
Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2013, Article ID 674698, 9 pages
http://dx.doi.org/10.1155/2013/674698

Research Article
QSA: Query Splitting-Based Anticollision for
Mobile RFID-Based Internet-of-Things

Jianliang Gao, Jianxin Wang, Jianbiao He, and Weiping Wang

School of Information Science and Engineering, Central South University, Changsha 410083, China

Correspondence should be addressed to Weiping Wang; wpwang@csu.edu.cn

Received 28 March 2013; Accepted 2 July 2013

Academic Editor: Lu Liu

Copyright © 2013 Jianliang Gao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Mobility is a common character of the emerging RFID-based internet-of-things. However, most of prior RFID anticollision algo-
rithms ignore the movement of tags, which can degrade the identification performance seriously and even result in tag starvation
problem. This paper presents a novel anticollision algorithm named Query Splitting-based Anticollision (QSA) for mobile RFID-
based internet-of-things. By designing adaptive query, QSA reduces the number of collisions efficiently and makes it possible to
identify multiple mobile tags without rollback. In QSA, we propose a query stack technology to avoid the rollback operation caused
by new arriving tags, which solves the tag starvation problem under mobile environments. The performance evaluation shows that
the proposed algorithm takes fewer timeslots and has better performance in identifying mobile tags.

1. Introduction

Radio frequency identification (RFID) is a contactless wire-
less communication technology. The scope for using this
technology boosts as RFID tag becomes a low-cost device due
to mass production [1]. As the rapid proliferation of RFID
tags, it has given rise to various concepts that integrate the
physical world with the virtual one. One of the most popular
concepts is the Internet-of-Things (IoT), a vision in which the
Internet extends into physical entities. In the IoT, RFID is the
foundation to connect the things together [2].

RFID systems consist of a reading device called reader,
and multiple tags which are attached to physical entities in
the IoT. The reader is typically a powerful device with ample
memory and computational resources. On the other hand,
tags vary significantly in their computational capabilities.
Among tag types, passive ones are emerging to be a popular
choice for large scale deployments due to their low cost [3].
For passive tags, they respond only at reader commands with
the energy provided by the reader [2, 4].

In RFID systems, the reader usually needs to communi-
cate with multiple tags. If there are multiple tags in a reader’s
interrogation zone, the reader receives the responses from
these tags simultaneously. For a reader, it is not able to distin-
guish exact information from the interfered wireless signals,

which is called collision. Collision is a serious problem in
RFID systems since the reader will not receive the messages
rightly once collision occurs [5]. An example is shown in
Figure 1. Simultaneous responses transmitted bymultiple tags
collide, resulting in an increase of identification delay, even
failure of reading the tags.Therefore, an efficient anticollision
algorithm is required to reduce collisions and to achieve fast
identification.

The tag collision problem becomes more serious in
mobile RFID-based IoT. The physical entities with tags are
oftenmobile, which facilitates competitive advantage through
benefits such as improved efficiency, increased visibility,
reduced cost, and many others [6]. The mobile devices can
be part of numerous products, gadgets, and vehicle parts [7].
These devices close the gap between the real word and its vir-
tual representation via, for example, seamless identification
and integration with other wirelessly-embedded devices and
their surroundings.

However, the mobile devices result in new challenges for
anticollision problem. One of the challenges is tag starvation.
For example, as shown in Figure 1, the reader is processing the
collision caused by Tag 1 to Tag 𝑁. Assuming the reader has
partitioned the tags for several rounds and will identify one
tag out right now. If Tag𝑁+1 enters the reader’s interrogation
zone at this time, the new arrived tagmight cause the rollback



2 International Journal of Distributed Sensor Networks

Reader

Tag NTag 1 Tag 2

Reader’s
interrogation zone

Antenna

· · ·

Tag N + 1

Collision

Figure 1: The tag collision with mobile tag.

of the partition operations. Therefore, the done operations
have to be repeated and the delay of identifying the tags
increases. If the new tags enter the reader’s interrogation zone
at an interval that causes rollback repeatedly, some tagsmight
depart the reader’s interrogation zone before being identified,
which is called “tag starvation” in mobile environments.
Therefore, it is necessary to provide efficient anticollision for
mobile RFID-based IoT.

