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e localization and tracking technology for a three-dimensional target, which is a kernel problem in themilitary area, has received
more and more attention. is paper proposes a closed-loop system to detect 3D maneuvering targets, including data acquisition,
the direction of arrival (DOA) estimation, the triangle localization, and a tra�ectory prediction. is system �rstly uses several
L-shaped sensor arrays to sample the signals of maneuvering targets. en the 2D ESPRIT algorithm and a maximum likelihood
algorithm are introduced to achieve the positions of the spatial targets.irdly an autoregressive (AR) particle �lter (PF) algorithm
is realized to predict the locations in the next moment. Finally the localization process is directed by using the predicted positions
to form a positive feedback closed loop. Experiment results show that this system can enhance the robustness and accuracy of the
localization and tracking for three-dimensional maneuvering targets.

1. Introduction

Localization and tracking play a critical role in military
applications and such as radar warning, battle�eld monitor-
ing. e kernel problem of each application is the ability of
accurate localization. e most popular location tool is the
Global Positioning System (GPS) [1]. Sometimes the location
accuracy of the GPS is less than 0.1m, but this sensor is
usually used for self-localization. e multimedia sensor is
another big type of location tools, such as CCD sensor [2, 3],
stereo camera [4], and infrared sensor. However, multimedia
sensor needs an extremely high image resolution, a fast
network �ow rate, and distinguished feature which limits
its extensive use. RFID [5], wireless sensor networks [6],
hybrid sensor networks [7] are generally used for the short-
range target localization because their wireless transmission
is easily in�uenced by the circumstance and the distance.

e reasons why the sensor array [8, 9, 10, 11, 12] is
chosen in this paper to localize targets are as follows: sensor
array is able to localize multiple targets simultaneously;
sensor array can certainly eliminate the same noise and
interference which can increase the signal noise ratio of the

received data; and the localization and tracking system using
sensor array is little impacted by the environment which
can increase the accuracy reliability and robustness. Sensor
array is widely used for localization. For example, Tidd
used an 8-element uniform circular sensor array to precisely
localize the far-�eld target by multiple signals classi�cation
algorithm [9]. Fallon and Godsill [10] and Talantzis [11]
use a microphone array to locate the acoustic source. Lin
compared the performance of DOA estimation with different
types of sensor array, such as cross array, circular arrays, and
L-shaped array. e Clay Metro lower boundary of uniform
L-shaped array was almost lowest except circular array. e
direction-�nding resolution and orientation consistency of
the L-shaped array were much better than circular array [12].

Aer well localization, tracking process is always carried
out to enhance the performance of the localization and
tracking system. Tidd use the �alman �lter to deal with
the DOA and speed of the target to offer strategic, fast,
and low-cost advantages [9]. Fallon and Godsill designed
a track before detect framework to obtain the probability
distribution of the particle �lter which could guide the
resample process to create better particles in a comparative
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F 1: A uniform L-shaped sensor array receiving far �eld
narrowband signal.

computational load [10]. is framework could increase the
stability of the tracking system. Talantzis used the particle
�lter to predict the target trajectory [11]. e predicted
position was used to estimate the accuracy of the localization
by the microphone array and then replaced the inaccurate
localization, sometimes as the true localization value when
targets could not be detected.

is paper proposes a closed-loop localization and track-
ing system for three-dimensional targets. Firstly, choose
several uniform L-shaped arrays to sample the spatial target
signals and estimate the DOA of the 3D target with a two-
dimensional estimating signal parameter via a rotational
invariance techniques (2D ESPRIT) algorithm. en the
positions of the targets are calculated by a novel maximum
likelihood (ML) algorithm according to the estimated DOA
and the location of L-shaped sensor arrays. irdly the
autoregressive particle �lter algorithm is proposed to predict
the target trajectory the in next time. Finally, the system
uses the predicted position to guide the localization process.
is system combines the localization and tracking algorithm
together to form a positive feedback closed loop. is loop
can increase the stability, robustness, and accuracy of the
localization and tracking system.

e outline of this communication is as follows. In
Section 2, the signal reception model based on the sensor
array is developed. e proposed closed-loop localization
and tracking system is described in Section 3. In Section 4,
a series of experiment results are made to validate that the
regenerative feedback system can work well to enhance the
performance of the localization and tracking system. Finally
the conclusion and perspectives are presented in Section 5.

2. Signal-ReceptionModel of Sensor Array

We consider a uniform L-shaped sensor array to localize and
track the 3Dmaneuvering target.Make the intersected sensor
as the origin and the arms of 𝐿𝐿 type array as the axis to build
a virtual coordinate system (shown in Figure 1). Each arm of
the array have 𝑀𝑀 elements. e sensors in the array are of
the same nature. e distance between adjacent elements in
𝑥𝑥-axis is 𝑑𝑑𝑑𝑑 and in 𝑦𝑦-axis is 𝑑𝑑𝑑𝑑.

