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With the advance of embedded sensing devices, Pervasive Urban Sensing (PUS) with probe vehicles is becoming increasingly
practical. A probe vehicle is equipped with onboard sensing devices that detect urban information as the probe vehicle drive across
the road network. For example, GPS sensors can detect real-time vehicle status including instant speed and physical position. PUS
can provide the general public valuable urban sensing information, such as frequently updated digital maps, and real-time traffic
light states. In this paper, we first present the framework of Pervasive Urban Sensing with probe vehicles. Next, we present two cases
of urban sensing with probe vehicles. As case one, we discuss the design of a sensing algorithm for detecting the instant state of
traffic lights. As case two, we discuss the design of sensing algorithms for recognizing roads by using the vehicular footprints. Some

preliminary results of these two cases of urban sensing are presented and discussed.

1. Introduction

Governments and organizations have been engaged in pro-
viding convenient traveling experiences for citizens and
drivers [1-5]. Besides convenience, reliability and security
should also be guaranteed by Pervasive Urban Sensing (PUS).
As a result, organizations and researches are creating and
developing services such as digital map construction and
update [6-9], traffic light optimization [1, 2], traffic flow
detection [10], and so forth. Digital map construction and
update are the foundation for most other services. The
conventional method of digital map construction is based on
geological survey, which is a time-consuming and expensive
process. What is more, for the areas where new road networks
are created or existed roads are reconstructed or closed, these
digital maps may become outdated and not applicable for
other services in PUS. Traffic light optimization is another
important task in PUS, as drivers and passengers spend
a large proportion of time waiting red lights. Thus, the
switching history of traffic lights red-green status should
be collected and optimization systems should be designed.
Current way of collecting light history status is by field
survey, which is laborious and not applicable to large-scale

metropolis. Besides, traffic flow detection is the key compo-
nent in navigation systems to provide reliable and optimal
route scheduling for drivers.

Nowadays, an increasing number of vehicles are deployed
with GPS devices for location detection and other status
measurements. Taxis companies equip their taxis [11] with
GPS devices for the requirement of supervisory control and
scheduling. Apart from that, systems for collecting real-time
taxis GPS traces and visualization projects should also be
developed. For civilian vehicles, GPS devices are usually
deployed together with the navigation systems. We collected
GPS traces of about 4,000 taxis in Shanghai from March 2006
to May 2007. The GPS traces are coarse grained in terms of
large sampling interval and inaccurate data sensory data.

It is probe vehicles equipped with GPS devices that
make PUS possible and thriving. It is feasible to realize PUS
with probe vehicles as urban activities or events especially
those related to transportation will have direct effect on the
movement status of probe vehicle. Through methodologies
such as data analysis and data mining, these activities or
events can be extracted from the GPS traces reported by
probe vehicles.



There are several considerable advantages of urban sens-
ing with probe vehicles. First, the expense will be reduced
as the necessary elements of sensing system already exited,
including the probe vehicles, and the data transmission and
collection system. Second, the coverage of the sensing area
is guaranteed to be large as the probe vehicles will traverse
nearly all the road segments in the city. Third, the GPS traces
reported by probe vehicles can be utilized in many sensing
researches, including road map sensing, traffic flow sensing,
traffic light status sensing, emergent accidents sensing, and
others related to transportation.

This paper presents an overview to Pervasive Urban
Sensing with probe vehicles, accompanied with two concrete
examples, that is, traffic light sensing and road map sensing.
Instead of presenting complete details, this paper gives a
general introduction. In [6-9, 12, 13], map building using
offline GPS trajectories with low error and high sampling
frequencies have been studied. Gravitation and repulsion
force in physical theory are utilized to do map detection in
[12]. The authors in [6, 8] developed algorithms to detect new
roads. In [10], the authors applied compressed sensing theory
to reconstruct the citywide traffic flow status with limited
GPS trajectories. Traffic light optimization algorithms and
systems are developed in [1, 2, 4] with the help of optimization
theory and heuristic algorithms.

The rest of the paper is organized as follows. Section 2
presents the main framework of PUS system and the charac-
ters and GPS traces generated by probe vehicles. In Sections
3 and 4, we introduce two urban sensing cases, traffic light
sensing and road map sensing. The problem formulation and
challenges are given together with the sensing algorithms.
Section 5 concludes the paper with a discussion.