In this paper, we will deal with the “tag starvation” and
performance problem for anticollision in mobile IoT. By the
design of query stack and query rules, the proposed anticol-
lision algorithm avoids repetition operations and decreases
the collisions consequently. In summary, our contributions
include the following.

(i) We characterize the problem of anticollision in
mobile environment, which is more practical for the
emerging IoT technology.

(ii) We propose a novel anticollision algorithm named
Query Splitting-basedAnticollision (QSA) formobile
RFID-based IoT, which solves the problem of tag star-
vation and performance degradation resulted from
the tag mobility.

(iii) Simulation and analysis evaluate the efficiency of
the proposed algorithm. The results show the better
performance of the proposed algorithm to the prior
methods.

The rest of this paper is organized as follows. Section 2
outlines preliminary, includes background, related work.
Section 3 presents the problems for mobile tags. Section 4
gives the detailed design of our algorithm. The simulation
results are provided in Section 5. Finally, Section 6 concludes
the paper.

2. Preliminary

2.1. Collision Detection. Code technologies are widely used
for collision detection. Manchester code is one of the most
popular technologies for RFID systems [5]. In Manchester
code, the value of one bit is defined as the voltage transition
within a bit window.A bit “0” is coded by a positive transition,
while a bit “1” is coded by a negative transition. In RFID

systems, if two (ormore) tags transmit different values simul-
taneously, the positive and negative transitions of the received
bits cancel each other out. This state is not permissible in
Manchester code during data transmission and is recognized
as an error. Therefore, Manchester code makes it possible to
“trace a collision to an individual bit” and “find where the
collided bit is” [8].

Figure 2 shows an example of Manchester code for
collision detection. The IDs of tag 1 and tag 2 are “10101100”
and “10001001,” respectively. When tags 1 and 2 send their
IDs simultaneously using Manchester code, the decoded
data from the interfered signal received by the reader is
“10𝑥01𝑥0𝑥,” where “𝑥” represents a collided bit. In this
example, the locations of the collided bits are the 3rd, 6th,
and 8th bits. This information helps the reader separate the
collided tags into subsets more smartly and identify the tags
more quickly.

Manchester code can be utilized to detect the collision
bits, but the tags should be strictly synchronized. Fortunately,
the tags in passive RFID systems are all driven by the reader
with both energy and the same clock frequency.

2.2. Anticollision Algorithms. Many researches have focused
on the issue of anticollision including tag-driven and reader
driven procedures [9]. Tag-driven anticollision protocols
function asynchronously [5]. For example, in Aloha-based
protocols [10], time is divided into slots and each tag ran-
domly transmits its ID in each timeslot. The tags contin-
uously retransmit their IDs until the reader acknowledges
their transmission. However, the Aloha-based protocols have
several serious problems. For example, a specific tag may
not be identified for a long time, leading to the so-called
“tag starvation” problem. The performance of Aloha-based
protocols is sensitive to the number of tags. Furthermore, it
is very difficult to predict the number of tags in mobile envi-
ronments, if not impossible.

For reader-driven anticollision protocols, they function
synchronously, since all tags are controlled and checked by
the reader simultaneously.Therefore, the reader can avoid tag
starvation under static environments. Furthermore, they can
be categorized into Binary Tree algorithm (BT) [11–13] and
Query Tree algorithm (QT) [14–16].

2.2.1. Binary Tree Algorithm (BT). BT performs collision res-
olution by splitting collided tags into disjoint subsets. These
subsets become increasingly smaller until they contain one
tag. Each tag has a random binary number generator. For
example, in Figure 3, tags with a counter value of zero are
considered to be in the transmit state; otherwise, tags are in
the sleep state. After each timeslot, the reader informs tags
whether there is a collision or not. If therewas a collision, each
tag in the transmit state generates a random binary number.
Tags will become in sleep state after being identified.