L-shaped sensor array is used for collecting the narrow
band signals emitted from the far-�eld target located at
(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥). e wavelength of signal is 𝜆𝜆. (𝜙𝜙𝜙 𝜙𝜙𝜙 is the DOA of
the spatial target. e elevation angle 𝜙𝜙 𝜙 𝜙𝜙𝜙 𝜙𝜙𝜙∘. Azimuth
angle 𝜃𝜃𝜃𝜃  𝜃𝜃𝜃𝜃𝜃 𝜃𝜃𝜃𝜃∘.

e array manifold vector, called the steering vector, of
the uniform L-shaped array is given as

𝐚𝐚𝑥𝑥󶀡󶀡𝜙𝜙𝜙 𝜙𝜙󶀱󶀱 = 󶁢󶁢1, 𝑢𝑢󶀡󶀡𝜙𝜙𝜙 𝜙𝜙󶀱󶀱 ,… , 𝑢𝑢𝑀𝑀𝑀𝑀󶀡󶀡𝜙𝜙𝜙 𝜙𝜙󶀱󶀱󶁲󶁲
𝑇𝑇
,

𝐚𝐚𝑦𝑦󶀡󶀡𝜙𝜙𝜙 𝜙𝜙󶀱󶀱 = 󶁢󶁢1, 𝑣𝑣󶀡󶀡𝜙𝜙𝜙 𝜙𝜙󶀱󶀱 ,… , 𝑣𝑣𝑀𝑀𝑀𝑀󶀡󶀡𝜙𝜙𝜙 𝜙𝜙󶀱󶀱󶁲󶁲
𝑇𝑇
,

with
󶀂󶀂󶀒󶀒󶀒󶀒
󶀊󶀊󶀒󶀒󶀒󶀒
󶀚󶀚

𝑢𝑢𝑘𝑘󶀡󶀡𝜙𝜙𝜙 𝜙𝜙󶀱󶀱 = exp󶀥󶀥𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑥𝑥 × 𝑘𝑘 𝑘 𝑘𝑘𝑘 𝑘𝑘 𝑘𝑘𝑘
𝜃𝜃
𝜆𝜆
󶀵󶀵

𝑣𝑣𝑘𝑘󶀡󶀡𝜙𝜙𝜙 𝜙𝜙󶀱󶀱 = exp󶀥󶀥𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑦𝑦 × 𝑘𝑘 𝑘 𝑘𝑘𝑘 𝑘𝑘 𝑘𝑘𝑘
𝜃𝜃
𝜆𝜆
󶀵󶀵 ,

(1)

where (⋅)𝑇𝑇, 𝑗𝑗, 𝑥𝑥, 𝑦𝑦 denote matrix transposition, imagi-
nary unit, 𝑥𝑥-axis, and 𝑦𝑦-axis, respectively. e snapshot
signal vector 𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗𝐗  1(𝑡𝑡𝑡𝑡𝑡𝑡 2(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝑀𝑀(𝑡𝑡𝑡𝑡

𝑇𝑇, 𝐘𝐘𝐘𝐘𝐘𝐘𝐘
[𝑦𝑦1(𝑡𝑡𝑡𝑡𝑡𝑡 2(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝑀𝑀(𝑡𝑡𝑡𝑡

𝑇𝑇 on 𝑥𝑥- and 𝑦𝑦-axis sampled by the L-
shaped array is written as

𝐗𝐗(𝑡𝑡) = 𝐀𝐀𝑥𝑥𝐒𝐒(𝑡𝑡) + 𝐍𝐍𝑥𝑥(𝑡𝑡) ,

𝐘𝐘(𝑡𝑡) = 𝐀𝐀𝑦𝑦𝐒𝐒(𝑡𝑡) + 𝐍𝐍𝑦𝑦(𝑡𝑡) ,
(2)

where 𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒  𝐒𝐒1(𝑡𝑡𝑡𝑡𝑡𝑡 2(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  𝑛𝑛(𝑡𝑡𝑡𝑡
𝑇𝑇 are the complex

envelope vector of the incoming signals. 𝑛𝑛 is the number
of targets which can be detected. 𝐍𝐍𝑥𝑥(𝑡𝑡𝑡 and 𝐍𝐍𝑦𝑦(𝑡𝑡𝑡 are the
Gaussian white noise vectors whose mean is 0 and variance is
𝜎𝜎2 decided by signal noise ratio (SNR). 𝐀𝐀𝑥𝑥 and 𝐀𝐀𝑦𝑦 are array
manifold matrixes as

