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Biological sensors are a very promising technology that will take healthcare to the next level. However, there are obstacles that must
be overcome before the full potential of this technology can be realized. One such obstacle is that the heat generated by biological
sensors implanted into a human body might damage the tissues around them. Dynamic sensor scheduling is one way to manage
and evenly distribute the generated heat. In this paper, the dynamic sensor scheduling problem is formulated as a Markov decision
process (MDP). Unlike previous works, the temperature increase in the tissues caused by the generated heat is incorporated into the
model. The solution of the model gives an optimal policy that when executed will result in the maximum possible network lifetime
under a constraint on the maximum temperature level tolerable by the patient’s body. In order to obtain the optimal policy in a
lesser amount of time, two specific types of states are aggregated to produce a considerably smaller MDP model equivalent to the
original one. Numerical and simulation results are presented to show the validity of the model and superiority of the optimal policy
produced by it when compared with two policies one of which is specifically designed for biological wireless sensor networks.

1. Introduction

Biological wireless sensor networks (BWSNs) are networks
made up of biological sensors (biosensors, for short) which are
tiny wireless devices attached or implanted into the body of a
human or animal tomonitor and control biological processes.
They have originated because of the need to improve and
modernize healthcare.The sensing elements in biosensors are
biologicalmaterials such as enzymes and antibodies.They are
integrated into transducers for producing electrical signals in
response to biological reactions and changes.

A famous application of BWSNs is the geodesic sensor
network developed by EGI corporation [1]. In this applica-
tion, a cap-based system of electrodes is worn by a patient for
continuous brain monitoring. Figure 1 shows a girl wearing
a geodesic sensor network. The sensor network collects
electroencephalographical (EEG) measurements of the brain
and delivers them to a controller which processes them and
displays the results. Another example is glucose biosensors
which monitor the blood glucose level in a diabetic patient.

They can be used to optimally control the infusion of insulin
into the patient or to initiate a prompt medical intervention.
An example of glucose biosensors can be found in [2].

In addition to being energy-constrained, biosensors are
also temperature-constrained. This is due to the heat gener-
ated as a result of their operation in temperature-sensitive
environments like the human body. Radiation which is
mainly due to wireless communication is the major source
of heat. (Another major source of heat is the radiation due to
RF recharging in rechargeable BWSNs. This source of heat is
not considered here since we are assuming nonrechargeable
biosensors.) The tissues surrounding biosensors absorb the
RF energy which gets transformed into heat. This effect is
balanced by the human thermoregulatory system. However,
if the generated heat is larger than what can be drained, the
temperature of the tissues rises. If the blood flow is not suffi-
cient, the affected tissues might be damaged.

Thermal effects caused by biosensors are a major obstacle
in the road to realizing the full vision for BWSNs. These
effects can be mitigated through the use of effective thermal
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Figure 1: A girl wearing a geodesic sensor network [1].

management techniques. One such technique is the dynamic
scheduling of the transmission of biosensor measurements.
As will be shown, this technique is very effective in reducing
the temperature rise in the tissues due to heating. In this
paper, the thermal management problem in BWSNs is stud-
ied. It is shown how it can be modeled as a stochastic control
problem. Randomness is present due to the random behavior
of the wireless channel between biosensors and the base
station where measurements are collected and processed.

Toward that end, the framework of MDPs is used to build
a mathematical model of the BWSNs under study.Themodel
is then solved to obtain a policywhich dictates how theBWSN
should be operated in order to avoid a hazardous temperature
increase. The obtained policy can achieve the best balance
between transmission energy consumption and temperature
increase. It also results in the minimum temperature increase
when compared to existing policies.

In order to reduce the size of theMDPmodel, state aggre-
gation is used. Two classes of system states are identified.
A considerable reduction in the size of the MDP model is
achieved when the states in these two classes are aggregated.
The equivalence of the reduced MDP model to the original
one is established and the reduction in model size is shown.
A reduction of as high as 79% can be achieved.

The remainder of the paper is organized as follows. First,
the necessary background information is given. Second, the
available literature is briefly reviewed. Third, the system
under study is described. Then, its MDP model is presented.
After that, the minimization of the size of the MDP model
using state aggregation is discussed. Then, numerical and
simulation results are presented within the context of an
example to illustrate the viability of the MDP model. Finally,
conclusions and directions for further research are given.

2. Background

This section presents the necessary information to under-
stand how temperature increase is calculated. It also briefly

explains MDPs and points out some approaches for handling
their state explosion problem.

2.1. Calculating Temperature Increase. RF signals used for
wireless communication and recharge of implanted biosen-
sors produce electrical and magnetic fields. When a human
gets exposed to electromagnetic fields, the absorbed radiation
gets converted into heat which manifests itself as a tempera-
ture increase inside the tissues.This phenomenon is balanced
by the human thermoregulatory system. If the generated heat
is larger than what can be drained, the temperature of the
tissueswill rise.The tissuesmight be damaged if the generated
heat cannot be regulated by the blood circulation system.

