that is, p; is considered to provide one special service, that is,
s;. Here we use I; ; to denote the data accuracy increment for
service s; in case that node p; is selected to provide service s

j
where (p;,s;) € E. I; ; can be calculated as follows.

j)

(1) In case that ﬁj(P;) > aj, we have L =0, which
means that the data accuracy requirement for service
s; has already been satisfied that there is no more
improvement once nodes p; and (p;, s j) areadded into
the final solution.

(2) In case that &j(P; +{p}h) < ﬁj(P;), we have L; =
0, which means that the data accuracy of service s;

cannot be increased once nodes p; and (p;,s;) are

added into the final solution.
(3) In case that &j(P;) < ﬁj(P; +{p}) < a;, we have Ii,]. =
ﬁj(P; +{p;h) - a; (P]{), which denotes the increment of

the data accuracy for service s; in case that nodes p;
and (p;, s;) are added into the final solution.

(4) In case that ﬁj(P;) <a;< ﬁj(P; +{p;}), wehave I, ; =

a;— (Ej(PJ{), which means that we generally neglect the
part of increment that exceeds the requirement since
the solution is required only to provide the asked data

accuracy.

The pseudocode for SSA is listed in Table 1. In Line 1, the
set of selected nodes P]( for each service s; is initially set as
@. In Lines 2-9, the algorithm tries to select nodes for each

service s; € S. In case that the current data accuracy cannot
satisfy the data accuracy requirement, that is, ﬁj(P;) < a;,
we firstly check all the candidate nodes that are useful to
improve data accuracy. Secondarily, we select one node with
maximum data accuracy increment as the candidate (in Line
4). Finally, the selected node is added into PJ{ to provide
service s; (in Line 6). This process continues until enough
nodes are selected for all services.

We illustrate the SSA algorithm by an example given in
Figure 3. As we can see from Figure 3(a), the network has four
nodes and each service is supported by three distinct nodes.
The required data accuracy for each service is listed on the
right side; for example, the required data accuracy of s, is 0.8,

TABLE 1: Description of the symbols.

Symbol  Description

n The number of nodes

m The number of services

G The node-service bipartite graph

p The set of nodes

N The set of services

E The set of edge between P and S

G The node-service assignment bipartite graph

P’ The set of nodes that selected to provide services

E The set of edge between P’ and S

P, The set of nodes that can provide service s;

p' The subset of nodes that selected from P; to provide
] service s;

S; The set of services that node p; can provide

a; The data accuracy requirement of service s;

a,(A) The estimated data accuracy of service s; when service

s; is provide by nodes in set A

{0.5, 0} e e
(0.4, 0.4} @vo 08 e
{0.4,0.4) eAe 0.8

{0, 0.5} @ @

(a) (b)
FIGURE 3: An example of the execution of SSA algorithm. (a) The
node-service bipartite graph G = (P, S, E). (b) The final solution of

node-service selection bipartite graph G = (P’, S.E ).

and the data accuracy increment of each node when services
is provided only by this node is also listed on the left side; for
example, the data accuracy increment of p, is 0.5 for s, and
0.0 for s,. Without loss of generality, we assume that the data
accuracy increment of each node can be added directly to
simplify description; that is, the data accuracy of s, provided
by p; and p, is 0.5 + 0.4 that equals 0.9. The algorithm will
select nodes for s; and then s,. Node p; with the maximum
data accuracy increment for s; will be selected firstly. In case
that the algorithm has selected p,, both node p, and p; can
guarantee the required data accuracy of s;, and we assume
that the randomly selected one is p,. Similarly, service s, will
firstly select p,. In case that the algorithm has selected p,,
both p, and p; can guarantee the required data accuracy of
s,. However, p, is intended to be selected by s, in case that
it is already selected by s,. After that, the selected nodes have
guaranteed the required data accuracy of s; and s,, and the
algorithm will stop. As we can see from the final solution
shown in Figure 3(b), the SSA algorithm selects three nodes
to provide s, and s, with one node reduced.
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LP «0,E < 0P «0j=1..m
2: for each service s ;€S
3:  while &j(P;) <a,

5
6 P« P +{p},E — E'+(p;s));
7: end while
/ ' I,
8: P PP
9: end for

Input: Node-service bipartite graph G = (P, S, E) and requirement for service data accuracy a,, a,, ..., 4,
Output: Node-service selection bipartite graph G’ = (P', S, E').