𝐀𝐀𝑥𝑥 = 󶁡󶁡𝐚𝐚𝑥𝑥󶀡󶀡𝜙𝜙1,𝜃𝜃 1󶀱󶀱 ,… , 𝐚𝐚𝑥𝑥󶀡󶀡𝜙𝜙𝑛𝑛,𝜃𝜃 𝑛𝑛󶀱󶀱󶀱󶀱 ,

𝐀𝐀𝑦𝑦 = 󶁢󶁢𝐚𝐚𝑦𝑦󶀡󶀡𝜙𝜙1,𝜃𝜃 1󶀱󶀱 ,… , 𝐚𝐚𝑦𝑦󶀡󶀡𝜙𝜙𝑛𝑛,𝜃𝜃 𝑛𝑛󶀱󶀱󶁲󶁲 .
(3)

3. Closed-Loop Localization and
Tracking System for the 3D Target

With the data received by L-shaped sensor arrays, this paper
uses 2D EPSRIT and ML algorithms to get the targets’ posi-
tions. en predict the trajectories by integrating AR model
into PF algorithm. Finally guide the targets’ localization
process with the predicted positions.ewhole system forms
a closed-loop feedback and improves the localization and
tracking accuracy.

3.1. 2D ESPRIT Algorithm. 2D ESPRIT algorithm [11] is the
expansion of ESPRIT algorithm. According to the snapshot
data 𝐗𝐗𝐗𝐗𝐗𝐗, 𝐘𝐘𝐘𝐘𝐘𝐘 received by arrays, the special covariance
matrix is calculated.en construct the signal subspace using
a singular value decomposition (SVD) of the covariance
matrix. With the eigenvalue derived from SVD, get 𝑢𝑢𝑢𝑢𝑢𝑖𝑖,𝜃𝜃 𝑖𝑖)
and 𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝜃𝜃 𝑖𝑖) mentioned in (5). e elevation and azimuth
angle (𝜙𝜙𝑖𝑖,𝜃𝜃 𝑖𝑖) can be achieved by 𝑢𝑢𝑢𝑢𝑢𝑖𝑖,𝜃𝜃 𝑖𝑖) and 𝑣𝑣𝑣𝑣𝑣𝑖𝑖,𝜃𝜃 𝑖𝑖).
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e 2D ESPRIT algorithm can be described as follows.

Step 1. Decompose 𝐗𝐗𝐗𝐗𝐗𝐗 and 𝐘𝐘𝐘𝐘𝐘𝐘 into 4 an same size of the
submatrixes 𝐗𝐗1(𝑡𝑡𝑡𝑡 𝑡𝑡2(𝑡𝑡𝑡𝑡 𝑡𝑡1(𝑡𝑡𝑡𝑡 𝑡𝑡2(𝑡𝑡𝑡.

𝐗𝐗1(𝑡𝑡) = 𝐗𝐗(1 ∶ 𝑀𝑀 𝑀 𝑀𝑀𝑀 )( 𝑡𝑡) , 𝐗𝐗2(𝑡𝑡) = 𝐗𝐗(2 ∶ 𝑀𝑀𝑀𝑀 )( 𝑡𝑡) ,

𝐘𝐘1(𝑡𝑡) = 𝐘𝐘(1 ∶ 𝑀𝑀 𝑀 𝑀𝑀𝑀 )( 𝑡𝑡) , 𝐘𝐘2(𝑡𝑡) = 𝐘𝐘(2 ∶ 𝑀𝑀𝑀𝑀 )( 𝑡𝑡) .
(4)

De�ne 𝐀𝐀𝑥𝑥𝑥 = 𝐀𝐀𝑥𝑥(1,𝑀𝑀 𝑀 𝑀𝑀𝑀𝑀 , 𝐀𝐀𝑥𝑥𝑥 = 𝐀𝐀𝑥𝑥(2,𝑀𝑀𝑀𝑀𝑀 , 𝐀𝐀𝑦𝑦𝑦 =
𝐀𝐀𝑦𝑦(1,𝑀𝑀 𝑀 𝑀𝑀𝑀𝑀 , 𝐀𝐀𝑦𝑦𝑦 = 𝐀𝐀𝑦𝑦(2,𝑀𝑀𝑀𝑀𝑀 , so

