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Wireless sensor networks (WSNs) are networks of autonomous nodes used formonitoring an environment. Topology control is one
of themost fundamental problems inWSNs. To overcome high connectivity redundancy and low structure robustness in traditional
methods, a PSO-optimized minimum spanning tree-based topology control scheme is proposed in this paper. In the proposed
scheme, we transform the problem into a model of multicriteria degree constrained minimum spanning tree (mcd-MST) and
design a nondominated discrete particle swarm optimization (NDPSO) to deal with this problem. To obtain a better approximation
of true Pareto front, the multiobjective strategy with a fitness function based on niche and phenotype sharing function is applied in
NDPSO. Furthermore, a topology control scheme based onNDPSO is proposed. Simulation results show that NDPSO can converge
to the non-dominated front quite evenly, and the topology derived under the proposed topology control scheme has lower total
power consumption, higher robust structure, and lower contention among nodes.

1. Introduction

A wireless sensor network (WSN) is a system of spatially
distributed sensor nodes to collect important information
in the target environment. WSNs have been envisioned for
a wide range of applications, such as battlefield intelligence,
environmental tracking, and emergency response. Each sen-
sor node has limited computational capacity, battery supply,
and communication capability [1]. Topology control and
management—how to determine the transmission power of
each node so as to maintain network connectivity while
consuming the minimum possible power—are one of the
most important issues in WSNs [2, 3]. Without proper
topology control algorithms in placing a randomly connected
multihop wireless sensor network may suffer from poor net-
work utilization, high end-to-end delays, and short network
lifetime. Topology control in WSNs is NP-hard [4], therefore
approximate methods can be used to tackle it efficiently.

Generally, the topology control technologies can be di-
vided into three types. One is to reduce the node redundancy
in a given network that usually periodically let selected

nodes enter energy-saving mode. Chen et al. [5] proposed
a distributed algorithm in which each node makes its local
decision on whether to sleep or not. Ding et al. [6] pre-
sented an adaptive partition scheme for node scheduling
and topology control with the aim of reducing energy
consumption. The second type of topology control is to
use the clustering strategy such as the well-known LEACH
[7]. It used rotation of the cluster head in order to evenly
distribute the energy consumption. Cluster heads collected
and aggregated all signals and then transmitted the fused
information to the base station. Lindsay and Raghavendra [8]
proposed PEGASIS which formed a chain including all nodes
in the network. In PEGASIS, each node communicated only
with a close neighbor and took turns transmitting to the base
station. It was better than LEACH because it performed data
aggregation at each chain node. The third type of topology
control focuses on reducing link redundancy, and several
topology control algorithms have been proposed. For exam-
ple, Li et al. [9] introduced a cone-based topology control
algorithm called CBTC which required only the availability
of directional information. In this algorithm, each node tried
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to find the minimum power 𝑝 to ensure that the transmitting
with 𝑝 could reach some node in every cone of degree 𝛼.
The algorithm had been analytically shown to be able to
preserve the network connectivity if 𝛼 < 5𝜋/6. Rodoplu
and Meng [10] proposed a relay-region and enclosure-based
approach (R and M) that introduced the notion of relay
region and enclosures for the purpose of power control. It
could guarantee connectivity of the entire network, and the
resulted topology was a minimum power topology. However,
the network topology given by this algorithm had a high
degree of link redundancy, which would reduce the efficiency
of the upper network protocols. To solve this problem, Li and
Halpern [11] proposed an improved protocol called SMECN,
which had lower link maintenance costs than R and M and
could achieve a significant saving in energy consumption.
Based on the local minimum spanning tree (MST), Li et
al. [12] proposed a network topology control algorithm
called LMST which could effectively reduce the power
consumption. The topology derived under this algorithm
could also preserve the network connectivity, and the degree
of each node in the resulted topology was bounded by 6.
However, this algorithm ignored the structure robustness and
communication interference, so some network performance
under LMST may be weaken.

In a word, all the algorithms mentioned previously have
taken different approaches to study the topology control and
management in WSNs. However, the structure robustness
and the radio contention are often ignored. It is a challenge
to design a novel topology control scheme which can over-
come the defects (i.e., high redundancy of connectivity and
low robustness of structure) of traditional methods. This
challenge motivates us to integrate the MST method and
particle swarm optimization (PSO) by developing a PSO-
optimized minimum spanning tree-based topology control
scheme in wireless sensor networks to prolong the network
lifetime. In our previous work [13], we have transformed the
problem of topology control into a model of multicriteria
degree constrained minimum spanning tree (mcd-MST) and
designed aMST-based topology control schemewithNDPSO
calledMCMST. Compared with [13], the major contributions
of this study are summarized as follows.