4: Calculate data accuracy increment I; ; for each p;, (p;,s;) € Eand (p;,s;) ¢ E',and
select the one p; with maximum I; ; and I; ; > 0 as the candidate node; if two nodes have
identical increment, the node included in P’ is prior to be selected;

If no such a candidate is found, the algorithm stops with no solution found;

-

ALGORITHM I: Pseudocode for Separate Selection Algorithm (SSA).

5.2. Combined Selection Algorithm (CSA). The previous pro-
posed SSA tries to select nodes for each separate service based
on the criterion of data accuracy increment. However, some
nodes will provide several services simultaneously in the
wireless sensor networks, and this multiservice property can
help to improve the performance of node selection strategies
if we simply select one multiservice node to improve the
data accuracy required by different services. As we can see
from Line 4 in Algorithm 1, we intend to select the candidate
node that is already chosen to provide some other service in
SSA algorithm, which means that nodes with multiservice
property are more preferred in SSA algorithm during node
selection process. However, this separate selection process is
not always efficient especially in some cases. For example, the
sample network given in Figure 3 can obtain a better solution
than the solution found by SSA. If we do not select p; and
P4 which have maximum data accuracy increment for one
special service, but select p, and p; which can provide service
s; and s, simultaneously, it is obvious that this solution can
guarantee the required data accuracy of s; and s,. However,
this solution has fewer nodes than SSA because it only selects
two nodes with two nodes reduced. In this section, we will
introduce a new Combined Selection Algorithm (CSA) that
has utilized multiservice property for node selection problem
in service-oriented wireless sensor networks.

In this paper, we aim at minimizing the number of
selected nodes with the data accuracy guaranteed for all
services in the network. There are two important factors
that will influence the number of selected nodes; that is, the
number of services and the service quality of each node.
Intuitively, it helps to reduce the number of selected nodes in
case that they can provide more kinds of services since more
nodes are potential candidates during the selection process.
However, nodes might have poor data accuracy when they are
far away from the sensing source although they can provide
the required services. It means that we shall consider the data
accuracy as well as the number of services simultaneously
during the node selection process.

The basic idea of the CSA is described as follows. Initially
no nodes are selected and the final solution is an empty set.

Then, nodes are chosen and added into the final solution in a
sequence way. In each step, we intend to select the node with
maximal contribution increment to all services in the network
(which will be discussed in details below in this section). This
process continues until the data accuracy for all services is
satisfied, and finally we can obtain the selected nodes as well
as the services provided by each node for the problem.

Assume that p; is considered to provide services s; in the

current selection bipartite graph G'. In case that I; i =0, it
is obvious that there is no benefit for node p; to provide s,

and we have (p;,s;) ¢ E'.In case that I, ; > 0, we can see that

i,j
node p; helps to improve data accuracy of service s;, and we

i»
have (p;, ;) € E'. In this way, for a given p;, we can calculate
the I; ; for each s;. Generally, we intend to choose the node
that has more contribution increment to the data accuracy.
Here we have introduced w; ; (0 < w;; < 1) as a coefficient
to demonstrate the impact of current contribution increment

on the final data accuracy, and it is formulated as

0, I; =0,

i T exp { - (o=, (F)) = 1) , I >0.

(14)

As we can see from the above formulation, w; ; = 0 in case
that I; ; = 0, which shows that node p; has no contribution
to the data accuracy of service s;. Here we adopt the power
exponential function to indicate how much the data accuracy
is close to the requirement value.