As can be seen that the average number of timeslots to
identify the first tag is

𝑇 (𝑁) = log
2
𝑁, (1)

where𝑁 is the number of tags. Note that the reader needs to
broadcast the universal condition (all bits are “1”) before the



International Journal of Distributed Sensor Networks 3

1 0 11 0 1 0 0

1 0 0 0 1 0 0 1

1 0 10 0

Tag 1

Tag 2

Decoded data
x x x

Figure 2: Collision detection with Manchester code.

0 1

0 1

0 10 1

0 1

0 10 1

Collision
Tag

The first timeslot

The second timeslot

The third timeslot

Figure 3: Binary tree based anticollision procedure.

first timeslots to collect all tags lying in its interrogation zero.
Furthermore, the total number of timeslots for identifying all
𝑁 tags is

𝑇 (𝑁) =

𝑁

∑

𝑘=1

log
2
𝑘. (2)

The time consumption is the most serious defect since it
has not recorded the history information, which results in a
large amount of repeat operations.

2.2.2. Query Tree (QT). Query tree (QT) algorithms store
tree construction at the reader, and tags only need to have a
prefix matching circuit. The reader transmits a serial number
to tags, which they then compare against their IDs. The tags
whose IDs equal to or lower than the serial number respond
to the reader’s command.The reader thenmonitors tags reply
bit by bit usingManchester code, and once a collision occurs,
the reader splits tags into subsets based on collided bits. The
reader then transmits another query by replacing the most
significant collided bit with “0” and sets the other bits to “1.”
This procedure stops until a single tag has been selected out.

Rollback Query Tree (RQT) is proposed to reduce the
average number of timeslots for identifying the tags. During
the partition operation, these records are saved at the reader.
Thus, the anticollision can avoid the repeating operations
based on the saved informationwhen the reader tries to select
out the next tag. The timeslot number of RQT is

𝑇 (𝑁) = log
2
𝑁 +𝑁 − 1, (3)

where𝑁 is the number of tags.

3. Problem for Identifying Mobile Tags

In static environments, Rollback Query Tree reduces the
number of timeslots to deal with collision in RFID systems.
However, both tag starvation and delay problems occurred in
mobile environments. If one tag enters the reader’s interro-
gation zone when the reader is processing the entered tags,
some obtained results might be destroyed by the new arrived
tag. The total number of identifying tags is

𝑇 (𝑁 +𝑀) = 𝑇 (𝑁) +

𝑀

∑

𝑖=1

(𝑇
𝑖
+ 𝑅
𝑖
) , (4)

where𝑁,𝑀 are the numbers of the tags in the reader’s inter-
rogation zone already and the new arrived tags, respectively;
𝑇(𝑁) is the timeslots number as is defined in formula (3).
𝑇
𝑖
, 𝑅
𝑖
are the timeslots for processing the new arrived tag 𝑖

and the timeslots that caused by the repeat operations. The
increased timeslot for a new arrived tag 𝑖 is 𝑇

𝑖
+ 𝑅
𝑖
.

If the increased time is greater than the interval time
between the arriving tags, the existing tags might not be
processed in a long time since the reader has to reexecute the
rollback operations for the new arrived tags. Therefore, tags
starvation problem will happen if the following condition is
met:

𝑇
𝑖→ 𝑖+1
≤ 𝑇
𝑖
+ 𝑅
𝑖
, (5)

where 𝑇
𝑖→ 𝑖+1

is the interval time between the new arrived
tag 𝑖 to 𝑖 + 1. If each tag 𝑖 meets the requirement in formula
(5), no tags will be selected out successfully.This requirement
is considerably strong, but to a moving tag, it will fail to be
identified only if the reader has not processed before it leaves
the reader’s interrogation zone.