The level of radiation absorbed by the human body
when exposed to RF radiation is measured by the specific
absorption rate (SAR) which is expressed in units of watts
per kilogram (W/Kg). SAR records the rate at which radiation
energy is absorbed per unit mass of tissue [3]. SAR is a point
quantity.That is, its value varies from one location to another.
SAR in the near field (i.e., the space around the antenna of
the biosensor) causes the heating of the tissue surrounding
the biosensor. It is a function of the current provided to the
antenna of the biosensor. As an example to appreciate the
importance of this measure, it was reported in [4] that an
exposure to an SAR of 8W/Kg in any gram of tissue in the
head for 15 minutes may result in tissue damage.

The Pennes’s bioheat equation [5] is the standard for cal-
culating the temperature increase in the body due to heating.
This equation can be transformed into a discrete form by
using the finite-difference time-domain (FDTD)method [6].
Basically, the area under consideration is divided into cells
and the temperature is evaluated in a grid of points defined at
the centers of the cells. It is assumed that the temperature of
the surrounding cell points is the normal body temperature
(i.e., 37∘C).

2.2. Markov Decision Processes. An MDP is a model of a
dynamic system whose behavior varies with time. The ele-
ments of an MDP model are the following [7]:

(1) system states,
(2) possible actions at each system state,
(3) a reward or cost associated with each possible state-

action pair,
(4) next state transition probabilities for each possible

state-action pair.

The solution of an MDP model (referred to as a policy)
gives a rule for choosing an action at each possible system
state. If the policy chooses an action at time 𝑡 depending
only on the state of the system at time 𝑡, it is referred to as
a stationary policy. An optimal stationary policy exists over
the class of all policies if every stationary policy gives rise to
an irreducible Markov chain. This means that one can limit
the attention to the class of stationary policies.

An interesting class of MDPs is the class of MDPs with a
terminating state. This state is reached with probability one
in a finite number of steps. The number of steps represents
the lifetime of the Markovian process induced by the MDP
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model (hence, the lifetime of the modeled system). The
solution of the model is a policy which drives the system into
the terminating state while optimizing an objective function
which may include the lifetime of the system as a parameter.

In order to obtain a policy from anMDPmodel, it is nec-
essary to form and solve the so-called optimality equation (or
Bellman equation).The following is the standard form of this
equation with the maximization operator [8]:

𝑉
𝑛
(𝑠) = max
𝑎∈𝐴(𝑠)

[𝑓 (𝑠, 𝑎) + ∑

𝑠
󸀠
∈𝑆

P (𝑠, 𝑠
󸀠

, 𝑎) 𝑉
𝑛−1

(𝑠
󸀠

)] , (1)

where 𝑛 is the iteration index, 𝑆 is the set of system states (𝑠 ∈
𝑆), 𝐴(𝑠) is the set of actions possible when the system is at
state 𝑠,𝑓(𝑠, 𝑎) is the reward/cost per step,P is the system state
transition probability matrix, and𝑉(𝑠) is the optimal value of
the objective functionwhen the system is started at state 𝑠 and
the optimal policy is followed.

Equation (1) can be solved using the classical policy itera-
tion, value iteration, and relative value iteration algorithms
[8]. However, these algorithms become impractical when
the number of system states is large. In such situations, one
typically resorts to approximate techniques such as in [9–12].
Another solution for the problem of state explosion is state
aggregation [13–17]. In this technique, using some notion of
equivalence, equivalent states are combined into one class
which is represented by a single state in the reduced MDP
model. The new MDP model is equivalent to the original
one but with significantly fewer states. In this paper, this
technique is used to aggregate two kinds of system states.

3. Related Work

The research on the possible biological effects caused by
biosensors and how to mitigate those effects is very recent.
Most of the existing research deals with other technical
issues such as energy efficiency and quality of service. In this
section, we briefly review the limited available literature.

The effect of leadership rotation on a cluster-based bio-
logicalWSNwas studied in [18]. It was observed that rotating
the role of which node collects measurements from other
sensors and delivers them to the base station can significantly
reduce the temperature increase in tissues due to wireless
communication. The computation of an optimal rotation
sequence involves using the Pennes’s bioheat equation [5]
and the finite-difference time-domain (FDTD)method [6] to
calculate the temperature increase due to a sequence. Because
of its time requirement, the authors proposed another scheme
to calculate the temperature increase. It is referred to as the
temperature increase potential (TIP). It efficiently estimates
the temperature increase of a sequence. Using this scheme
and a genetic algorithm, they were able to find the minimum
temperature increase rotation sequence. They, however, did
not consider the effect of the wireless channel and limited
energy.

The issue of routing in biological WSNs was studied in
[19]. The authors proposed a thermal-aware routing protocol
that routes the data away from high temperature areas
referred to as hot spots. The location of a biosensor becomes

a hot spot if the temperature of the biosensor exceeds a
predefined threshold.Theproposed protocol achieves a better
balance of temperature increase and shows the capability of
load balance.