Let C; be the contribution increment of node p; with the
current selection bipartite graph G’ in case that p; is selected
to provide services, and C, is formulated as

C = Z w;;l;, Vpi€P, 15)
(pisj) €E

where w; j (0 < w;; < 1) is a coefficient and L denotes the

data accuracy increment for service s; in case that node p;
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LP «0,E < 0P «0j=1..m
2: while true

J

! !
14: P « U;":l Pj;
15: end while

Input: Node-service bipartite graph G = (P, S, E) and requirement for service data accuracy a,, a,, . . ., a,,.
Output: Node-service selection bipartite graph G’ = (P', S, E').

3. If for each service s; € S, has satisfied &j(P;) >a; the algorithm stops with solution found;
4:  Calculate data accuracy increment I; ; and contribution increment C; for each p;, p; € P
and p, ¢ P', and select the one p; with maximum C; and C; > 0 as the candidate node;

If no such a candidate is found, the algorithm stops with no solution found;

Calculate @;(P; — {p}) for each py, p, € P}, and select the one p; with maximum

5:
6: for each service Sps (p,-,sj) € Eand I,-)J- >0
7: P; — ij+ {phE — E'+(pys))s
8: while P} #0
9:
a,(P, ~ {p)) and @,(P] — {py) 2 @(P));
10: If no such a candidate is found, break;
11: P]f — ij- (Db B — E' = (P s))s
12: end while
13:  end for

ALGORITHM 2: Pseudocode for Combined Selection Algorithm (CSA).

is selected to provide service s;, which is as same as that in
Section 5.1.

So far we have introduced the basic node selection
process for the CSA. However, the algorithm can be further
optimized. In case that the algorithm selects one node with
maximum contribution increment, this node will provide
each service that helps to improve the data accuracy. How-
ever, the node with multiservice and maximum contribution
increment might have poor data accuracy increment for some
services. Although the node that provides poor data accuracy
increment can still improve the data accuracy, the data
accuracy increment is so small that it needs to select more
nodes to guarantee the required data accuracy. Therefore,
we can further reduce the number of nodes by removing
some already selected nodes that are with poor data accuracy
increment for some services. Let us consider an example that
two services are supported by two nodes, in which p, can
support s; and s,, p, can support s,, and the required data
accuracy for s; and s, is both 0.8. Suppose that the data
accuracy of s; provided by p, is 0.8, the data accuracy of s,
provided by p, is 0.3, provided by p, is 0.8, and provided
by p, and p, is 0.7 In the first selection, the value of C,
is larger than C, according to formula (15), then p, will be
selected and provide service s; and s,. In the next selection,
p, will be selected and provide service s,. However, the data
accuracy of s, provided by p, and p, is less than that provided
by p,. It is clear that we can improve the data accuracy of
service s, if we let p; do not provide s,. Note that the “bad”
assignments (i.e., assigning nodes to provide services that are
with poor data accuracy increment) cannot be eliminated
during the selection process, due to the fact that they still help
to improve the data accuracy. After selecting a new node, we
can check all the selected nodes to find the “bad” assignments
that were included in the previous selections. The basic idea

of the optimization process is described as follows. In case
that there is a special service for example, s;, has selected a

new node, we will firstly calculate ﬁj(P; — {p;}) for each node
p; € P]{, and select the one p; with maximum aj(P; -{phH
and aj(PJf -{ph) = aj(PJ{); after that, we let p; do not provide
s;. This process continues until no more of this kind of nodes
can be found from P!.

The pseudocode for CSA is listed in Algorithm 2. In Line

1, the set of selected nodes P! for each service s jis initialized

as 0. In Lines 2-15, nodes are selected in a sequence way
until data accuracy is guaranteed for all services. In case that
there is some service that current data accuracy cannot satisfy
its requirement, we will firstly calculate all the candidate
nodes’ contribution increment, and select one node with
maximum contribution increment as the candidate (in Line
4). Secondarily, the candidate node is assigned to provide
each service s; that helps to improve the data accuracy (in

Line 7). Finally, we check all the nodes in PJ{ and remove

nodes from P; without declining the data accuracy of service
S and this subprocess continues until no more of this kind
of nodes can be found from P; (in Line 8-12). The node
selection process continues until enough nodes are selected
for all services.