4 International Journal of Distributed Sensor Networks

In the following, we take an example to illustrate the
rollback caused by a new arriving tag. As shown in Figure 4,
there are already four tags (IDs: 10100011, 11100010, 11100011,
and 11110010) in the reader’s interrogation zone. After two
rounds of query (named 𝑞

1
and 𝑞

2
), the tag 10100011 is the

first one to be identified. Then, the reader should broadcast
the queries 𝑞

3
, 𝑞
4
, and 𝑞

5
to select the next smallest tag

11100010 in the reader’s interrogation zone. If a new tag
01100011 enters the interrogation zone between broadcasting
𝑞
4
and 𝑞

5
, it will respond to the query 𝑞

5
“≤11100010.” Then,

the reader receives the response “𝑥110001𝑥” (combined by
11100010 and 01100011) instead of selecting out tag 11100010.
Therefore, the reader should broadcast the new request com-
mand “≤11111111” according to the highest uncertain “𝑥” bit.
Unfortunately, this query command includes the responses
from all tags, and the queries “𝑞

3
” and “𝑞

4
” have to be

executed again in the following. In an extreme situation, the
operation might be repeated many times for the consecutive
arriving tags as shown in formula (5). Thus, tag starvation is
possible for query tree schemes in mobile environments.

4. QSA: Query Splitting-Based
Anticollision for Mobile IoT

4.1. Overview of the Anticollision Algorithm. Firstly, a set of
queries 𝑄 = (𝑞

1
, 𝑞
2
, . . . , 𝑞

𝑙
) is defined for the reader, where

𝑞
1
is initialized as “≤{1}𝑛”. The reader executes the following

steps to identify tags.

(1) Broadcast the current query in 𝑄 to all tags.
(2) When receiving the responses from tags:

(2.1) if the reply is string 𝑤 without “𝑥” bits, then
select and process the tag with ID 𝑤;

(2.2) if a collision is detected; that is, the reply is string
𝑤 with “𝑥” bits, then set the next query in 𝑄;

(2.3) if there is no reply from tags, do nothing.

(3) Update 𝑄 according to the received responses.

Repeat the above procedure until 𝑄 is empty. In this
procedure, four commands (REQUEST, SELECT, READ-
DATA, and DESELECT) are adopted as defined in Table 1.

For tags, let𝑤 = 𝑤
1
𝑤
2
, . . . , 𝑤

𝑛
be the tag’s ID.The query is

defined as follows: if𝑤 ≤ 𝑞, then the tag sends string𝑤 to the
reader, where 𝑞 is the query string received from the reader.

As can be seen from the above procedure that the key
problem is how to design the query scheme, our main idea
is to keep the history records which can avoid rollback of the
done operations.

4.2. Design of Adaptive Query

4.2.1. Query Stack Design for Rollback Operation. As shown
in Table 1, REQUEST is the query command for the reader
to split tags into subsets. To reduce the total timeslots for
identifying all tags, we design a query stack structure to
implement the rollback operations during query process.
“Push Query” and “Pop Query” are the two basic operations

Table 1: Definition of commands.

REQUEST
(ID Condition)

Reader sends REQUEST command with
parameter ID Condition to tags. Tags compare
their IDs against the received ID Condition
and reply their IDs to the reader if ID ≤
ID Condition.

SELECT (ID) Reader selects the tag ID.
READ-DATA Reader reads data from the selected tag.

DESELECT Reader cancels the selected tag, and this tag
thus enters silent state.

of query stack. Each query response is pushed into query
stack if and only if the response includes “𝑥.”

We also take the example in Figure 4 to explain the
stack operation. The response is “111𝑥001𝑥” for the query
𝑞
3
: “≤11111111.” The response “111𝑥001𝑥” includes “𝑥”; thus,

it is pushed into the query stack as shown in Figure 5. In the
same way, the response “1110001𝑥” is also pushed into the
query stack with the query 𝑞

4
: “≤11101111.” When the reader

broadcasts the query 𝑞
5
: “≤11100010,” a new tag “01100011”

enters the reader’s interrogation zone. Thus the response will
be “𝑥110001𝑥” and it is also pushed into the stack as shown
in Figure 5.

Once a response includes no “𝑥,” the reader will select this
tag (using the command SELECT as shown in Table 1) and
read the selected tag (using the command READ-DATA as
shown in Table 1). After that, the reader will pop one element
from the query stack. For example, when the new arrived tag
“01100011” has been processed, the element “𝑥110001” will
then be popped out. The following design is how to set the
“𝑥” bits and broadcast new query commands.