In [20], the sensor scheduling problem is formulated as
an MDP. The objective is to find an operating policy that
maximizes the network lifetime. The state of a sensor is
characterized by its current energy level only. Three kinds
of channel state information are considered: global, channel
statistics, and local. Considering only the energy level at each
sensor gives rise to an acyclic (i.e., loop-free) transition graph
which enables the MDP model to converge in one iteration.
On the other hand, if the temperature of each sensor is
included in the model, the transition graph of the underlying
MDP becomes cyclic. This is because when the sensor cools
down (i.e., its temperature decreases), it transitions back to a
less hot state. AnMDPmodel whose transition graph is cyclic
needs more time to converge.

Dynamic sensor activation in networks of rechargeable
sensors is considered in [21]. The objective is to find an acti-
vation policy that maximizes the event detection probability
under the constraint of slow rate of recharge of the sensor.
The state of the system is characterized by the energy level of
the sensor and whether or not an event would occur in the
next time slot. The recharge event is random and recharges
the sensorwith a constant charge.Themodel does not include
the state of the wireless channel which is very crucial when
temperature is considered.

Body sensor networks [22] with energy harvesting capa-
bilities are another kind ofWSNs in which each sensor has an
energy harvesting device that collects energy from ambient
sources such as vibration, light, and heat. In thisway, themore
costly recharging method which uses radiation is avoided.
The interaction between the battery recharge process and
transmission with different energy levels is studied in [23].
The proposed policies utilize the sensor’s knowledge of its
current energy level and the state of the processes governing
the generation of data and battery recharge to select the
appropriate transmission mode for a given state of the
network.

4. System Model

Figure 2 shows a BWSN consisting of three biosensors
implanted into the body of a patient.The biosensors commu-
nicate with an access point (or base station) over a wireless
channel.Thewireless access point initiates the data collection
process by determining which biosensor is going to transmit
the next measurement. A biosensor is selected for transmis-
sion based on the current network state and some policies.
The wireless access point is assumed to know the global
channel state information (CSI) of the wireless channel and
the state of each biosensor at each point in time. It is assumed
that the instantaneous received signal-to-noise ratio (SNR)
fully characterizes the state of the wireless channel.

The setup in Figure 2 can mathematically be modeled as
a discrete-state system which evolves in discrete time. Thus,
the time axis is divided into slots of equal duration Δ𝑇 and
time 𝑡 ∈ Z+ is the time interval [𝑡Δ𝑇, (𝑡 + 1)Δ𝑇). The state
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Figure 2: A patient with three biosensors implanted into his body.

of the system represents its condition at the beginning of a
time slot. Control (i.e., which biosensor to choose next) can
only be exercised at the beginning of a time slot and not
at any other time during the slot. For example, the current
temperature and remaining energy of each biosensor and the
CSI of the wireless channel are used to represent the state of
the system in Figure 2. Also, the number of biosensors is used
to represent the number of possible control actions that can
be used to control the evolution of the system.

The system in Figure 2 works as follows. At the beginning
of each time slot, a biosensor is selected by the base station
to transmit its measurement. As a result, the energy and
temperature of the selected biosensor change according to
its transmission energy requirement which is determined by
the state of the wireless channel. Also, the temperature of the
neighbors of the selected biosensor increases based on the
amount of energy used in the transmission. On the other
hand, the temperature of the nonneighboring biosensors
decreases. The change in the temperature of the biosensors
can be calculated using the Pennes’s bioheat equation and the
FDTD method (for more details, see Section 2.1.). However,
due to the large simulation time required before the tem-
perature change reaches a steady state, this approach is not
followed here. Instead, the temperature decrease is assumed
to be a constant reduction which occurs whenever the
biosensor is not transmitting and not a neighbor of a trans-
mitting biosensor. The temperature increase is also assumed
to be directly proportional to the energy consumed by the
transmitting biosensor.

Clearly, from the previous description, the location of a
biosensor represents a critical point since it experiences the
maximum temperature increase. This is because the tissues
surrounding a biosensor might be heated continuously due
to the local radiation generated by the biosensor itself and the
radiation generated by its neighbors.

Let 𝜒 be the set of biosensors which have been surgically
implanted in the body of a patient and at known locations.
Also, let Υ

𝑖
be the set of biosensors which are neighbors to

biosensor 𝑖. Different criteria can be used to compute this
set. In this work, the Euclidean distance between biosensors

is used. Each biosensor 𝑖 ∈ 𝜒 has a battery with an initial
energy ofE

0
and a maximum safe temperature level 𝜏 which

must not be exceeded. In each time slot 𝑡, the state of a
biosensor 𝑖 is characterized by two variables which are the
current temperature 𝑇

𝑡
(𝑖) and remaining energy 𝐸

𝑡
(𝑖). The

energy required for a biosensor 𝑖 to successfully transmit
its measurement to the base station is determined by the
state of the wireless channel in time slot 𝑡 in which it is
scheduled.This transmission energy is a randomvariable that
is denoted by𝑊

𝑡
(𝑖) and is IID over all sensors and time slots.