𝐀𝐀𝑥𝑥𝑥 = 𝐀𝐀𝑥𝑥𝑥𝚽𝚽𝑥𝑥, 𝐀𝐀𝑦𝑦𝑦 = 𝐀𝐀𝑦𝑦𝑦𝚽𝚽𝑦𝑦,

𝐗𝐗1(𝑡𝑡) = 𝐀𝐀𝑥𝑥𝑥𝐗𝐗(𝑡𝑡) , 𝐗𝐗2(𝑡𝑡) = 𝐀𝐀𝑥𝑥𝑥𝐗𝐗(𝑡𝑡) ,

𝐘𝐘1(𝑡𝑡) = 𝐀𝐀𝑦𝑦𝑦𝐘𝐘(𝑡𝑡) , 𝐘𝐘2(𝑡𝑡) = 𝐀𝐀𝑦𝑦𝑦𝐘𝐘(𝑡𝑡) ,

(5)

where 𝚽𝚽𝑥𝑥 and 𝚽𝚽𝑥𝑥 imply the translation characterization of
the sensor array. ey are denoted as

𝚽𝚽𝑥𝑥 = diag󶀡󶀡𝑢𝑢󶀡󶀡𝜙𝜙1, 𝜃𝜃1󶀱󶀱 ,… , 𝑢𝑢󶀡󶀡𝜙𝜙𝑛𝑛, 𝜃𝜃𝑛𝑛󶀱󶀱󶀱󶀱 ,

𝚽𝚽𝑦𝑦 = diag󶀡󶀡𝑣𝑣󶀡󶀡𝜙𝜙1, 𝜃𝜃1󶀱󶀱 ,… , 𝑣𝑣󶀡󶀡𝜙𝜙𝑛𝑛, 𝜃𝜃𝑛𝑛󶀱󶀱󶀱󶀱 .
(6)

Step 2. Calculate the covariance matrixes of these four sub-
matrixes

𝐑𝐑𝐗𝐗1𝐘𝐘1
= 𝐸𝐸󶁢󶁢𝐗𝐗1(𝑡𝑡) 𝐘𝐘1(𝑡𝑡)

𝐻𝐻󶁲󶁲 = 𝐀𝐀𝑥𝑥𝑥𝐑𝐑𝑠𝑠𝐀𝐀
𝐻𝐻
𝑦𝑦𝑦 + 𝐅𝐅𝐍𝐍𝑥𝑥,𝐍𝐍𝑦𝑦

𝐑𝐑𝐗𝐗2𝐘𝐘1
= 𝐸𝐸󶁢󶁢𝐗𝐗2(𝑡𝑡) 𝐘𝐘1(𝑡𝑡)

𝐻𝐻󶁲󶁲 = 𝐀𝐀𝑥𝑥𝑥𝚽𝚽𝑥𝑥𝐑𝐑𝑠𝑠𝐀𝐀
𝐻𝐻
𝑦𝑦𝑦 + 𝐅𝐅𝐍𝐍𝑥𝑥,𝐍𝐍𝑦𝑦

𝐑𝐑𝐗𝐗2𝐘𝐘2
= 𝐸𝐸󶁢󶁢𝐗𝐗2(𝑡𝑡) 𝐘𝐘2(𝑡𝑡)

𝐻𝐻󶁲󶁲 = 𝐀𝐀𝑥𝑥𝑥𝚽𝚽𝑥𝑥𝐑𝐑𝑠𝑠𝚽𝚽
𝐻𝐻
𝑦𝑦 𝐀𝐀

𝐻𝐻
𝑦𝑦𝑦 + 𝐅𝐅𝐍𝐍𝑥𝑥,𝐍𝐍𝑦𝑦

,
(7)

where𝐑𝐑𝑠𝑠 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
𝐻𝐻(𝑡𝑡𝑡𝑡 is the signal self-relatedmatrix.𝐇𝐇 is

the complex conjugate transpose matrix. 𝐅𝐅𝐍𝐍𝑥𝑥,𝐍𝐍𝑦𝑦
conclude the

information of the noise. Usually the noise is too less than the
received signals to ignore, so we have 𝐅𝐅𝐍𝐍𝑥𝑥,𝐍𝐍𝑦𝑦

= 0.

Step 3. Construct a special matrix𝐂𝐂 in formula (8). And then
adopt SVD for the matrix𝐂𝐂 to achieve the signal subspace𝐄𝐄𝑠𝑠

𝐂𝐂 𝐂 󶁢󶁢𝐑𝐑𝐗𝐗1𝐘𝐘1
𝐑𝐑𝐗𝐗2𝐘𝐘1

𝐑𝐑𝐗𝐗2𝐘𝐘2
󶁲󶁲 ,

[𝐔𝐔𝐔𝐔𝐔𝐔  𝐔𝐔] = svd(𝐂𝐂) ;
(8)