We illustrate the execution of CSA algorithm during
one round of the iteration process by an example given in
Figure 4. In this example two services are supported by four
nodes. The node-service bipartite graph G = (P,S,E) is
given in Figure 4(a), and the current node-service selection
bipartite graph G = (P',S,E)is given in Figure 4(b). As
we can see from Figure 4(b), the algorithm has selected p, in
G', then the available nodes are p,, ps, and p,. Suppose that
the contribution increment of each available node has been
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(a) (b) (c)
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(d) (e)

FIGURE 4: An example of the execution of CSA algorithm during one
round of the iteration process. (a) The node-service bipartite graph
G = (P, S, E). (b) The current node-service selection bipartite graph
G’ = (P’, S, E"). (c) The relationship between available nodes and
services, and there is an edge between p; and s; indicating that p;
helps to improve the data accuracy of s;. (d) Select p, to provide s,
and s,. (e) The final node-service selection bipartite graph G’ of this
round of the iteration process.

calculated and the value of C;, C;, and C, is 0.1, 0.3, and 0.2,
respectively. The relationship between available nodes and
services is given in Figure 4(c), and there is an edge between
p; and s; indicating that the data accuracy increment of p; is
larger than 0, that is, p; helps to improve the data accuracy
of s;. In the next step, the algorithm will select one node
with maximum contribution increment, that is, p; in this
example. According to Figure 4(c), p; helps to improve the
data accuracy of s; and s,. Then p; will provide s; and s,,
and the new solution is given in Figure 4(d). After a new
node is added into the solution, the algorithm will execute
an optimization process. We assume that there is one “bad”
assignment (p,, s,); that is, the data accuracy of s, provided
by p; is not less than that provided by p, and p;. Then
the algorithm will remove the assignment (p,, s,) from the
solution. The final solution of this round of the iteration
process can be observed from Figure 4(e).

5.3. Complexity Analysis
Lemma 1. The time complexity of SSA is O(mn®).

Proof. During the outside for loop, the algorithm selects
nodes for each service s; € S, and each execution of
the outside for loop contains a while loop. In the while

loop, the algorithm checks each node p;, (p;,s;) € E and

(pisj) ¢ E' and selects one node with maximum data
accuracy increment. The while loop will continue until the
data accuracy of s; is satisfied. Because there are at most
n nodes that can provide s; and each execution selects one
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node, the execution of the while loop takes O(n?) time. Hence,
the time complexity of SSA is O(mn?). O

Lemma 2. The time complexity of CSA is O(mn’).

Proof. During the outside while loop, the algorithm will
firstly check each node p;, p; € P, p; ¢ P', and calculate
the data accuracy increment for each services and node’s
contribution increment. Because each node can provide at
most m services and each execution selects one node with
maximum contribution increment, this process takes at most
O(mmn) time. In the next step, the loop is executed to assign the
selected node to provide each service that helps to improve
the data accuracy, and there are at most m services. In each
execution of the inside while loop, the algorithm checks each
node in P} and tries to find one node that without declining
the data accuracy of s; when this node does not provide s;.
The inside while loop will continue until no more of this kind
of nodes can be found. Because each P; contains at most n
nodes and each execution of the inside while loop selects one
node, the inside while loop takes at most O(n*) time and for
loop is O(mn?). Therefore, each execution of the outside while
loop takes at most O(mn + mn®) = O(mn?) time. Because
there are at most n nodes to be selected, the time complexity
of CSA is O(mn’). ]

6. Simulation Results and Analysis

In order to evaluate the actual behavior of the above
algorithms, we have relied on the experimental simulation
to show its performance. In this section, we have firstly
introduced the building process of our simulation and then
analyze the impact of spatial correlation parameters 6 and
SNR S on the results. Finally, we compare the performance
of SSA and CSA in different environments.