(1) Similar to [13], the topology control problem is also
transformed into the model of mcd-MST with low
power consumption, high structure robustness, and
lownode degree and the constraint of the node degree
corresponds with the low ratio interference.

(2) We do performance analysis of multiobjective PSO
(MOPSO) in detailed and use three standard test
functions (ZDT1, ZDT2, and ZDT6) to compare
MOPSO with another two classical multiobjective
evolutionary algorithms, NSGA and SPEA.

(3) In this paper, we adopt NDPSO, which is a nondom-
inated discrete particle swarm optimization, to solve
this mcd-MST problem. It aims at obtaining a better
approximation of true Pareto front by applying the
multiobjective strategy with a fitness function based
on niche and phenotype sharing function. Moreover,
we further do some extended experiments to analyze

the performance of NDPSO by varying the number
of objectives, number of vertexes, the correlation, and
maximum permissible degree constrained.

(4) We introduce the MCMST topology control scheme
in WSNs [13] and compare it with another two
topology control schemes, SMECN and LMST, in dif-
ferent performance factors which include average link
length, average radius, average link strong, average
physical degree, and average logic degree.

The remainder of this paper is organized as follows.
Section 2 describes the problem. In Section 3, we present the
details of the proposed NDPSO algorithm for the mcd-MST
problem. Section 4 introduces the proposedMCMST scheme
based on NDPSO. In Section 5, we analyze the proposed
NDPSO algorithm under a variety of scenarios. And the
comparison of our proposed MCMST scheme and other
existing schemes is carried out in the simulation. Finally, we
make conclusions and discuss the future work in Section 6.

2. Problem Description

2.1. mc-MST. MST problem is to find a least-cost spanning
tree in an edge-weighted graph, and multicriteria minimum
spanning tree (mc-MST) problem is one of the extended
formulations of the MST problem. In mc-MST, a vector
of weights is defined for each edge, and the problem is
to find all Pareto optimal spanning trees. Consider a con-
nected and undirected graph 𝐺 = (𝑉, 𝐸), where 𝑉 =

{V
1
, V
2
, . . . , V

𝑛
} is a finite set of vertices representing terminals

or telecommunication stations, and so forth, and 𝐸 =

{𝑒
1,2
, 𝑒
1,3
, . . . , 𝑒

𝑖,𝑗
, . . . 𝑒
𝑛−1,𝑛

} which is defined as follows:

𝑒
𝑖,𝑗
= {

1, if V
𝑖
, V
𝑗
have edge

0, otherwise,

(𝑖 = 1, 2, . . . , 𝑛 − 1; 𝑗 = 𝑖 + 1, 𝑖 + 2, . . . , 𝑛) .

(1)

Each edge has 𝑚 positive real numbers, represent-
ing 𝑚 attributes defined on it and denoted with 𝑤

𝑖,𝑗
=

{𝑤
1

𝑖,𝑗
, 𝑤
2

𝑖,𝑗
, . . . , 𝑤

𝑚

𝑖,𝑗
}. In practice, 𝑤𝑘

𝑖,𝑗
(𝑘 = 1, 2, . . . , 𝑚) may

represent the distance, cost, and so on.
Let 𝑥 = 𝑥

1,2
, 𝑥
1,3
, . . . , 𝑥

𝑖,𝑗
, . . . , 𝑥

𝑛−1,𝑛
be defined as follows:

𝑥
𝑖,𝑗
= {

1, if 𝑒
𝑖,𝑗
= 1 and is selected

0, otherwise,

(𝑖 = 1, 2, . . . , 𝑛 − 1; 𝑗 = 𝑖 + 1, 𝑖 + 2, . . . , 𝑛) .