𝐄𝐄𝑠𝑠 = 󶀄󶀄

󶀜󶀜

𝐄𝐄0
𝐄𝐄1
𝐄𝐄2

󶀅󶀅

󶀝󶀝
= 󶀄󶀄

󶀜󶀜

𝐀𝐀
𝐀𝐀𝐀𝐀𝑥𝑥

𝐀𝐀𝐀𝐀𝑥𝑥𝚽𝚽
𝐻𝐻
𝑦𝑦

󶀅󶀅

󶀝󶀝
𝐓𝐓 𝐓𝐓𝐓 (∶, 1 ∶ 𝑛𝑛) . (9)

ere are two unknown quantities 𝐀𝐀 and 𝐓𝐓. 𝐀𝐀 is the
transfer matrix produced by the 𝐀𝐀𝑥𝑥𝑥 and 𝐀𝐀𝑦𝑦𝑦. 𝐓𝐓 is a middle
matrix which is invertible. 𝐄𝐄0, 𝐄𝐄1, 𝐄𝐄2 and 𝐄𝐄𝑠𝑠 are the signal
subspace.

Step 4. Let 𝚿𝚿𝑥𝑥 = 𝐓𝐓−1𝚽𝚽𝑥𝑥𝐓𝐓, 𝚿𝚿𝑦𝑦 = 𝐓𝐓−1𝚽𝚽𝐻𝐻
𝑦𝑦 𝐓𝐓, we have 𝐄𝐄1 =

𝐄𝐄0𝚿𝚿𝑥𝑥, 𝐄𝐄2 = 𝐄𝐄1𝚿𝚿𝑦𝑦; therefore,

𝚿𝚿𝑥𝑥 = 󶀢󶀢𝐄𝐄
𝐻𝐻
0 𝐄𝐄0󶀲󶀲

−1
𝐄𝐄𝐻𝐻
0 𝐄𝐄1,

𝚿𝚿𝑦𝑦 = 󶀢󶀢𝐄𝐄
𝐻𝐻
1 𝐄𝐄1󶀲󶀲

−1
𝐄𝐄𝐻𝐻
1 𝐄𝐄2.

(10)

Step 5. Use eig-function to deal with the matrixes𝚿𝚿𝑥𝑥 and𝚿𝚿𝑦𝑦
and gain eigenvalues which are equal to the diagonal element
of the matrix𝚽𝚽𝑥𝑥 and𝚽𝚽

𝐻𝐻
𝑦𝑦

󶁡󶁡𝐕𝐕𝑥𝑥,𝚽𝚽𝑥𝑥󶁱󶁱 = eig󶀡󶀡𝚿𝚿𝑥𝑥󶀱󶀱 ,

󶁢󶁢𝐕𝐕𝑦𝑦,𝚽𝚽
𝐻𝐻
𝑦𝑦 󶁲󶁲 = eig󶀢󶀢𝚿𝚿𝑦𝑦󶀲󶀲 .

(11)

Step 6. Both 𝚽𝚽𝑥𝑥 and 𝚽𝚽
𝐻𝐻
𝑦𝑦 have the information of the DOA.

Due to the respective calculation, the eigenvalues from the
same targets are not pairing. It needs post-process. De�ne
a new matrix 𝐺𝐺 𝐺𝐺𝐺 𝐻𝐻

𝑦𝑦 𝐕𝐕𝑥𝑥. Adjust the correspondence of
the 𝚽𝚽𝑥𝑥, 𝚽𝚽

𝐻𝐻
𝑦𝑦 according to the maximum value in each line

in𝐆𝐆.

Step 7. Compute the DOA of targets

𝜃𝜃𝑘𝑘 = arctan󶀦󶀦
angel󶀡󶀡𝑣𝑣󶀡󶀡𝜙𝜙𝑘𝑘, 𝜃𝜃𝑘𝑘󶀱󶀱󶀱󶀱
angel󶀡󶀡𝑢𝑢󶀡󶀡𝜙𝜙𝑘𝑘, 𝜃𝜃𝑘𝑘󶀱󶀱󶀱󶀱

󶀶󶀶 ,

𝜙𝜙𝑘𝑘 = arccos󶀪󶀪
𝜆𝜆󵀆󵀆𝑣𝑣2󶀡󶀡𝜙𝜙𝑘𝑘, 𝜃𝜃𝑘𝑘󶀱󶀱 + 𝑢𝑢2󶀡󶀡𝜙𝜙𝑘𝑘, 𝜃𝜃𝑘𝑘󶀱󶀱

2𝜋𝜋𝜋𝜋
󶀺󶀺 .