4.2.2. Rule Design for Query Condition. The rule for query
command is one of the most important designs in QSA. As
shown in Table 2, the rules can be presented as two kinds.
One is for the obtained response, and the other is for the pop
stack.

(1) Rule for Obtained Response. When the reader receives
response including “𝑥” bits, the next query condition should
be set according to the collision bits in the response. The
second line in Table 2 shows the rule for this kind of obtained
response.

In the first iteration, all bits are set as “1,” that is,
Max(ID), to collect the responses from all tags. For example,
the parameter is “11111111” for eight bits ID. In the following
iteration, the highest bit “𝑥” is set as “0”; the bits which are
lower than the highest “𝑥” are all set as “1.” According to the
setting of “𝑥” bits, we can draw the following theorem.

Theorem 1. Rule for obtained response implements binary
splitting for multiple tags.

Proof. The response is a string 𝑆 = {0, 1, 𝑥}𝑛, where 𝑛 is the
bit number of tag ID. The highest “𝑥” bit in 𝑆 is denoted as 𝑘,
and it must meet the following requirement:

𝑆 [𝑘] = {𝑥} , 𝑆 [𝑛 ⋅ ⋅ ⋅ 𝑘 + 1] = {0, 1}
𝑛−𝑘
. (6)



International Journal of Distributed Sensor Networks 5

A

B

11110010C

01100011

Rollback for
the new arrived tagq3 :≤ 11111111

q1 :≤ 11111111

q2 :≤ 10111111

q7 :≤ 11111111
q4 :≤ 11101111

q5 :≤ 11100010

q6 :≤ 11100011

10100011

Processed tag

To be processed

New arrived

1110001111100010

Collision

Figure 4: Rollback problem for the new arrived tag.

Stack 3

Stack 2

Stack 1

Push query Pop query

x110001x

1110001x

111x001x

Figure 5: Query stack for new arrived tags.

Table 2: Rule design for query condition.

The first
iteration The nth iteration

Rule for
obtained
response

Max(ID)
bit(𝑘) = 0, bit(𝑘 − 1 ⋅ ⋅ ⋅ 1) = {1}𝑘−1,
(where k is the highest “x” bit in the
response)

Rule for pop
stack

Cannot
happen

if there is new arrived tag
bit(𝑘) = 1;
bit(𝑘 − 1 ⋅ ⋅ ⋅ 1)= {0}𝑘−1

else
bit(𝑘 ⋅ ⋅ ⋅ 1) = {1}𝑘

end

Then, there is at least one tag whose 𝑘th bit is “1” and at
least one tagwhose 𝑘th bit is “0.”Otherwise, the 𝑘th bit cannot
be “0.”Therefore, REQUEST “≤ bit(𝑘) = 0, bit(𝑘−1 ⋅ ⋅ ⋅ 0) = 1”

splits the tags into two catalogs as binary division: one catalog
is with 𝑆[𝑘] = {0}, and the other is with 𝑆[𝑘] = {1}.

This rule can reduce the query scope by dividing the
responding tags into two catalogs until only one tag respond.

(2) Rule for Pop Stack. After one tag is selected and processed,
the top element is popped out. This element includes “𝑥” bit.
The rule for pop stack deals with the problem of setting these
bits, which is shown in the third line of Table 2. Note that it
cannot be the first iteration in anticollision process (“cannot
happen” in Table 2) since the stack is empty at the beginning.

To the popped element, there are two situations: without
new arrived tag and with arrived tag when it pushed into
the stack. For the situation without new arrived tag, all bits
are set as “1” in order to include all unprocessed tags; that
is, bit(𝑘 ⋅ ⋅ ⋅ 1) = {1}𝑘, where 𝑘 is the highest “𝑥” bit. On the
other hand, if there are new arrived tags, the highest “𝑥”
bit is set as “1,” and the lower bits are all set as “0”; that is,
bit(𝑘 − 1 ⋅ ⋅ ⋅ 1) = {0}𝑘−1.