(2)

Then a spanning tree of graph 𝐺 can be expressed as the
vector 𝑥. Let𝑋 be the set of all such vectors corresponding to
spanning trees in graph 𝐺, and the mc-MST problem can be
formulated as follows:

min 𝑓
1
(𝑥) = ∑𝑤

1

𝑖,𝑗
𝑥
𝑖,𝑗
,

min 𝑓
2
(𝑥) = ∑𝑤

2

𝑖,𝑗
𝑥
𝑖,𝑗
,

⋅ ⋅ ⋅

min 𝑓
𝑚
(𝑥) = ∑𝑤

𝑚

𝑖,𝑗
𝑥
𝑖,𝑗
,
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(𝑖 = 1, 2, . . . , 𝑛 − 1; 𝑗 = 𝑖 + 1, 𝑖 + 2, . . . , 𝑛) ,

s.t. 𝑥 ∈ 𝑋,

(3)

where 𝑓
𝑖
(𝑥) is the 𝑖th objective to be minimized for the

problem

1 ≤ ∑𝑥
𝑖,𝑗
≤ 𝑑; (𝑖 = 1, 2, . . . , 𝑛) , (4)

where 𝑑 denotes the maximum permissible degree.
If the degree constraint condition of formula (4) is further

considered for the formula (3), the mc-MST problem will be
transformed into a mcd-MST problem, thus the mcd-MST is
a typical mc-MST.

Compared with the traditional MST problem, the mcd-
MST problem has more than one objective. Because these
multiple objectives exist and usually conflict with each
other, we cannot determine which edge has the least weight
and span one to form a spanning tree like the process of
vertex growth or edge growth. If we transform the multiple
objectives into a single objective according to some criteria,
the problem can be easily solved by using anyMST algorithm,
but only one single solution can be obtained. Actually, this
transformation is not an easy work both for the decision
maker and the system analyzer in practice.

2.2. Model Formulation. A wireless sensor network can be
described as a directed graph 𝐺(𝑉, 𝐸) in a two-dimensional
plane, where𝑉 is the set of nodes and𝐸 is the set of edges.The
relative neighbor graph 𝐺

𝑖
(𝑉
𝑖
, 𝐸
𝑖
) of node 𝑖 is denoted as the

subgraph located in the disk centered at node 𝑖 with a radius
𝑟max, where |𝑉| = 𝑛 and |𝐸| = 𝑚. In this paper, a minimum
spanning tree with low power consumption, high structure
robustness, and low node degree in 𝐺

𝑖
(𝑉
𝑖
, 𝐸
𝑖
) is constructed.

The constraint of node degree corresponds with the low ratio
interference.The low power consumption and high structure
robustness can be described as follows.
Objective 1 (low power consumption). One has

Min {𝑦
1
(𝑖) = ∑𝑝

𝑘
| 𝑖 ∈ 𝑉, 𝑘 ∈ 𝑉

𝑖
} , (5)

where 𝑦
1
(𝑖) ∈ (0, (𝑛

𝑖
− 1)𝑝max) and 𝑝𝑘 stands for the power

consumption of node k.

Objective 2 (high structure robustness). One has

Max {𝑦
2
(𝑖) = ∑𝑅

𝑗𝑘
| (𝑗, 𝑘) ∈ 𝑇

𝑖
, 𝑇
𝑖
⊂ 𝐺
𝑖
(𝑉
𝑖
, 𝐸
𝑖
)} , (6)

where𝑅
𝑗𝑘
stands for the robustness value between node 𝑗 and

node k.
Therefore, the mcd-MST problem with low power con-

sumption and high structure robustness can be described
as searching for sensor nodes with abundant surplus energy
to communicate with each other, and avoiding too much
interference among them. We denote an m-dimensional
vector to describe the states of links. If an edge belongs to
𝑇
𝑖
, then 𝑥

𝑗
= 1, otherwise 𝑥

𝑗
= 0. Additionally, the original

model must be consistent with the features of MST, so the
mathematical model can be described as follows:

min 𝑧
1
(𝑖) = 𝑊

1
𝑋 =

𝑚

∑

𝑗=1

𝑤
1𝑗
𝑥
𝑗
,

min 𝑧
2
(𝑖) = 𝑊

2
𝑋 =

𝑚

∑

𝑗=1

𝑤
2𝑗
𝑥
𝑗
,

(7)

where𝑊
1
,𝑊
2
correspond to the weight of the vectors imply-

ing low power consumption and high structure robustness,
respectively. At the same time, the objectives must satisfy the
node degree constraint in order to form a degreeconstrained
tree structure.