2. Preliminary

In this section we will present the general framework for PUS
and analyze the characteristics of GPS traces generated by
probe vehicles.

2.1. Urban Sensing Framework. The main framework of PUS
is shown in Figure 1. Suppose there are N probe vehicles in
the system, and each of them moves freely in the city and
generates GPS report periodically. The generated GPS report
at time ¢ by vehicle i is a five-tuple, 7,(t) : (id,v,a, p,s,t),
representing vehicle identification, instant velocity, headway
direction, position (longitude & latitude), vacant or not, and
timestamp when the data is reported. Suppose we collect the
data from T, ;, to T, and denote the set of GPS reports col-
lected as Q(Tiin» max) = Y1), i € {1,2,....,N}, Ty <
t < Tmax

The GPS reports are delivered to the PUS server via data
channel of GSM/GPRS. Note that the quality of the data
delivery channel will affect the quantity of GPS reports stored
in the PUS sensing server. It is the PUS server that collects
the real-time GPS reports and executes the Pervasive Urban
Sensing tasks. After the real-time and reliable sensing results
are produced, they will be made available to public through
Internet.
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FIGURE 1: System architecture.

2.2. Analysis of Real Vehicular GPS Traces. The fleet of probe
vehicles we utilize in the PUS system are taxis from several
taxis companies, and the sampling duration is from March
2006 to May 2007. Before conducting urban sensing, it is
necessary to analyze the GPS reports in order to get the
overall distribution of the GPS reports and be clear about
what characteristics of the data may lead to challenges in
the process of urban sensing. Thus, we conduct statistical
experiments with one week GPS data in 2007 and the results
are shown below.

2.2.1. Sampling Interval. The purpose of equipping taxis with
GPS devices is for supervisory control and scheduling, so it
is not necessary for the sampling interval of taxis to be as
frequent as 1Hz, which is the usual sampling interval used
in many traffic studies [6, 7]. Among all taxis that report
nonstationary GPS coordinates, 1,855 sample at 16 sec when
vacant and 61sec when occupied (corresponding to SH-B
group in [14]); 430 sample at a fixed interval 60-61sec; the
rest mostly sample by the distance traveled.

2.2.2. Speed. 'The speed of a vehicle is influenced by a number
of factors. Three conclusions are got through analysis to the
GPS data. First, there is a large probability for a vehicle to
travel with low speed when facing traffic lights. Second, the
average speed of a taxi when it is vacant is much slower than
that when carry passengers as it usually just travels around
slowly to catch passengers when vacant. Third, the average
speed of a vehicle in peak hours is much slower than that in
normal hours as the traffic condition is much better and traffic
is more fluent in normal hours.

2.2.3. Resolution. The GPS coordinates reported include four
fraction digits, that is, 0.0001 degree, which is 8.5 or 111
meters along latitudinal or longitudinal line in Shanghai,
respectively. Resolution limit aside, GPS measurement noise
can be modeled as a Gaussian distribution [15]. Different
roads have different number of length. Finally, tunnels and
high-rise buildings are dense in downtown Shanghai, which
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FIGURE 2: GPS reports and their heading directions on Open-
StreetMap.

can result in significant noise [14]. Nevertheless, we found the
GPS measurement accurate enough for road recognition. For
example, 94% of records are within 100 meters to some road,
among which 95% are within 38 meters to the nearest road
[14]. Figure 2 shows GPS samples as red dots on the map. Most
of these dots are located near roads.

2.2.4. Spatial Distribution. By mapping GPS records onto
digital map, we find that the spatial distribution is uneven in
the urban area. Hot spots effect is very evident. The frequency
of collecting GPS reports in areas where big malls or subways
exist is much larger than other places. This suggests that for
the areas where a relatively small amount of taxis pass by,
the time duration used for collecting GPS reports should be
longer to guarantee the quality of PUS services.

3. Traffic Light Sensing

3.1. Background. The objective of traffic light sensing is to
detect the states of traffic lights, which is very important
in many researches and applications, such as traffic lights
optimization [1, 4, 5], traffic management [2], and real-time
vehicle navigation. It is required to have traffic light state
in order to optimize traffic management [3]. A number of
research projects [1, 2] about traffic light optimization are
being carried out all around the world. To perform traffic
lights optimization, the information of traffic light state is
very important.