Whether there is new arrived tag or not, it can be judged
according to the following formula:

Highest𝑥 (Top) > Highest𝑥 (Top-1) , (7)

whereHighest𝑥 is the function to obtain the highest “𝑥” bit in
its parameter, Top means the first element in the query stack,
and Top-1 is the second one.

Theorem 2. If the highest “𝑥” bit of the first stack element
is higher than that of the second stack element, that is, the
condition of formula (7) is met, there must be new arrived tag.



6 International Journal of Distributed Sensor Networks

Begin

Request (max ID)

Wait for a given period

No

No

No

Yes

Received the
response?

“X” bit in V?

Yes

Read-data

Deselect

Read one tag

Stack is empty?

End

Process right subtree

Process left subtree pop stack”, and

Set V as “rule for
obtained value”, and

request (V)

Yes

Decode the response V

Push V onto stack

Select (V)

V󳰀 = pop stack
Set V󳰀 as “rule for

request (V󳰀)

Figure 6: Flow chart of the proposed QSA algorithm.

Proof. According to rule for obtained response, the reader
first processes the tags whose highest “𝑥” bit is “0.”Therefore,
only when the higher “𝑥” bit is processed, it is possible
for lower “𝑥” to be processed. Thus, the highest “𝑥” always
decreases as the distance to the top of query stack. However,
it is possible that the “𝑥” can be at any bit if new tags arrive.
That is to say, formula (7) is a result caused by new arrived
tags.

For example, as shown in Figure 5, the highest “𝑥” bit
in the top stack element Stack 3 is 8, and that in Stack 2 is
1. Formula (7) meets and there is new arrived tag. In the
example, the query for Stack 2 element “1110001𝑥” is 𝑞

5

“≤11100010” in the example of Figure 4.While the highest “𝑥”
bit in top element Stack 1 is the 8th bit. There is new arrived
tag whose 8th bit is “0.” Otherwise, the new arrived tag is
impossible to be included by the query “≤11100010” and the
top element cannot be “𝑥” at the 8th bit. In fact, there is a
new arrived tag whose ID is 01100011 in the example.

4.3. The Procedure of the Proposed QSA. Based on the design
of query stack and query rule, we describe the procedure
of the proposed QSA algorithm in the following. In QSA,

the reader first broadcasts the query with the parameter
(max ID) and receives the replies from all tags in its inter-
rogation zone. If the received response of this query includes
“𝑥,” the tree can be divided into the left subtree and the right
subtree according to the highest bit “𝑥.” In the left subtree,
the highest “𝑥” bit is “0,” and that of the right tree is “1.” The
procedure of the anticollision algorithm is shown in Figure 6.
Itmainly includes three parts: process the left subtree, process
the right subtree, and read one tag.

4.3.1. Process the Left Subtree. If there is “𝑥” in the received
response, the reader begins to process the left subtree. Firstly,
the reader pushes the response which has “𝑥” bits into the
query stack. We design this query stack which can record the
entrance to the right subtree.Then, it sets the query condition
according to the rule for obtained response in Table 2. Finally,
the reader broadcasts the query with the set condition, which
enables a new round communication.

4.3.2. Read One Tag. If the received response has no “𝑥” bit,
there is no collision and a single tag is identified. The reader
will select this tag and read data from it. After the tag is



International Journal of Distributed Sensor Networks 7

0 100 200 300
0

500

1000

1500
Th

e n
um

be
r o

f c
ol

lis
io

ns
 (t

im
es

)

The number of tags

 QT
 RQT
 Proposed QSA

(a)

0 100 200 300
0

400

800

1200

Th
e n

um
be

r o
f c

ol
lis

io
ns

 (t
im

es
)

The number of tags

 QT
 RQT
 Proposed QSA

(b)

Figure 7: The number of collisions versus various numbers of tags. (a) Tag ID is 64 bits; (b) tag ID is 128 bits.

0 100 200 300

45

48

51

The number of tags

 RQT
 Proposed QSA

Id
en

tifi
ca

tio
n 

effi
ci

en
cy

 (%
)

Figure 8: Identification efficiency.

processed, command “DESELECT” will make this tag keep
silent state in the following.