3. Proposed Algorithm

The MST problem has been well studied, and many efficient
polynomial-time algorithms [14] have been developed by
Dijkstra, Kruskal, Prim. Although the basic MST problem is
in polynomial time, the addition of one or more constraints
often transforms it into amultiobjective problem (MOP), and
so approximate methods must be used if one is to tackle
it efficiently. In [15], Zhou and Gen described a Prufer-
encoded genetic algorithm (GA), which used Srinivas and
Deb’s Nondominated Sorting method and a Prufer based
encoding [16, 17]. And an algorithm for enumerating all
Pareto optimal spanning trees was put forward to evaluate
their proposed GA. However, Knowles [18] pointed out that
the proposed enumeration algorithm was not correct. In
our previous work [19], we put forward a nongenerational
multiobjective GA (MOGA) to deal with the mc-MST and
presented an improved enumeration algorithm to evaluate
our proposed MOGA. In [19], the improved enumeration
algorithm was proved to be able to find out all true Pareto
optimal solutions, so it can be used to replace the algorithmof
Zhou andGen for evaluating the quality ofmc-MST solutions
generated by an approximate method such as the GA in [15]
or [19].

Definition 1 (dominance [20]). A vector 𝑈 = (𝑢
1
,𝑢
2
, . . . , 𝑢

𝑛
)

is said to dominate 𝑉 = (V
1
, V
2
, . . . , V

𝑛
) if and only if 𝑈 is

partially less than V, that is, for all 𝑖 ∈ {1, 2, . . . , 𝑛}, 𝑢
𝑖
≤

V
𝑖
∧ ∃ 𝑖 ∈ {1, 2, . . . , 𝑛}, 𝑢

𝑖
≺ V
𝑖
.

Definition 2 (pareto optimal [20]). A solution𝑋
𝑢
∈ 𝑈 is said

to be Pareto optimal if and only if there is no 𝑥V ∈ 𝑉 for
which 𝑉 = 𝑓(𝑋V) = (V

1
, V
2
, . . . , V

𝑛
) dominates 𝑈 = 𝑓(𝑋

𝑢
) =

(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
).

PSO is a relatively recent heuristic optimization technique
developed by Kennedy and Eberhart [21]. Ease of implemen-
tation, high quality of solutions, computational efficiency, and
speed of convergence are strengths of the PSO. In the past
several years, PSO has been successfully applied in many
researches and applications such as [22–27].WSN issues such
as node deployment, localization, energy-aware clustering,
data aggregation, and topology control are often formulated
as optimization problems, and PSO has been applied to
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address these WSN issues. Kulkarni and Venayagamoorthy
[28] introduce PSO and discuss its suitability for WSN
applications. They also present a brief survey of how PSO is
tailored to address these issues.

3.1. Basic PSO. PSO is a population based search problem
where individuals, referred to as particles, are grouped into
a swarm. In PSO, each particle is defined as a potential
solution to a problem in a D-dimensional space, with the 𝑖th
particle represented as 𝑋

𝑖
= (𝑋
𝑖1
, 𝑋
𝑖2
, . . . , 𝑋

𝑖𝐷
). The particle

adjusts its position in search space according to its own
experience and that of neighboring particles. Each particle
also maintains a memory (pbest) of its previous best position
represented as 𝑝

𝑖
= (𝑝
𝑖1
, 𝑝
𝑖2
, . . . , 𝑝

𝑖𝐷
) and a velocity along

each dimension represented as𝑉
𝑖
= (𝑉
𝑖1
, 𝑉
𝑖2
, . . . , 𝑉

𝑖𝐷
). In each

generation, the pbest vector of the particlewith the best fitness
in the local neighborhood designated 𝑝

𝑔𝑑
.

In each generation of the early versions of PSO, the parti-
cles were manipulated according to the following equation:

V
𝑖𝑑
= 𝑤 ∗ V

𝑖𝑑
+ 𝑐
1
𝑟
1
(𝑝
𝑖𝑑
− 𝑥
𝑖𝑑
) + 𝑐
2
𝑟
2
(𝑝
𝑔𝑑
− 𝑥
𝑖𝑑
) ,

𝑥
𝑖𝑑
= 𝑥
𝑖𝑑
+ V
𝑖𝑑
,

(8)

where 𝑑 is the number of dimensions (variables), 𝑤 is
the inertia weight, 𝑐

1
and 𝑐

2
are two positive constants,

called acceleration constants, and 𝑟
1
and 𝑟
2
are two random

numbers within the range [0, 1]. A constant 𝑉max is often
used to limit the velocities of the particles and improve the
resolutions of the search space.