(12)

3.2. Localization through theMaximum Likelihood Algorithm.
Using the estimated DOA and the state of the sensor arrays,
a maximum likelihood algorithm is proposed to realize
the triangulation location. As shown in Figure 2(a), there
are three uniform L-shaped arrays which have the same
character. e positions of sensor arrays are (0, 0, 0), (𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎 ,
and (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   and meet the conditions 𝑎𝑎 𝑎 𝑎𝑎 𝑎 𝑎 and 𝑏𝑏𝑏𝑏𝑏𝑏𝑏   .

e problemof triangulation location can be transformed
into the one of seeking the intersection 𝑆𝑆 for the three known
radials. It has one unique answer theoretically. But due to the
error of DOA estimation, the three radials will not intersect
(seen in Figure 2(b)). So the paper uses a novel ML algorithm
to search for partial areas and get the nearest point far from
the three radials.

De�nition 1. e angle between the point and radial is the
one no more than 180∘ which is intersected by the radial and
the line of the point and radial’s jumping-off point.

eorem 2. In 2D plane, the point nearest to the three radials
lies in the intersected triangle by the radials.

For example, the angle between the point 𝑆𝑆 and the radial
𝐿𝐿2𝑃𝑃3 is ∠𝑆𝑆𝑆𝑆2𝑃𝑃3. e nearest point 𝑆𝑆 to three radials (𝐿𝐿2𝑃𝑃3,
𝐿𝐿1𝑃𝑃3 and 𝐿𝐿3𝑃𝑃1) lies in the triangle 𝑃𝑃1𝑃𝑃2𝑃𝑃3.

is theorem can be deduced to a 3D space: in 3D space,
the point nearest to three radials lies in the intersection space
of projection triangle formed by the three radials on the 𝑂𝑂𝑂𝑂𝑂𝑂,
𝑂𝑂𝑂𝑂𝑂𝑂, and𝑂𝑂𝑂𝑂𝑂𝑂 planes.

e maximum likelihood algorithm is described as follows
Firstly, get the projection of the three radials on the 𝑂𝑂𝑂𝑂𝑂𝑂,

𝑂𝑂𝑂𝑂𝑂𝑂, and𝑂𝑂𝑂𝑂𝑂𝑂 planes.en obtain the intersection points of the
three radials on each plane. Aer that achieve the value ranges
on each axis. Take the 𝑂𝑂𝑂𝑂𝑂𝑂 plane as an example, the points of
intersected triangle are 𝑃𝑃1(𝑦𝑦1,𝑧𝑧 1), 𝑃𝑃2(𝑦𝑦2,𝑧𝑧 2), and 𝑃𝑃3(𝑦𝑦3,𝑧𝑧 3),
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(a) ree L-shaped arrays locate 3D target

Project to

(b) Projection on PL (𝑂𝑂𝑂𝑂𝑂𝑂) plane

F 2: Localization by three uniform L-shaped sensor arrays.

and the range value of 𝑦𝑦 is 𝑌𝑌𝑂𝑂𝑂𝑂𝑂𝑂 ∈ [min(𝑦𝑦1, 𝑦𝑦2, 𝑦𝑦3), max(𝑦𝑦1,
𝑦𝑦2, 𝑦𝑦3)]. We can also get the range of 𝑧𝑧 on the𝑂𝑂𝑂𝑂𝑂𝑂 plane.

Secondly, intersect the value range of 𝑥𝑥𝑥𝑥𝑥𝑥 axis on
each plane to create a spatial space for the maximum
likelihood points. Take 𝑦𝑦-axis for example, the intersec-
tion of 𝑦𝑦 is [max(min(𝑌𝑌𝑂𝑂𝑂𝑂𝑂𝑂), min(𝑌𝑌𝑂𝑂𝑂𝑂𝑂𝑂)), min(max(𝑌𝑌𝑂𝑂𝑂𝑂𝑂𝑂),
max(𝑌𝑌𝑂𝑂𝑂𝑂𝑂𝑂))]. en divide this 3D space into𝑁𝑁𝑋𝑋 × 𝑁𝑁𝑌𝑌 × 𝑁𝑁𝑍𝑍
pieces by a self-adaptive interval. Suppose that the probability of
the angle of point and radial accords to the normal distribution.
For all the divided points, then calculate the total probability of
the angle to the three radials

𝑃𝑃󶀡󶀡𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  󶀱󶀱 =
1
2𝜋𝜋

exp󶀦󶀦−
𝜃𝜃21
𝜋𝜋2
󶀶󶀶 +

1
2𝜋𝜋

exp󶀦󶀦−
𝜃𝜃22
𝜋𝜋2
󶀶󶀶

+
1
2𝜋𝜋

exp󶀦󶀦−
𝜃𝜃23
𝜋𝜋2
󶀶󶀶 ,

(13)

where 𝜃𝜃𝑖𝑖 is the angle between the point (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥   and the 𝑖𝑖th
radial.

Finally, search for the maximum of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃   and �nd the
target position (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  .