4.3.3. Process the Right Subtree. After one tag is read, the
algorithm will begin to process the right subtree. Firstly, the
top element of the query stack is popped out, and it is set
according to the rule for pop stack. As described in previous
Section, there are two possibilities, that is, with new arrived
tag and without new arrived tag when setting the query
condition. If there is new tag which causes higher “𝑥” bit,
the query will enter the left tree process after receiving the
response. Otherwise, the process will further deal with the
right subtree. Note that the process will end until the query

200

400

600

800

Th
e n

um
be

r o
f c

ol
lis

io
ns

 (t
im

es
)

 QT
 RQT
 Proposed QSA

0 2 4 6
The interval of entering tags (timeslots)

Figure 9:The number of collisions versus various mobile velocities.

stack is empty, which means that all tags have been identified
already.

5. Simulation Results

To evaluate anticollision performance, we compare the time
consumption and identification efficiency of the proposed
QSA algorithm with that of two representative schemes
Query tree (QT) and Rollback Query Tree (RQT). Under
mobile environments, we measure the number of timeslots
used to read out all tags. Firstly, we fix mobile velocity of the
tags and evaluate the results.Themobile velocity of tags is set



8 International Journal of Distributed Sensor Networks

as the following rule: a group of five tags enter the reader’s
interrogation zero at the interval of five timeslots.

Figure 7 shows the results of collision numbers under
various numbers of tags. As can be seen that QT meets the
most number of collisions, since it has not recorded the
query results during the procedure of finding the least tag
ID. RQT always takesmore collisions than the proposedQSA
algorithm, which is consistent with formula (4). Both 64 bits
and 128 bits tag ID in Figures 7(a) and 7(b), the proposed
QSA takes the least number of collisions, which illustrates
the efficiency of the QSA since it overcomes the rollback
operations when new tags arrive.

To identify the tags as soon as possible, the algorithm
should keep high identification efficiency. Identification effi-
ciency is defined as the ratio of the number of success
timeslots to the total timeslot number. Higher identification
efficiency means less wasted timeslots for collisions. Figure 8
describes the comparison of identification efficiency between
RQT and the proposed QSA. The identification efficiency of
QSA is higher than that of RQT. It validates the analysis of
number of consumed timeslots in Figure 7(a). The identifi-
cation efficiency of the proposed QSA especially decreases
slowly as the tag number increases.While the RQT is of lower
identification efficiency when the tag number increases. For
example, the identification efficiency of the RQT is below 45%
when the tag number is 300.

From the theoretical analysis, it can be known that the
mobile velocity will affect the results of collisions. Finally, we
evaluate the impact of tagmobile velocity. In this experiment,
total 200 tags enter the reader’s interrogation zone at different
intervals, which varies from 1 to 5 timeslots. The same
with the above experiments, five tags come into the reader’s
interrogation zone at a pointed timeslot. As can be seen from
Figure 9, the proposed QSA achieves the least number of
collisions under all intervals of entering tags. An interest-
ing change happens in QT scheme: the collision number
increases firstly and then decreases. It is because the tag
number increases quickly at the smaller interval of entering
tags, which causes more collisions. The gap between RQT
and the proposed QSA increases as the interval increases. It
indicates that the velocity of mobile tags will cause different
rollback operations in RQT, while it is eliminated in our QSA
algorithm.

6. Conclusions

Collision is considered as one of the most important issues
that affect the identification process in RFID systems. Mobile
tags of IoT especially induce new problems such as perfor-
mance degrade and tag starvation. In this paper, we propose
a novel anticollision algorithm named QSA to solve these
problems. The proposed QSA can overcome the problems
resulted from mobile tags efficiently. Compared to prior
schemes, the QSA presents a better performance at different
mobile velocity and various tag numbers.

Acknowledgments

This work is supported in part by the National Natural
Science Foundation of China under Grant nos. 61106036,

61173169, and 61272147, in part by the science and technology
projects of Hunan province, and in part by State Key Lab-
oratory of Computer Architecture, Institute of Computing
Technology, Chinese Academy of Sciences.