3.2. NDPSO. As (8) mentioned in the previous section, it is
obvious that the basic PSO cannot be directly used to generate
a discrete combinatorial solution of the MST problem. Since
the PSO algorithm was proposed by Kennedy and Eberhart
in 1995, attempts have beenmade to apply the PSO algorithm
to discrete combinatorial problems lately [29–35]. In this
section, inspired by the [32] and our previous work [29],
NDPSO is applied to deal with mc-MST problem. In the
proposed algorithm, the phenotype sharing function of the
objective space is applied in the definition of fitness function
to obtain a better approximation of true Pareto front.

3.2.1. Representation of Particles. Here we also adopt the
method of [15, 19] to build the representation scheme of
particles.

Procedure: Encoding

Step 1. Let vertex 𝑗 be the smallest labeled leaf vertex in a
labeled tree 𝑇.
Step 2. Set 𝑘 to be the first digit in the permutation if vertex 𝑘
is incident to vertex 𝑗.
Step 3. Remove vertex 𝑗 and the edge from 𝑗 to 𝑘; we have a
tree with 𝑛 − 1 vertices.

Step 4. Repeat the previously steps until one edge is left, and
produce the Prufer number or permutation with 𝑛 − 2 digits
in order.

Procedure: Decoding
Step 1. Let 𝑃 be the original Prufer number, and let 𝑃 be the
set of all vertices not included in 𝑃.
Step 2. Let 𝑗 be the vertex with the smallest label in 𝑃, and
let 𝑘 be the leftmost digit of 𝑃. Add the edge from 𝑗 to 𝑘 into
the tree. Remove 𝑗 from 𝑃 and 𝑘 from 𝑃. If 𝑘 does not occur
anywhere in the remainder of P, put it into 𝑃.
Step 3. Repeat the process until no digits left in 𝑃.
Step 4. If no digits remain in 𝑃, there are exactly two vertices,
𝑟 and 𝑠, in 𝑃. Add edge from 𝑟 to 𝑠 into the tree and form a
tree with 𝑛-1edges.

3.2.2. Discrete Procedure of PSO. Here, the position of the 𝑖th
particle at iteration 𝑡 can be updated as follows:

𝑋
𝑡

𝑖
= 𝑐
2
⊕ 𝐹
3
(𝑐
1
⊕ 𝐹
2
(𝑤 ⊕ 𝐹

1
(𝑋
𝑡−1

𝑖
) , 𝑃
𝑡−1

𝑖
) , 𝐺
𝑡−1

𝑖
) . (9)

The update equation consists of three components as
follows, where 𝑟

1
, 𝑟
2
, and 𝑟

3
are uniform random numbers

generated between 0 and 1.

(a) 𝜆
𝑡

𝑖
represents the velocity of the particle,

𝜆
𝑡

𝑖
= 𝑤 ⊕ 𝐹

1
(𝑋
𝑡−1

𝑖
) = {

𝐹
1
(𝑋
𝑡−1

𝑖
) , 𝑟
1
< 𝑤,

𝑋
𝑡−1

𝑖
, else,

(10)

where𝐹
1
indicates the insert (mutation) operatorwith

the probability of w.

(b) 𝛿
𝑡

𝑖
is the “cognition” part of the particle for the private

thinking of the particle itself,

𝛿
𝑡

𝑖
= 𝑐
1
⊕ 𝐹
2
(𝜆
𝑡

𝑖
, 𝑃
𝑡−1

𝑖
) =

{

{

{

𝐹
2
(𝜆
𝑡

𝑖
, 𝑃
𝑡−1

𝑖
) , 𝑟
2
< 𝑐
1
,

𝜆
𝑡

𝑖
, else,

(11)

where 𝐹
2
represents the crossover operator with the

probability of 𝑐
1
.

(c) 𝑋
𝑡

𝑖
is the “social” part of the particle representing the

collaboration among particles,

𝑋
𝑡

𝑖
= 𝑐
2
⊕ 𝐹
3
(𝛿
𝑡

𝑖
, 𝐺
𝑡−1

𝑖
) =

{

{

{

𝐹
3
(𝛿
𝑡

𝑖
, 𝐺
𝑡−1

𝑖
) , 𝑟
3
< 𝑐
2
,

𝛿
𝑡

𝑖
, else,

(12)

where 𝐹
3
represents the crossover operator with the

probability of 𝑐
2
.
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Figure 1: The results of MOPSO in ZDT1, ZDT2, and ZDT6.