6.1. Simulation Setup. We use MATLAB as the platform tool
that is used popularly in simulation of wireless networks. The
scenarios are built in a square area 500 m x 500 m. The sensor
nodes are random placed as well as the sensing sources.
Here we assume that each sensing source is dedicated to
one special service. Given the sensor nodes and the sensing
sources, in the next step we need to decide the set of services
provided by these nodes. Here we adopt the randomly model
to determine whether node p; can provide service s; with a
given probability ratio g (0 < g < 1); that is, p; only provides
s; in case that the random value (between 0 and 1) is larger
than g. Here we also assume that each service is provided
by at least one node. Otherwise, the scenario is rebuilt until
this constraint is satisfied. And the data accuracy a for each
service is assumed to be identical. In this work, we build 100
different scenarios and compare the average performance of
the proposed algorithms.

6.2. Impact of Spatial Correlation Parameters 0 and SNR 3.
In this part, we analyze the impact of spatial correlation
parameters O and SNR f3 on the performance of the SSA and
CSA. The spatial correlation parameters 6 and SNR f3 are two
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FiGURe 5: Impact of spatial correlation parameter 6, 0 ¢
{500, 1000, 2000, 5000}.

parameters in the spatial correlation model, which we have
introduced in Section 3.2. The spatial correlation parameter 0
denotes the correlation of sensed data between the distances
among sensor nodes. As we can see from formula (2), the
larger 0 indicates a high degree of spatial correlation; that is,
the nodes in a network provide strongly correlated service.
The SNR f8 denotes the noise strength that will affect the
distortion of service. It is obvious that the larger § will result
in low distorted sensed data; that is, the services provided by
nodes are more accurate. As we can see, the two parameters
0 and $ will affect the sensed data, which in turn influences
the selection results.

The first set of experiments is concerned with the impact
of spatial correlation parameter 6 on the number of selected
nodes. The simulation is done with 300 nodes and 10 services,
and the SNR fis assumed to be 10 dB and g be 0.5. The spatial
correlation parameter 6 varies from 500, 1000, and 2000 to
5000, and we study the average number of the selected nodes
compared with the change of services’ accuracy requirement
a that starts from 0.7 to 0.97. As we can see from Figure 5,
the number of selected nodes is minimized in case that @ =
0.7, and it increases together with the increasing of accuracy
requirement d. However, this process is not so significant

1

Average number of selected nodes
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(a) SSA

0.7 0.75 0.8 0.85 0.9 0.95
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Average number of selected nodes

—— B=5dB —— B=15dB
—— B=10dB —e— B=20dB
(b) CSA

FIGURE 6: Impact of SNR 3, 3 € {5dB, 10dB, 15dB, 20 dB}.

until @ reaches some special point. For example, the average
number of selected nodes is among 1.79 to 4.34 when 0.7 <
a < 0.9 in case that & = 5000 and using CSA algorithm
to find solution; however, it increases rapidly when a >
0.9. Moreover, there might have not been enough nodes to
support the required data accuracy requirement; for example,
the maximum data accuracy requirement is about 0.87 in case
that 6 = 500.

The second set of experiments is concerned with the
impact of signal-to-noise ratio 8 on the number of selected
nodes, which is illustrated in Figure 6. The simulation is
done with 300 nodes and 10 services, and spatial correlation
parameter 0 is assumed to be 2000 and g be 0.5. The SNR
parameter f3 varies from 5dB, 10 dB, and 15dB to 20 dB, and
we study the average number of selected nodes compared
with the change of services’ accuracy requirement d that starts
from 0.7 to 0.96. We also can see that the number of selected
nodes remains stable or varies linearly when a is smaller;
however, it increases rapidly when a is larger than some
special point. This conclusion is similar to that of Figure 5.
As we know, the energy budget is an important criterion for
the wireless sensor networks, and it will worsen the network
performance if too many nodes are involved in the data
sensing process. The compromise from a given application
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FIGURE 7: Comparison of SSA and CSA with different data accuracy
requirements.

scenario will help to reduce the energy consumption by
selecting a proper accuracy requirement.