Due to hardware and power limitations, 𝑊
𝑡
(𝑖) is discretely

distributed over a finite set {𝜖, 𝜖
2
, . . . , 𝜖

𝐿
}, where 0 < 𝜖

1
< 𝜖
2
<

⋅ ⋅ ⋅ < 𝜖
𝐿
< ∞ and 𝜖

𝑗
is the energy consumed by a biosensor

in transmitting its measurement at the 𝑗th power level.
At the end of each time slot, the energy level at each

biosensor 𝑖 is given by the following equation:

𝐸
𝑡+1

(𝑖) = {
𝐸
𝑡
(𝑖) if 𝑖 ̸= 𝑎

𝐸
𝑡
(𝑖) − 𝑊

𝑡
(𝑎) if 𝑖 = 𝑎,

(2)

where 𝑎 is the index of the sensor selected for transmission.
Similarly, the temperature of each biosensor 𝑖 is given by the
following equation:

𝑇
𝑡+1

(𝑖) = {
F (𝑇
𝑡
(𝑖) ,𝑊

𝑡
(𝑎)) if 𝑖 = 𝑎 | 𝑖 ∈ Υ

𝑎

𝑇
𝑡
(𝑖) − 𝜅 if 𝑖 ̸= 𝑎 & 𝑖 ∉ Υ

𝑎
,

(3)

whereF is a function of the transmission power and current
temperature of the sensor scheduled for transmission and 𝜅

is the amount by which the temperature of a nonneighboring
sensor decreases. The symbol | denotes the logical OR
operator. It should be noted that the change in temperature
experienced by the scheduled biosensor and its neighbors is
assumed to be the same. This is a realistic assumption since
biosensors in the same neighborhood experience the same
amount of radiation.

Finally, the communication between the biosensor and
base station occurs over a Rayleigh fading channel with
additive Gaussian noise. Hence, the instantaneous received
SNR denoted by 𝛾 is exponentially distributed with the
following probability density function [24]:

𝑃 (𝛾) =
1

𝛾
0

exp(−
𝛾

𝛾
0

) , (4)

where 𝛾
0
is the average received SNR.

Such a wireless channel can be modeled as a finite-state
Markov chain (FSMC) [25, 26]. The model can be built as
follows. For a wireless channel with𝐾 states, the state bound-
aries (i.e, SNR thresholds) are denoted by Γ

1
, Γ
2
, . . . , Γ

𝐾
, Γ
𝐾+1

where Γ
1
= 0 and Γ

𝐾+1
= ∞. The channel is said to be in

state 𝑠
𝑖
if the SNR is between Γ

𝑖
and Γ
𝑖+1

where 𝑖 = 1, 2, . . . , 𝐾.
It is assumed that the SNR remains the same during packet
transmission and only transitions to the current or adjacent
states are allowed.

The steady-state probability of the 𝑖th state of the FSMC
is given by

𝑃 (𝑠
𝑖
) = exp(−

Γ
𝑖

𝛾
0

) − exp(−
Γ
𝑖+1

𝛾
0

) (5)



International Journal of Distributed Sensor Networks 5

and thus the state transition probabilities are

𝑃 (𝑠
𝑖+1

| 𝑠
𝑖
) ≈

𝑁 (Γ
𝑖+1

) Δ𝑡

𝑃 (𝑠
𝑖
)

,

𝑃 (𝑠
𝑖−1

| 𝑠
𝑖
) ≈

𝑁 (Γ
𝑖
) Δ𝑡

𝑃 (𝑠
𝑖
)

,

(6)

where𝑁(Γ
𝑖
) is the average number of times per unit interval

that the SNR crosses level Γ
𝑖
and Δ𝑡 is the packet duration.

𝑁(Γ
𝑖
) can be computed using the following equation [27]:

𝑁(Γ
𝑖
) = √2𝜋Γ

𝑖
𝑓
𝑑
𝑒
−Γ
𝑖
, (7)

where𝑓
𝑑
is the maximumDoppler frequency defined as 𝑓

𝑑
=

V/𝜆 with V being the speed of the subject and 𝜆 being the
wavelength.

Therefore, the transmission energy requirement for a
biosensor 𝑖 follows a Markov chain with 𝐿 states and transi-
tion probabilities 𝑃[𝑊

𝑡+1
(𝑖) = 𝑤

󸀠

| 𝑊
𝑡
(𝑖) = 𝑤], where𝑤,𝑤󸀠 ∈

{𝜖
𝑗
}
𝐿

𝑗=1

. This channel model has been verified to be precise
when the fading process is slow [25] such as in biosensor
applications.

5. MDP Model

5.1. Formulation. Thepurpose of theMDP formulation of the
system described in the previous section is to find a policy
𝜋 that prescribes the best action to take in each state of the
system so as to maximize the long-term expected lifetime of
the system. The policy 𝜋 is a stationary policy which means
that it is independent of time and depends only on the state
of the system. Next, we give the details of the MDP model.