3.2.3. Fitness Value Function

Definition 3. Target distance 𝑓𝑑
𝑖𝑗
: 𝑓𝑑
𝑖𝑗

is the distance
between the two particles 𝑖 and 𝑗. Supposed that the distance
has 𝑚 dimensions which are noted as 𝑓

1
𝑑
𝑖𝑗
, 𝑓
2
𝑑
𝑖𝑗
, . . . , 𝑓

𝑚
𝑑
𝑖𝑗
,

respectively, and

𝑓𝑑
𝑖𝑗
= 𝑓
1
𝑑
𝑖𝑗
+ 𝑓
2
𝑑
𝑖𝑗
+ ⋅ ⋅ ⋅ + 𝑓

𝑚
𝑑
𝑖𝑗
=
󵄨󵄨󵄨󵄨󵄨
𝑓
1
(𝑥
𝑖
) − 𝑓
1
(𝑥
𝑗
)
󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝑓
2
(𝑥
𝑖
) − 𝑓
2
(𝑥
𝑗
)
󵄨󵄨󵄨󵄨󵄨
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑚
(𝑥
𝑖
) − 𝑓
𝑚
(𝑥
𝑗
)
󵄨󵄨󵄨󵄨󵄨
,

(13)

where 𝑖 ̸= 𝑗.

Definition 4. Dominance measure D(i): D(i) expresses the
state of domination the 𝑖th particle with respect to the current
population, and

𝐷 (𝑖) =

𝑝

∑

𝑗=1

𝑛𝑑 (𝑖, 𝑗) , (14)

where nd(i, j) is one if particle 𝑗 dominate particle i, and zero
otherwise.

Definition 5. Sharing function 𝑠ℎ(𝑓𝑑
𝑖𝑗
):

𝑠ℎ (𝑓𝑑
𝑖𝑗
) = {

1, if 𝑓𝑑
𝑖𝑗
≤ 𝜎
𝑠
,

0, otherwise,
(15)

where 𝜎
𝑠
is a sharing parameter.

Definition 6. The neighbor density measure𝑁(𝑖): 𝑁(𝑖) asso-
ciated with particle 𝑖 is defined as

𝑁(𝑖) =

𝑝

∑

𝑗=1

𝑠ℎ (𝑓𝑑
𝑖𝑗
) . (16)

Definition 7. The fitness of 𝐴 given particle 𝐹(𝑖): 𝐹(𝑖) is then
defined as

𝐹 (𝑖) = (1 + 𝐷 (𝑖)) × (1 + 𝑁 (𝑖)) . (17)

Compared with the single-object PSO, during the search
process ofmultiobjective PSO (MOPSO), particles often have
more than one personal best and global best value. We save
these information into an external archive [36]. A proper
mechanism of choosing leader particles can help to findmore
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Figure 2: Boxplots of MOPSO, NSGA II, and SPEA 2 algorithm performance indicator values.
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Figure 3: The effect of NDPSO with correlation = 0 on the different problem.
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Figure 4: The effect of NDPSO with correlation = −0.7 on the
different problem.

Pareto solutions in a shorter time. So it is very important to
decide how to choose the proper leader particles to direct the
movement of particles. In order to avoid the external archive
growing too big, we adopt 𝜀-dominance [37] to reduce the
external archive.

3.2.4. Algorithm Overview. The details of NDPSO algorithm
can be described as follows.

NDPSO Algorithm for mcd-MST
Step 1. Initialize swarm.
Step 2.Modify degree if not satisfied.
Step 3. Calculate the fitness value.
Step 4. Initialize leaders in an external archive.
Step 5. Filter (leaders).
Step 6. Iteration = 0.
Step 7. For each particle: mutation; select leader;

SelfCross; SocialCross; modify degree;
update Position; update pbest.

Step 8. Update leaders in the external archive.
Step 9. Filter (leaders).
Step 10. Iteration++.
Step 11. If iteration<iterationMax, go to Step 7.
Step 12. Output results.

4. Topology Control Scheme

As mentioned in the previous sections, we constructed the
multiobjective minimum spanning tree model according to
characteristics of problem and designed a NDPSO algorithm
to deal with the model. Sensor nodes are usually presented
in the intersection of many node adjacency coverage graphs,
because the local topology is needed to adjust overall after
deployed. Then the node selects the one whose requirement
for coverage is maximum from a number of the spanning
trees. Inspired by the idea of local minimum spanning tree
structure and topology adjustment strategy of [12], a topology
control scheme based onNDPSO calledMCMST is proposed
in this section, and the details of the MCMST are described
as follows.