Vehicle networks [16, 17] have attracted more and more
attentions as they are providing intelligence transportation
services and Internet access [18]. Traffic light state informa-
tion is very important in designing vehicle routing protocols
for its impact on the mobility of vehicle. Moreover, efficient
data delivery approaches can be discovered when traffic light
state is available since a red traffic light may pause a traffic
flow and create good connectivity for a certain duration [17,
19-21]. However, traffic light state has not been considered
in existing vehicle mobility models due to the lack of state
information of traffic lights.

Thus, traffic light sensing is very important since it is
fundamental for many exciting applications. Few researches
are related to traffic light sensing yet. One candidate approach
to traffic light sensing is to deploy cameras at intersections
and perform image processing to detect the states of traffic

lights. However, the expense of this approach is unbearable
thus the coverage will be limited. Furthermore, this approach
is vulnerable to bad whether such as fog or rain.

In this section, we introduce the approach of traffic
light sensing with probe vehicles, which achieves several
advantages such as large coverage and low cost.

Several challenges are faced in traffic light sensing with
probe vehicles. First, the periods of a traffic light are not
fixed, but adaptive to the current traffic condition of the road
segments attached to the intersection. To detect road traffic,
loop detectors [22] are deployed beneath the road surface.
Second, GPS reports for a traffic light are temporal discrete
but the objective of traffic light sensing is to detect the state
of a traffic light at any time. Third, the distribution of GPS
reports in the city is uneven. Thus, the effect of traffic light
sensing with probe vehicles on all the lights in the city should
be investigated.

3.2. Problem Description. A traffic light is changing its state
over time and the interval of state may be uncertain. We
denote ./ as the set of traffic lights we are interested in, and
s;(t) € {red, green} as the real state of the traffic light / at time
t. The objective of traffic light sensing is to estimate traffic
light state over time: §;(t), for all | € M, T,;, <t < Toux
with the GPS reports set Q(T i Trnax)-

Suppose we get a state estimate §;(t) for traffic light [ at
time ¢, then the estimation error of the estimate is as follows:

in

) 25 (1) -5 ). )

Then, the problem of traffic light sensing is to estimate
traffic light states with the objective of minimizing the average
estimation error rate £ as follows:

. 1 Tinax
ming & G ﬂllzj §@)xdt ()

max el ¥ Tmin

utilizing the GPS reports set Q(T\in> Tinax)-

We have the intuition that there is strong correlation
between traffic lights and probe vehicles movements. The
movements of a vehicle running in the city is regulated by
traffic lights. We can easily find that the speed of a vehicle
facing a red light is much smaller than that facing a green
light. This is apparent since vehicles have to stop and wait for
a red traffic light to turn green.

However, we also find that when the light is in red, there
is a considerable percentage of nonzero vehicle speeds, and
the percentage of zero speed is nonnegligible when the light
is in green. This is understandable because immediately after
the light turns from red to green, the vehicles have to spend a
certain time to slow down before they fully stop. The reason
is similar for the phenomenon of zero speed when the light is
in green.

Moreover, when a vehicle is further from the traffic light,
for example, 150 m away from the light, the mobility of the
vehicle is relatively less related to traffic light state. This
suggests that GPS reports generated far away from the lights
should be neglected in traffic light sensing.



3.3. Detecting Light States. In this section we propose a
novel algorithm for traffic light sensing. Two steps are
executed in the algorithm, Snapshot State Estimation and
Panoramic Static Estimation. The Snapshot State Estimation
is to estimate the status of traffic lights one vehicle is facing
at the moments GPS reports are generated. Panoramic Static
Estimation is to estimate the continuous status of traffic
lights citywide between T,;, and T,,,,. Traflic light sensing
is formalized as an optimization problem and heuristic
algorithms can be utilized to get the optimal result.

In Snapshot State Estimation, clustering models in
machine learning are utilized to estimate the state of the
traffic light 5;(¢) at the time instant when a GPS report was
generated. In order to generate a clustering model, a sample
set {r;(t) : (id;,v;, pi,t,1;, 5,(¢))} should be available and we
got it by field study. There are some clustering models that
can be applied here, MAP [23], SVM [24], and so forth.