5.1.1. State Set. The state of the system with |Π| biosensors at
time 𝑡 is described by a (3 × |Π|)-dimensional vector. That is,

𝑠
𝑡
= {(𝑇

𝑡
(1) , 𝐸

𝑡
(1) ,𝑊

𝑡
(1)) , (𝑇

𝑡
(2) , 𝐸

𝑡
(2) ,𝑊

𝑡
(2)) , . . . ,

(𝑇
𝑡
(|Π|) , 𝐸

𝑡
(|Π|) ,𝑊

𝑡
(|Π|))} .

(8)

Let 𝑆be the set of possible system states.Then, the number
of possible system states is |𝑆| = |𝑇|

|Π|

× |𝐸|
|Π|

× |𝑊|
|Π|,

where |𝑇|, |𝐸|, and |𝑊| are the numbers of possible tem-
peratures, residual energies, and transmission energy levels,
respectively.

The system enters a terminating state when any one of the
following two conditions is true:

(1) temperature of any biosensor is harmful (i.e., 𝑇
𝑡
(𝑖) ≥

𝜏, where 𝜏 is a maximum threshold on the allowed
temperature increase);

(2) a biosensor cannot transmit its measurement due to
lack of enough energy (i.e., 𝐸

𝑡
(𝑖) < 𝑊

𝑡
(𝑖)) (this

condition also accounts for the case when 𝐸
𝑡
(𝑖) = 0).

Once the system is in a terminating state, the system
must be halted to protect the patient. The system can then be
restored to an initial state by recharging the biosensors and
letting them cool down.

5.1.2. Action Set. In each time slot, based on the current
state of the system, the base station chooses an action (i.e., a
biosensor to transmit its measurement). The set of possible
actions consists of the indexes of all biosensors. In other
words, the set of actions available in each state 𝑠 ∈ 𝑆 is 𝐴(𝑠) =
{1, 2, . . . , |Π|}.

5.1.3. Reward Function. Let 𝑅(𝑠, 𝑎) be the instantaneous
reward earned by the network due to action 𝑎 ∈ 𝐴(𝑠) when
the system is in state 𝑠 ∈ 𝑆. Since the goal is to maximize
the expected network lifetime, the reward function can be
defined as

𝑅 (𝑠, 𝑎) = 1 (9)

which assigns a unit reward to each time slot as long as
the network is in a nonterminating state. Therefore, the
expected sumof rewards obtained before the network reaches
a terminating state represents the network lifetime. It should
be pointed out that the expectation is taken over all possible
state sequences generated by a given policy.

5.1.4. Transition Probability Function. The behavior of the
system is described by |𝐴| |𝑆| × |𝑆| transition probability
matrices. Each matrix is denoted by P

𝑠
𝑡
,𝑠
𝑡+1

(𝑎) which is the
probability that choosing an action 𝑎 when in state 𝑠

𝑡
will

lead to state 𝑠
𝑡+1

. More formally, P
𝑠
𝑡
,𝑠
𝑡+1

(𝑎) can be rewritten
as follows:

P [𝑠
𝑡+1

| 𝑠
𝑡
, 𝑎 = 𝑘] = ∏

𝑖∈Π

{𝑃 [𝑇
𝑡+1

(𝑖) | 𝑇
𝑡
(𝑖) ,𝑊

𝑡
(𝑖) , 𝑎 = 𝑘]

× 𝑃 [𝐸
𝑡+1

(𝑖) | 𝐸
𝑡
(𝑖) ,𝑊

𝑡
(𝑖) , 𝑎 = 𝑘]

× 𝑃 [𝑊
𝑡+1

(𝑖) | 𝑊
𝑡
(𝑖)]} .

(10)

5.1.5. Value Function. The thermal management problem is
formulated as an infinite-horizon MDP using the average
reward criterion [7]. So, let 𝑉

𝜋
(𝑠
0
) be the expected network

lifetime given that the policy 𝜋 is used with an initial state
𝑠
0
. Then, the maximum expected network lifetime 𝑉

∗

(𝑠
0
)

starting from state 𝑠
0
is given by

𝑉
∗

(𝑠
0
) = max
𝜋

𝑉
𝜋
(𝑠
0
) . (11)

The optimal policy 𝜋∗ is the one that achieves the maxi-
mum expected network lifetime at all nonterminating states.
Hence, it gives the optimal sensor transmission schedule.

The relative value iteration (RVI) algorithm [8] is used to
numerically solve the following recursive equation for 𝑛 > 0:

𝑉
𝑛
(𝑠) = max
𝑎∈𝐴(𝑠)

[

[

𝑅 (𝑠, 𝑎) + ∑

𝑠
𝑡+1
∈𝑆

P (𝑠
𝑡
, 𝑠
𝑡+1

, 𝑎) 𝑉
𝑛−1

(𝑠
𝑡+1

)]

]

.