References

[1] A.-H. Mohsenian-Rad, V. Shah-Mansouri, V. W. S. Wong, and
R. Schober, “Distributed channel selection and randomized
interrogation algorithms for large-scale and dense RFID sys-
tems,” IEEE Transactions on Wireless Communications, vol. 9,
no. 4, pp. 1402–1413, 2010.

[2] F. Villanueva, V. David, and M. Francisco, “Internet of Things
architecture for a RFID-based product tracking business
model,” in Proceedings of the 6th International Conference on
Innovative Mobile and Internet Services in Ubiquitous Comput-
ing, pp. 811–816, 2012.

[3] Y.-H. Chen, S.-J. Horng, R.-S. Run et al., “A novel anti-collision
algorithm in RFID systems for identifying passive tags,” IEEE
Transactions on Industrial Informatics, vol. 6, no. 1, pp. 105–121,
2010.

[4] J. Panneerselvam, L. Liu, R. Hill, Y. Zhan, and W. Liu, “An
investigation of the effect of cloud computing on network
management,” in International Conference on High Performance
Computing and Communications, pp. 1794–1799, 2012.

[5] D. K. Klair, K.-W. Chin, and R. Raad, “A survey and tutorial of
RFID anti-collision protocols,” IEEE Communications Surveys
and Tutorials, vol. 12, no. 3, pp. 400–421, 2010.

[6] Y. Jiang and R. Zhang, “An adaptive combination query tree
protocol for tag identification in RFID systems,” IEEE Commu-
nications Letters, vol. 16, no. 8, pp. 1192–1194, 2012.

[7] S. Jiang, J. Miao, and L. Wang, “Mobile node authentication
protocol for crossing cluster in heterogeneous wireless sensor
network,” in Proceedings of the 3rd International Conference on
Communication Software and Networks (ICCSN ’11), pp. 205–
209, May 2011.

[8] X. Jia, Q. Feng, and C. Ma, “An efficient anti-collision protocol
for RFID tag identification,” IEEE Communications Letters, vol.
14, no. 11, pp. 1014–1016, 2010.

[9] L. Kang, J. Zhang, K. Wu, D. Zhang, and L. Ni, “RCSMA:
receiver-based carrier sense multiple access in UHF RFID
systems,” IEEE Transactions on Parallel and Distributed Systems,
vol. 23, no. 4, pp. 735–743, 2012.

[10] M. Al-Medhwahi, A. Alkholidi, and H. Hamam, “A new hybrid
frame ALOHA and binary splitting algorithm for anti-collision
in RFID systems,” in Proceedings of the 18th International
Conference on Software, Telecommunications and Computer
Networks (SoftCOM ’10), pp. 219–224, September 2010.

[11] Y.-C. Lai and C.-C. Lin, “Two blocking algorithms on adaptive
binary splitting: single and pair resolutions for RFID tag
identification,” IEEE/ACM Transactions on Networking, vol. 17,
no. 3, pp. 962–975, 2009.

[12] Y.-C. Lai and C.-C. Lin, “A pair-resolution blocking algorithm
on adaptive binary splitting for RFID tag identification,” IEEE
Communications Letters, vol. 12, no. 6, pp. 432–434, 2008.

[13] Y.-C. Lai and L.-Y. Hsiao, “General binary tree protocol for
coping with the capture effect in RFID tag identification,” IEEE
Communications Letters, vol. 14, no. 3, pp. 208–210, 2010.

[14] Y. Lai, L. Hsiao, H. Chen, C. Lai, and J. Lin, “A novel query
tree protocol with bit tracking in RFID tag identification,” IEEE
Transactions on Mobile Computing, pp. 1–13, 2012.



International Journal of Distributed Sensor Networks 9

[15] J. H. Choi, D. Lee, andH. Lee, “Query tree-based reservation for
efficient RFID tag anti-collision,” IEEE Communications Letters,
vol. 11, no. 1, pp. 85–87, 2007.

[16] J. Shin, B. Jeon, and D. Yang, “Multiple RFID tags identification
with M-ary query tree scheme,” IEEE Communications Letters,
vol. 17, no. 3, pp. 604–607, 2013.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