Topology Control Scheme Based on (MCMST)
Step 1. Each wireless sensor node 𝑢 collects the local infor-
mation of its own reachable neighborhood graph 𝐺

𝑢
(𝑉
𝑢
, 𝐸
𝑢
)

through broadcasting a HELLO message using its maximal
transmission power periodically.
Step 2. According to the information collected in the pre-
viously step and the performance evaluation function, each
node 𝑢 computes the minimum spanning tree with degree
constraints in the graph 𝐺

𝑢
(𝑉
𝑢
, 𝐸
𝑢
) using the NDPSO algo-

rithm independently in the previously section.
Step 3. Each node 𝑢 has to adjust its transmission
power according to its local minimum spanning tree
𝑇
𝑢
(𝑉(𝑇), 𝐸(𝑇)), where 𝑉(𝑇) = 𝑉

𝑢
, E(T) ⊂ 𝐸

𝑢
. At this time,

node 𝑢requires a power lever that can reach the farthest
one-hop neighbor in 𝑇

𝑢
.

5. Simulation Results

In this section, we first conduct simulations to compare
the performance of PSO under our multiobjective strategy
(MOPSO) with two classic multiobjective evolutionary algo-
rithms in three standard test functions. Furthermore, the
solution sets generated by NDPSO are also compared with
solution sets from the enumerating algorithm [19] which is
proved to find all Pareto optimal spanning trees. Finally, we
conduct extensive simulations to compare the performance of
our proposed MCMST scheme with other existing schemes.

5.1. Performance Analysis of MOPSO

5.1.1. Experimental Setup. We use three standard test func-
tions (ZDT1, ZDT2, and ZDT6) [38] and compare MOPSO
with two classic multiobjective evolutionary algorithms
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Figure 5: The effect of NDPSO with correlation = 0.95 on the different problem.
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Figure 6: Comparison on 15 vertices with 𝑑 = 3 and 𝑑 = 4.

(NSGA [39] and SPEA [40]). The three test functions
represent some typical function types of noninferior front
in multiobjective optimization problem, respectively. ZDT1
is a convex function, ZDT2 is a nonconvex function, and
ZDT6 is noncontiguous function. In order to avoid algo-
rithm randomness of a singular run, we independently run
each algorithm for 20 times and compare the results of 20
experiments based on the statistical methods of hypoth-
esis testing [41]. The experimental parameters are set as
𝑐
1
= 𝑐
2
= 2.0, 𝜎

1

𝑠
= 0.01, and 𝜎

2

𝑠
= 1. In addition, pop = 100

denotes the scale of population of all algorithms, and the
maximum iteration times is 500 in each run.

To evaluate the performance of those multiobjective
algorithms, Zitzler et al. developed several indicators [42].

Here, we adopt three quantitative indicators (unary additive
EPS indicator 𝐼1

𝜀+
, HYP indicator 𝐼−

𝐻
, and unary R2 indicator

𝐼
1

𝑅2
) in this paper.

5.1.2. Results and Analysis. As to the three test functions
ZDT1, ZDT2, and ZDT6, in most cases, the proposed algo-
rithm in this paper (MOPSO) can converge to the Pareto front
within 100 iterations and have a small computational cost.
Figure 1 shows the distribution situation of Pareto solution
at a certain run. From the figure, we can infer that for each
function, algorithm can obtain a well distribution of Pareto
front. The results of detailed performance parameters are
shown in Figure 2, and the Kruskal Wallis test results of
statistical analysis are shown in Table 1.
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From Figure 2 and Table 1, we can see that as to ZDT2
issue, MOPSO proposed in this paper is better than other
multiobjective evolutionary algorithms in three indicators
under the circumstance of same dominance rank distribu-
tion. So MOPSO algorithm is good at solving nonconvex
Pareto front function. For ZDT6, MOPSO algorithm is
superior to HSGA II and SPEA 2 on both R2 and HYP
indicator, while MOPSO is little inferior to them on EPS
indicator. According to [42], it also shows that if the results
from multiple Pareto compliant indicators are different, it is
hard to know which algorithm is better. It is obvious that
MOPSO algorithm can obtain a better result in the front
nonuniform ZDT6. As to ZDT1, althoughMOPSO is inferior
to NSGA II and SPEA 2 on three parameters, the value of
overall difference is small. Considering that it is unable to
find manifest difference from other evolutionary algorithm
on dominance rank distribution of solution andMOPSO can
converge to Pareto frontwithin fewnumber of iteration times,
MOPSO algorithm can obtain a satisfying solution in convex
Pareto font optimization function. According to the results
of three test function, we can see that MOPSO algorithm
proposed in this paper has strong global search ability, and
it can converge to the Pareto front by less computing cost.
Furthermore, its distribution of solution is quite good. What
we have mentioned previously demonstrates that MOPSO is
worth being studied in the field of multiobjective optimiza-
tion problem.