(12)

In (12), the subscript 𝑛 denotes the iteration index. As
𝑛 → ∞, 𝑉

𝑛
→ 𝑉
∗.
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{0, 4, 1, 0, 4, 1, 0, 4, 1}

{1, 3, 2, 1, 4, 1, 0, 4, 2} {0, 4, 1, 1, 4, 1, 1, 3, 1}

1 3

{2, 2, 2, 1, 3, 1, 1, 1, 1}

{3, 2, 1, 2, 2, 2, 2, 1, 1}

{4, 0, ∗, ∗, ∗, ∗, ∗, ∗, ∗} {∗, ∗, ∗, ∗, ∗, ∗, 2, 0, ∗}

3 2

Initial system state

Class of terminating states

Class of final valid states

1, 2, 3

1

1, 2, 3

1, 2, 3

· · ·

· · ·

· · ·

· · ·

· · ·

...

Figure 3: Excerpt of the system state space showing three classes of states.

5.2. Minimizing the Size of the MDP Model through State
Aggregation. The large state space of the MDP model makes
the computation of the optimal policy a highly intensive
process and thus only feasible for small-scale networks. This
is due to the storage and runtime requirements which are
both functions of the number of possible system states. State
aggregation can be used to mitigate this problem. With this
technique, the state space is partitioned and the states belong-
ing to the same partition are aggregated into one new state.
Partitioning is performed by using some notion of equiv-
alence between system states. The final result is a reduced
MDP model with the same properties as the original one but
significantly fewer states.

In this work, the definition of state equivalence in MDPs
introduced in [14] is utilized. This definition can be stated as
follows.

Definition 1 (state equivalence [14]). Two states are equivalent
if and only if for every action:

(1) they achieve the same immediate reward,
(2) they transit to the same next states with the same tran-

sition probabilities.

For example, consider Figure 3 which shows an excerpt
of the state space of an instance of the MDP model of the
system in Figure 2. In this case, 𝜏 and E

0
are both 4. The

state space has a tree-like structure in which the root is the
initial state and the leaves are the terminating states. Two
important classes of states are the class of terminating states
and the class of final valid states (the name is just a convention
to indicate that the final working state of the system before
entering a terminating state always belongs to this class of
states). In the former, the states are equivalent since for each
action, no reward is generated and the next state is the same
as the present one with a probability of one. This class of
states can be identified in 𝑂(|𝑆|) time. Similarly, in the latter,
the states are equivalent since for each action, a reward of
one unit is generated and the next state is a terminating state

with probability one. This class of states can be identified in
𝑂(|𝑆||Π|) time. Additional classes of states can be identified
in 𝑂(|𝑆|

2

|Π|) time. However, this is very costly in practice
due to the huge number of states.Therefore, we consider only
the classes of final valid states and terminating states since
they are not costly to compute and provide a considerable
reduction in the size of the MDP model.

The following theorem asserts that system states identi-
fied as final valid (terminating) are equivalent and thus can
be represented by one final valid (terminating) state in the
reduced MDP model.

Theorem 2. The system states in the class of final valid states
(terminating states) are equivalent.

Proof. We provide the proof for any two system states
belonging to the class of final valid states. The proof for any
two states belonging to the class of terminating states is the
same.

By definition, a valid system state is one at which each
biosensor can make a transmission (i.e., all actions are
possible). Also, by definition, a final valid system state is one
at which the execution of an action generates a reward of one
unit and causes the system to enter a terminating state. Since
all terminating states are equivalent, the system transits to a
terminating state with a probability of one.

The equivalence of the optimal policy produced by solv-
ing the reduced MDP model is established by the following
theorem.

Theorem 3. The reduced MDP model produced by combining
the final valid states and terminating states induces an optimal
policy for the original MDP model.

Proof. Let 𝑆∗ be the new reduced set of system states. Also,
let 𝑖 and 𝑗 be two equivalent system states such that 𝑖 ∈ 𝑆

and 𝑗 ∈ 𝑆
∗. Using mathematical induction, it can be shown

that 𝑖 and 𝑗 have the same optimal value. First, we start with
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Table 1: Reduction in the number of system states when terminating
states and final valid states are aggregated.The number of biosensors
is 3. 𝜏 and 𝐿 are 7 and 2, respectively.

E
0

Total no. of states Reduced no. of
states

Percentage of
reduction

5 884736 184319 79.17
6 1404928 341802 75.67
7 2097152 569849 72.83
8 2985984 881510 70.48
9 4096000 1289835 68.51
10 5451776 1807874 66.84

the base case where 𝑛 = 0 and 𝑉
0
(𝑘) = 0 for all 𝑘 ∈ 𝑆

∗. In this
case, the optimal value for any state is just the reward for that
state; that is,𝑉

1
(𝑘) = max

𝑎∈𝐴(𝑘)
𝑅(𝑘, 𝑎). Since states 𝑖 and 𝑗 are

equivalent, it is implied that 𝑅(𝑖, 𝑎) = 𝑅(𝑗, 𝑎) for all 𝑎 ∈ 𝐴 and
thus 𝑉

1
(𝑖) = 𝑉

1
(𝑗). This proves the base case.