For a traffic light I, the subset of sensory reports related
to this light is denoted by €);. As a result, we can obtain a set
K = {G(@), c5(1)),t), for all r;(t) € (O}, foralll € A,
where ¢(5;(¢)) is the confidence of traffic light ] with state 5;(¢).

In Panoramic Static Estimation, the problem of traffic
light sensing for light [ is transformed into finding a series of
boundary time instants [Ty, T},..., T ], at which the light
changes its state, where Ty, = T, and T,_; = T}, Since we
consider only two traffic light states, the light state of duration
[T,_,, T;] is opposite to that of [T}, T;,,]. It is hence sufficient
to determine the state of the first duration [T}, T} ], denoted by
so» and then the light states of other durations naturally follow.
Thus, PSE is an optimization problem with g — 1 variables.

We design two other objectives, for example, Violation
minimization and Conformability maximization. Violation
minimization represents that the violation between §,(t) in
F; and the continuous traffic light state estimated should
be minimized. Conformability maximization represents that
durations of red interval and green interval should approxi-
mate those in reality. Many adaptive heuristic algorithms can
be used to solve this problem, such as genetic algorithm, ant
colony algorithm, and so forth.

4. Road Map Sensing

4.1. Background. Road map sensing aims to construct and
update of digital road map with probe vehicle. Road map
construction and update are the foundations of most systems
that provide traffic services, such as navigation systems,
online-traffic condition system, and so forth. Traditionary
approaches of road map construction and update are based
on geological survey. However, for areas where new road
networks are created or existed roads are reconstructed or
closed, these approaches cannot provide timely accurate
road map and leads to errors within the services based on
road map. For example, temporary roads have caused fatal
accidents with even experienced drivers [25].

With more and more vehicles are equipped with GPS
tracking devices, for example, taxis [11], buses [26], commer-
cial and utility vehicles, it is possible to conduct road map
sensing using GPS reports generated by these vehicles [7, 9,
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12,13, 27]. Thus, most existing map sensing approaches adopt
the same strategy of clustering GPS reports that are likely on
the same road segment and calculate the road centerline for
each cluster. The clustering is conducted either based on an
existed map [7] or high-sampling-rate GPS trajectories [12],
typically at 1 Hz.

In this section, we introduce the problem of road map
sensing with probe vehicles which generate coarse-grained
GPS reports. It is a very challenging task due to the lack of
existed map and inaccuracy of GPS reports.

Map building using offline GPS trajectories with high
sampling frequencies have been studied too [6-9, 12, 13]. B-
spline fitting is a popular method for approximating highways
from GPS data [6, 8]. When the actual drive path of the
GPS trace is unknown, data clustering is needed to group
together traces that are likely from the same road [7, 9,12, 13].
This problem is very challenging even with high-sampling-
rate data. In [7, 13], the clustering is assisted by a base map.
In [12], gravitational and attraction forces are simulated to
cluster GPS traces. With a sampling interval of 15 seconds or
higher, clustering GPS traces is extremely difficult. In our GPS
traces, it is not uncommon that a taxi generates no more than
one sample per road segment. The trajectory bears little or no
similarity with the true road geometry. Highly accurate GPS
locations benefit the data clustering significantly. In [12], the
standard deviation of the GPS Gaussian noise is estimated to
be 4.07 meters. With highly accurate GPS devices, traces from
the same road but opposite heading directions are clearly
distinguishable even visually [9, 12]. With a resolution limit
already at around 10 meters, we have never observed any clear
separation of GPS traces heading opposite directions.

In our algorithm, heading directions of vehicles are
utilized to assist the data clustering. This information has
been used to separate traces of opposite driving directions [9]
and has been used to coarsely split traces in the preprocessing
step [13]. Different GPS traces are then grouped together
based on trajectory similarity. Some existing work go beyond
road recognition and infer intersection and lane structures
[7, 27], which we do not address in this paper.

4.2. Problem Description. Road map sensing aims to con-
struct and update maps from coarse-grained GPS records
reported by probe vehicles. A complete routable map used in
navigation devices would contain geometry, lane configura-
tion, speed limit, turn restriction, road type information, and
so forth. In this section we focus on the recognition of road
geometry, which is of first priority in building routable map.