6.3. Performance Comparison between SSA and CSA. So far
as we know, this is the first works concerned with the node
selection algorithms with data accuracy guaranteed for the
service-oriented wireless sensor networks. Most of the related
works [28-31] focused on different research issues, such as
target tracking, and topology control. Wang et al. [13] had
proposed a scheduling algorithm for the service-oriented
wireless sensor network, but it did not consider the data
accuracy. In this section, we compare the performance of
SSA and CSA in different scenarios with varied accuracy
requirement, number of nodes n, number of service m, and
the value of g, respectively.

Figure 7 has shown the number of selected nodes with
SSA and CSA when the accuracy requirement a varies from
0.7 to 0.95. The simulation is done with 300 nodes and 10
services, and spatial correlation parameter 0 is assumed to be
2000, SNR f3 to be 10 dB, and g to be 0.5. The experimental
results show that CSA has better performance compared with
SSA in all situations.

The second set of simulations is done to show the impact
of network size on the number of selected nodes. The
simulation is done with 300 nodes and 10 services, and spatial
correlation parameter 0 is assumed to be 2000, data accuracy
requirement @ to be 0.92, SNR f3 to be 10dB, and g be 0.5.
And the network size varies from 100 to 500. As we can see
from Figure 8, the CSA has better performance than SSA
in all cases. Furthermore, we have two observations from
Figure 8. (1) The average number of the selected nodes is
relatively smaller in case that the network size is larger. This
is due to the fact that there are more potential candidates for
a given service with the network size increasing, and it helps
to reduce the number of selected nodes. (2) The number of
the selected nodes decreases slightly in case that the network
size reaches some special point. It implies that it is helpless to
reduce the number of selected nodes by adding more nodes
into the network.
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FIGURE 9: Comparison of SSA and CSA with different number of
services.

The third set of simulations focuses on the impact of
the number of services in the network on the number of
selected nodes. We use the similar parameters in the second
set of simulations. As we can see from Figure 9, CSA runs
better than SSA with different value of m although it is not
so significant when 1 is close to 5.

The fourth set of simulations focuses on the probability
q on the number of selected nodes by varying g from 0.1 to
0.9. We also use the similar parameters in the second set of
simulations. In fact, the parameter g indirectly represents the
number of services provided by nodes in the network. As
we can see from Figure 10, the number of the selected nodes
is rather close with SSA and CSA when ¢ is small enough.
Particularly, the SSA is even slightly better than CSA when
q = 0.1. However, the CSA shows better performance when
the value of g increases. Meanwhile, we can also obtain two
conclusions from this set of experiments. (1) The average
number of the selected nodes decreases with g increasing.
The larger g results in more services that can be provided by
selected nodes. Thus, each node can make more contribution
to the required services, which in turn reduces the total
number of selected nodes. (2) In case that g is larger enough,
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for example, g > 0.5, the average number of selected nodes
decreases slowly with g increasing.

7. Conclusion

To provide various services is one important trend for the
future wireless sensor networks, and the service-oriented
architecture allows different services supported simultane-
ously in the same physical area in which one sensor can
provide different kinds of service. Quality of services, such
as data accuracy, is one of the key criterions for applications
because the sensed data is generally a noisy version of the
physical phenomenon. The spatial correlation among the
sensed data makes it possible to select a subset of nodes
to provide the required services while the data accuracy is
guaranteed, which is obviously helpful to improve the per-
formance of the wireless sensor networks. We are concerned
with this issue in this paper and have formulated the node
selection problem into an Integer Nonlinear Programming
(INLP) problem. We also have developed two heuristic
algorithms, namely, Separate Selection Algorithm (SSA) and
Combined Selection Algorithm (CSA) for the problem. In the
future work we are to develop efficient scheduling schemes for
the node selection process and aim at providing a solution
for the service-oriented wireless sensor networks with the
network lifetime maximized. The temporal correlation is
also important to optimize the network performance. We
also plan to explore energy-efficient scheduling schemes for
service-oriented wireless sensor networks with both spatial
and temporal correlation considered.
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