For the inductive case (i.e., 𝑛 ≥ 2), using the induction
hypothesis, the following can be shown for states 𝑖 and 𝑗:

𝑉
𝑛
(𝑗) = max

𝑎∈𝐴(𝑗)

[𝑅 (𝑗, 𝑎) + ∑

𝑘∈𝑆
∗

P (𝑗, 𝑘, 𝑎) 𝑉
𝑛−1

(𝑘)]

= max
𝑎∈𝐴(𝑖)

[𝑅 (𝑖, 𝑎) + ∑

𝑘∈𝑆
∗

P (𝑖, 𝑘, 𝑎) 𝑉
𝑛−1

(𝑘)]

= max
𝑎∈𝐴(𝑖)

[𝑅 (𝑖, 𝑎) +∑

𝑙∈𝑆

P (𝑖, 𝑙, 𝑎) 𝑉
𝑛−1

(𝑙)] = 𝑉
𝑛
(𝑖) .

(13)

This proves the inductive case. Therefore, it can now be
established that any optimal action for state 𝑗 ∈ 𝑆

∗ is also
an optimal action for state 𝑖 ∈ 𝑆.

Table 1 shows the percentage reduction obtained for a
network with three biosensors. E

0
is varied while fixing 𝜏

and 𝐿 at 7 and 2, respectively. This considerable reduction is
achieved just by aggregating the final valid and terminating
states. Clearly, most of the system states fall into these
two classes of system states. This can be attributed to the
fact that the state space of the MDP model has a tree-like
structure in which the number of leaf nodes representing
terminating states is substantially large.Thenext substantially
large number is the number of final valid states.

6. Numerical and Simulation Results

The numerical and simulation results are obtained by using
the following example. Consider again the biosensor network
shown in Figure 2. The biosensors are indexed from one to
three. The neighbors of each biosensor are as follows:

(i) Ω
1
= {2},

(ii) Ω
2
= {1, 3},

(iii) Ω
3
= {2}.
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Figure 4: Expected network lifetime versus initial energy for
different values of 𝜏.

Also, the F function in (3) is defined for each biosensor
𝑖 as

F (𝑇
𝑡
(𝑖) ,𝑊

𝑡
(𝑎)) = 𝑇

𝑡
(𝑖) + 𝑊

𝑡
(𝑎) . (14)

The channel for each biosensor is modeled as a two-state
Markov chain whose state boundary is randomly generated.
A biosensor requires 𝜖

𝑘
units of energy to successfully

transmit its measurement when its channel is in state 𝑘 ∈

{1, 2}. It is assumed that 𝜖
𝑘
= 𝑘. The transition probability

matrix is

[
0.2 0.8

0.6 0.4
] . (15)

TheMDPmodel of the biosensor network is solved using the
RVI algorithm. The initial state of the network is assumed
to be {(0,E

0
, 1), (0,E

0
, 1), (0,E

0
, 1)}. The expected network

lifetime is the value calculated by the RVI algorithm for the
initial state.

Figure 4 shows the expected network lifetime for dif-
ferent levels of initial energy (E

0
) and maximum allowed

temperature increase (𝜏). For example, for 𝜏 = 3 (i.e., a
maximum temperature of three units is allowed), the maxi-
mum expected network lifetime is 2.875.This can be achieved
with an initial energy of 4 units. As the curve for 𝜏 = 3

shows, increasing the initial energy will not increase the
expected lifetime due to the limit on the maximum allowed
temperature increase.

The initial energy of a biosensormight also become a lim-
iting factor. For example, for 𝜏 = 8, E

0
limits the maximum

expected lifetime over the range of initial energies from 2 to 6.
After that, 𝜏 becomes the limiting factor. In this example, the
maximum expected network lifetime which can be achieved
with 𝜏 = 8 is 7.265 with an initial energy of 7 units.
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Another interesting issue is the amount of energy which
remains in biosensors after the system is halted due to a high
temperature increase. For example, from Figure 4, it can be
seen that for E

0
= 4, increasing 𝜏 leads to a noticeable

increase in the expected lifetime of the network. This indi-
cates that the amount of initial energy must be determined
carefully. This is because an excessive amount of remaining
energy means that the patient has been exposed to an unnec-
essary temperature increase when the biosensors implanted
in his body were charged.Thus, themeasurement process has
been started on already heated organs.

Figure 5 shows the actions the optimal policymakeswhen
the remaining energy at each biosensor is fixed at three and
the transmission energies of biosensors 1 and 2 are both two
and that of biosensor 3 is one. E

0
and 𝜏 are both 5. After

analyzing the data, it is found that biosensor 3 is selected for
transmission in 64% of the system states since it results in the
minimum temperature increase. This is obvious since only
one unit of energy is required for a successful transmission
and the size of its neighborhood is one. Biosensor 2 is
never selected. Biosensor 1, however, is selected when the
temperature at biosensor 3 or its neighbor (biosensor 2) is
4. This is because if any one of them is selected, the system
will enter a terminating state. So, biosensor 1 is selected to let
biosensor 3 cool down and thus lengthen the network lifetime
or to distribute heat evenly if the network is going to enter a
terminating state.