3.3. Autoregressive Particle Filter Algorithm. Aer localiza-
tion, this paper introduces an autoregressive particle �lter
(ARPF) which combines AR models [13] with the particle
�lter [14] to predict the state of the targets in the next
moment. is algorithm conquers the difficulty of designing
some unknown state equations, noise matrixes, and initial
state in particle �lter and also provides a method to improve
the accuracy of AR model.

e 𝑝𝑝-rank AR model (AR(𝑝𝑝) in short) used for predic-
tion can be denoted as

𝑦𝑦𝑡𝑡 = 𝜖𝜖𝑡𝑡 − 𝜙𝜙1𝑦𝑦𝑡𝑡𝑡𝑡 − ⋯ − 𝜙𝜙𝑝𝑝𝑦𝑦𝑡𝑡𝑡𝑡𝑡, 𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡      𝑡𝑡𝑡𝑡
(14)

where𝑦𝑦𝑡𝑡 is the predicted position,𝑦𝑦𝑡𝑡𝑡𝑡,… , 𝑦𝑦𝑡𝑡𝑡𝑡𝑡 is the histori-
cal state of the same target. 𝜙𝜙1, 𝜙𝜙2,… , 𝜙𝜙𝑝𝑝 is the autoregressive
model coefficient and 𝜖𝜖𝑡𝑡 is the Gaussian white noise with the
mean 0 and the variance 𝜉𝜉2.

e ARPF algorithm is carried out. (1) Form the initial
particles. (2) Use the AR model to calculate the positions
of the particles at the next moment instead of the motion
equation. (3) Get the prediction by the weighted sum of
each particle. (4) Update the probability of each particle and
do importance resampling process to form the new particle
cluster. (5) Skip to (2) to recur until target is out of the
detecting area.

3.4. Localization and Tracking System. e localization and
tracking system presented here contains the whole process
of signal collection (model building), DOA estimation, and
tracking and prediction. e pseudocode of the system is
described in Algorithm 1.

is closed-loop systemmakes the localization and track-
ing algorithms described into an integral whole to form a
positive feedback. e loop increases the robustness and the
accuracy of the target localization and tracking.

4. Simulation

e paper chooses the American F22 battle plane as the
emulation target. e parameters of F22 can be achieved
in http:��www.aerospaceweb.org�aircra��ghter�f22�. Create
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T 1: DOA estimation with 2D ESPRIT algorithm.

Array 𝐿𝐿1 Array 𝐿𝐿2 Array 𝐿𝐿3

Real angle/∘ F22-1 (9.25, −5.84) (39.99, 139.28) (15.07, −67.31)
F22-2 (5.41, 2.46) (12.85, 23.66) (8.67, −19.22)

Estimated angle/∘ (5.14, 2.49) (40.02, 139.28) (14.99, 112.65)
(9.69, 174.12) (12.63, 23.69) (8.58, 160.79)

While (the target is in the detecting area of L-shaped sensor arrays)
If (it’s the �rst moment the arrays detect)

(1) Use all the sensor arrays to sample the signal of the target.
(2) Calculate the position of the target by maximum likelihood algorithm.
(3) Select three sensor arrays which are nearest to the targets.

Else
(1) Use the selected three sensor arrays to sample the signal.
(2) Get the location by ML algorithm.

End
If (the number of the measured position for the target <4)

e value achieved by ML algorithm is regarded as the �nal position.
Else

(1) Use ARPF algorithm to predict the position of the target at the next moment.
(2) If (the number >4)

Use the predicted position to guide targets’ localization process which is discussed in Section 4.
End

End
Time++;

End

A 1
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F 3: ree L-shaped arrays sensing 3D maneuvering targets.

the random trajectory of F22 by the navigation and position-
ing toolbox of GPSo in MATLAB, as shown in Figure 3.
ere are 2 pieces of moving orbits. e time range when
F22-1 is �ying is [195, 399] s, and the range of F22-2 is
[171, 397] s. ese planes emit sine complex envelope signals
omnidirectionally when it moves along the trail.

We choose three uniform L-shaped sensor arrays of
the same nature to localize and track 3D targets. e

�xtures of the arrays are (0,0,0)m, (60000, −12000,0)m,
and (40000,24000, 0)m. Set the parameters of the sensor
array mentioned in Section 2, 𝑀𝑀 𝑀 𝑀, 𝑑𝑑𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑 𝑑
0.5m, 𝜆𝜆 𝜆𝜆 m, and SNR = 20 dB. e number of
the snapshot is 64. e frequency of the localization is
1Hz.

e experiment adopts Windows XP SP3 as the soware
platform, and AMD Athlon(tm) II X2 250 3.01GHz and
2GB memory as the hardware platform. e programming
environment is MATLAB R2010b.