The data set utilized for road map sensing is Q(T,,,»
T...x)- Several major performance metrics are considered.
First, high coverage is desirable. For given Q(Ty, T),,.,)> We
want to recognize as many roads as possible. Second, low
false negative rate should be achieved. As the GPS records
are coarse-grained, there may be roads that do not exist in
reality but recognized. Thus, one objective is to gain as low
false negative rate as possible. Third, it is also desirable to
gain high accuracy. Three aspects are defined to measure
accuracy, for example, horizontal and vertical shift, and
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FIGURE 3: Vehicle trajectories by connecting consecutive GPS
reports of every vehicle.

FIGURE 4: Result of trajectories pruning. Useless components are
discarded.

separation distance between the recognized roads and roads
in OpenStreetMap, and roads in truth in addition.

There are several challenges in road map sensing with
probe vehicles. First, errors exist in the GPS reports generated
by probe vehicles. As shown in Figure 2, we can see that most
GPS reports are away from the centerline of road segments,
and heading directions of reports on the same road segments
are not uniform. Second, the distribution of GPS reports on
road segments is uneven. Some road segments have only few
attaching GPS reports, for example, the circles one in Figure 2,
and the frameworks of these road segments are not clear
just with GPS reports. Third, we can connect consecutive
footprints of a vehicle and get a continuous trajectory, as
shown in Figure 3. Although such trajectories can provide
sufficient information for detecting roads with few footprints,
they also bring negative influence. In Figure 3, we can see that
a considerable number of the raw trajectories are messy and
provide no useful information for road map sensing. This is
because these raw trajectories are not the actual drive paths
of the vehicles.

4.3. Detecting Roads. In this section we propose the algo-
rithm for road map sensing. The basic idea is to first aggregate
the GPS trajectories that are likely on the same road segments
into one cluster, and then apply fitting algorithms to obtain
a polyline representing the road centerline for each cluster.
However, in the very beginning, useless components in the
GPS trajectories should be discarded.

As shown in Figure 4, we discard the part of GPS
trajectories that cannot agree with real travelling route of

FIGURE 5: Result of trajectories clustering. Different clusters are in
different colors.

FIGURE 6: Road map sensing result: dashed lines are roads in
OpenStreetMap, and red ones are those recognized.

vehicles. The criterion used is that the heading directions of
two consecutive GPS reports together with the orientation of
connected line segment in the trajectory should be the same
for one vehicle.

As shown in Figure 5, trajectories clusters are plotted
in different colors. The basic idea is to allocate trajectories
generated by vehicles likely travelling on the same road
segments to one cluster.

For one GPS trajectory cluster shown in Figure 5, we want
to generate one road segment utilizing cure fitting algorithms.
Many fitting algorithms could be applied, including polyno-
mial fitting, Weibull fitting, and so forth. We considered and
tried nearly all fitting algorithms but the results are not good,
as the background road segment of one trajectories cluster
can be various types, for example, straight line, arches, or
even curve. Finally, we found spline fitting [6, 8] is suitable
and moditfy it to make it adaptive. The fitting result of an area
selected is shown in Figure 6.

In the trajectories clustering step, the problem shown
in Figure 7 comes up. One possible approach to solve
the problem is as follows. Firstly, find one polyline as the
backbone. Secondly, GPS reports near the backbone are
allocated into one new cluster and removed from the original
cluster. Repeat these two steps till no more GPS reports exist
in the cluster.



FIGURE 7: The problem: trajectories at road splits with small
separation angles are allocated into one cluster.

5. Conclusion

This paper has presented the concept of Pervasive Urban
Sensing (PUS) with probe vehicles. The general framework of
PUS is presented. In addition, we also present some analysis
on a dataset of real vehicular traces that have been collected
from taxis operational in Shanghai, China. Two cases of PUS,
that is, traffic light sensing and road sensing with probe
vehicles are discussed. The problems of the two sensing cases
are described. In addition, the basic algorithms for resolving
the two sensing problems are presented.

We believe that PUB with probe vehicles will become
increasingly practical and it will benefit the people living in
cities by providing with valuable real-time urban informa-
tion. However, many challenging issues remain untouched
and a lot of research efforts are still required.
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