Next, the biosensor network is simulated to compare the
performance of the optimal policy with that of the TIP-based
andmost residual energy policies. Also, the impact of varying
the initial energy and maximum safe temperature level is
evaluated. The simulator is written in Matlab [28] and each
data point is the average of 1000 simulation runs. The TIP-
based policy (or the optimal rotation sequence) is computed
as described in [18]. The optimal sequence is (3, 1, 2). The
peak potential is 0.148 and is experienced by biosensor 2.
On the other hand, the most residual energy policy selects
the biosensor whose transmission will result in the smallest
reduction in energy.

First, the impact of varying the initial energy on the
network lifetime is studied using simulation. Figure 6 shows
the simulated lifetime of the biosensor network when the
initial energy is varied from 2 to 10. Essentially, the network
lifetime increases as the initial energy increases. However,
after a threshold (around 4), the lifetime curve starts to level
off for all policies. This is because the limit on the maximum
allowed temperature increase is reached.Therefore, unless 𝜏 is
increased, the average network lifetime will not increase with
the increase of the initial energy.

Figure 6 also shows that the optimal policy outperforms
the other two policies. The TIP-based policy performs the
worst. The main reason for its poor performance is that
the TIP-based policy does not account for the effects of
the wireless channel. On the other hand, the policy based
on the most residual energy performs better than the TIP-
based policy. This is because it always chooses the sensor
which consumes the least amount of energy for transmission.
Hence, the gap between its curve and that of the optimal
policy is smaller. Nevertheless, its performance cannot reach
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Figure 6: Simulated network lifetime versus initial energy for the
different policies.

the performance of the optimal policy since temperature is
not considered explicitly.

Figure 7 shows the impact on the network lifetime when
fixing the initial energy and varying the upper limit on the
safe temperature level. As expected, the network lifetime
increases as 𝜏 increases. However, this increase eventually
levels off due to the lack of energy. Clearly, the optimal policy
gives the best network lifetime.The policy based on the most
residual energy gives the next best network lifetime. The
worst network lifetime is achieved by the TIP-based policy.
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The performance of the three policies in terms of temper-
ature increase is compared.The initial energy is fixed atE

0
=

7. The temperature at biosensor 2 is chosen as a metric. This
is because biosensor 2 belongs to the neighborhoods of both
biosensors 1 and 2. Thus, it might be heated continuously.

Figure 8 shows the temperature at biosensor 2 over
four time slots. As expected, the TIP-based policy gives the
maximum temperature increase. A closer examination of the
simulation data reveals that biosensor 2 has indeed been
continuously heated. This in turns leads to a larger temper-
ature increase and thus shorter lifetime since the maximum
allowed temperature is approached very fast.

Both the most residual energy and optimal policies give
a significant improvement over the TIP-based policy. The
performance of the two policies is slightly the same over the
first two time slots. Then, the optimal policy shows a lower
temperature increase over the remaining time slots.

The previous observation is very interesting since the
goal of the TIP-based policy is to give a minimal tempera-
ture increase rotation sequence. However, since the wireless
channel and its dynamics are not taken into account, the
precomputed rotation sequence will most probably lead to a
larger temperature increase when implemented in practice.

7. Conclusions and Directions for
Further Research

The future of BWSNs is bright. However, much remains to
be done to define the full potential of this technology. In this
paper, we have taken one step further in understanding the
thermal management problem in BWSNs. The problem is
modeled as an MDP to obtain an optimal operating policy
for the network. Further, the aggregation of final valid and
terminating system states is proposed as away forminimizing
the number of states in the proposed MDP model. The
equivalence of the reduced MDP model is established. Also,
numerical results show a substantial reduction in model
size which is obtained by aggregating just two types of
system states. The optimal policy produced by the MDP
model outperforms the policies based on the most residual
energy and temperature increase potential.This is because the
optimal policy gives the best balance between transmission
energy consumption and the resulting temperature increase.

The following directions for further research are sug-
gested. First, the notion of state equivalence used in this work
is too strict and too sensitive. It is too strict because it requires
that its conditions be met exactly. And, it is too sensitive
because any perturbation of the transition probabilities can
make two equivalent states no longer equivalent. More flexi-
ble metrics for state equivalence are needed.Theworks in [16,
17] can be used as a starting point. Second, in some applica-
tions like ours, the state transition probability matrix is built
programmatically.This means a runtime which largely grows
with the number of system states and thus state aggregation
might not always be helpful. Hence, approximate techniques
based on reinforcement learning are recommended (see [8–
12]). Third, the possibility of obtaining effective policies
based on simple heuristic techniques should be investigated.
Heuristic techniques are typically characterized by their low
runtime and storage requirements.
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