4.1. DOA Estimation. At a certain time, F22-1 is located
in (52266, −5342, and 8561)m, and target F22-2 is located
in (96898, 4164, and 9191)m, see the rhombuses shown in
Figure 3. With the signal vector 𝐗𝐗𝐗𝐗𝐗𝐗 and 𝐘𝐘𝐘𝐘𝐘𝐘 sampled by
the sensor arrays, DOA of the two targets is estimated, using
the 2D ESPRIT algorithm. e results are shown in Table 1.
e �rst item in brackets is elevation, and the second item is
azimuth.

By doing tens Monte Carlo simulation and calculate the
mean of DOA, it can be found that the average error of angle
estimation is less than 0.2∘. Most of the time the 2D ESPRIT
algorithm works well, but when the incident DOA is very
close to each other, the errors is a little big. e 2D ESPRIT
algorithm needs to be improved in such situation.

Besides, there are other two problems: �rst, the DOA
estimations of the same target are not in the same line.
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F 4: Performance of the maximum likelihood algorithm.
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F 5: MSE of the ARPF algorithm.

Second, the estimated azimuth is all in [0, 180]∘. When the
incident azimuth is minus, the result is always equal to this
angle plus 180∘.

So before localization bymaximum likelihood algorithm,
the DOA from the same target must be paired in the same
group, and the azimuth must be well decided. When there
is no other prior information, the positions of targets at the
preview moment are used to con�rm azimuth and group the
DOA estimations which are out of order.

4.2. Triangulation Location. With the estimated DOA and
the location of sensor arrays, the maximum likelihood algo-
rithm is employed to calculate the positions of the targets.e
localization results and errors are displayed in Figure 4.

We can �nd in Figure 4 that most localization mean
square errors (MSEs) of F22-1 are less than 300m, and F22-
2 localization deviation is less than 1500m by the maximum
likelihood algorithm. Because of the larger distance between
F22-2 and the sensor arrays,MSE of F22-2 is bigger thanMSE
of F22-1.

For far-�eld targets� localization in this application, the
relative errors are less than 3% which is acceptable. So the
ML method meets the localization needs. ere are also
some outliers that have exceptional large localization MSE.
ese outliers always appear when the target is far away from
sensor arrays. So when there are redundant sensor arrays,
select three sensor arrays which are nearest to the target for
localization.
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T 2: Performance of closed positive feedback loop.

F22-1 MSE/m F22-2 MSE/m Average consuming/s
Localization by 2D 98.55 290.38 0.033
ESPRIT and ML algorithm
Using a closed-loop system 96.97 276.14 0.047

4.3. Trajectory Prediction. Aer localization by the 2D
ESPRIT and ML algorithms, autoregressive particle �lter is
implemented to form a positive feedback closed loop which
enhances the accuracy and stability of the localization. e
forecast MSE is seen in Figure 5.

Compare prediction MSE by ARPF and the distance
between the location at current and preview moment. It
can be found that most of the time, the prediction MSE by
ARPF is smaller. is illustrates that the prediction is more
appropriate to direct the process mentioned above which
con�rms azimuth and groups theDOAestimations.ere are
also some moments that the prediction MSE is less than the
localization MSE, so when the localization result is far away
from the trajectory, in other words, when the outlier appears,
wewould better use the prediction as the true location instead
of the measurement. For example, the location MSE of F22
by ML algorithm at 358 s is 4477m, and the forecast MSE
is 1035m; this time uses the predicted position as the real
measurement.

e performance of the closed loop is shown in Table 2.
Table 2 illustrates that 2D ESPRIT andML algorithms are

available to locate the target because the localization MSE is
acceptable. e close loop system can slightly improve the
accuracy of the localization. e time consumption is a little
increased, but still fast enough to locate and track the target.

5. Conclusion

is paper proposes a localizing and tracking system for
a three-dimensional target which combines the DOA esti-
mation, the triangulation location, and the trajectory pre-
diction. Firstly we establish a signal-reception model for a
far-�eld target. en the 2D ESPRIT algorithm is carried
out to estimate the DOA of the 3D target. Aer that, a
novel maximum likelihood algorithm is introduced to solve
the triangulation location problem. Next the autoregressive
particle �lter is implemented to predict the target trajectory.
Finally the localization process is guided according to the
predictions.e experiment shows that the localization by 2D
ESPRIT algorithmand theMLalgorithmare useful for the 3D
target. ARPF algorithm can well predict position at the next
moment and guide the localization process. e localization
and prediction processes form a passive feedback loop which
can raise the accuracy and robustness of the localization and
tracking system.
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