5.2. Performance Analysis of NDPSO

5.2.1. Experimental Setup. Let us consider a complete graph
𝐺 = (𝑉, 𝐸), where 𝑛 = |𝑉| and each edge has 𝑚 weights, the
problem’s goal is to find all Pareto optimal solutions of𝐺. The
coordinate of vertexes in 𝐺 and the weights of each edge are
generated randomly. Suppose each edge in the graph has two
weights, we propose generations for the following types:

(a) random: random (uncorrelated) real number weight-
ed graphs;

(b) correlated: random correlated real number weighted
graphs;

(c) anticorrelated: random anticorrelated real number
weighted graphs.

In [18], Knowles proposed an algorithm to generate
correlated (and anticorrelated) graphs. Knowles declared that
all subsequent weights are either positively or negatively
correlated with respect to the first component, and the values
of the weights are within a same range. All the weights are
of course not negative, but we find that the algorithm will
generate negative value when 𝛼 ≤ 0, and we presented
an improved algorithm in [19] to generate correlated (and
anticorrelated) graphs.The results of the improved algorithm
can be seen in [19].

5.2.2. Results and Analysis. In [19], we proposed an improved
enumeration algorithm which is proved to be able to find
all the optimal solutions. So it can be a tool for evaluating
the performances of other heuristic algorithms instead of the
enumeration algorithm of Zhou and Gen [15]. In the first
simulation, to evaluate the NDPSO algorithm, the solution
sets generated by it are compared with solution sets from
the improved enumeration [19], and the results are displayed
from Figures 3, 4, and 5. Here, we consider 2-objective
optimal problem. And the parameters are set as follows: the
number of vertices is 10 and 15, respectively, population size
is 50, and maximum generation is 1000.

From the results, we can draw a conclusion that the
NDPSO algorithm has similar performance with increased
size compared with the MOGA in [19]. However, the popu-
lation size and the maximum generation in MOGA are set as
400 and 20000, respectively. Thus, the NDPSO is superior to
MOGA in space and time complexity, and it is really effective
to deal with the mc-MST problem.
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Figure 8: Network topologies derived under different topology control scheme.

In real network environmental, to satisfy the requirement
of lifetime objective in wireless sensor networks and aim at
the defect that high redundancy of connectivity or low robust
of structure in traditional schemes, the model of topology
control in WSNs can be transformed into a problem of mcd-
MST. So in the second simulation, the problem’s goal is to
find mcd-MST solutions of 𝐺. The coordinate of vertexes
in 𝐺 and the weights of each edge are generated randomly.
For simplicity, however, we suppose each edge in the graph
has only two weights, which can be easily extended. We
display the results from Figures 6 and 7. Figure 6 shows that
the NDPSO algorithm converges to the real Pareto optimal
solutions better than the MOGA in [19] under the same
parameters setting nomatter d = 3 or 𝑑 = 4. From Figure 7, as
a direct representation, we can find that the proposedNDPSO
algorithm dominate the MOGA algorithm.

5.3. Performance Analysis of MCMST

5.3.1. Experimental Setup. Our simulation is done for a
network of 𝑛 nodes that are placed uniformly at random
in a rectangular region of 100 by 100 meters. We assume
that all nodes have the same maximum emission radius
R, and the Euclidean distance between node 𝑖 and node

𝑗 is 𝑑(𝑖, 𝑗). The transmission power between node 𝑖 and
node 𝑗 is defined as 𝐶

𝑖𝑗
= 𝑘 ∗ 𝑑(𝑖, 𝑗)

2
, 𝑘 = 0.005, the

robustness of an edge between node 𝑖 and node𝑗 is defined as
𝑅
𝑖𝑗
= 𝑒(𝑖, 𝑗)/(𝑒

2

𝑖
+ 𝑒
2

𝑗
)
1/2, the maximal transmission range is

𝑅max = 20m for all the nodes, and the initial energy of each
node is equivalent to a randomvalue between 20 and 40 Joule.

5.3.2. Result and Analysis. In the first simulation, 50 nodes
are uniformly distributed in the region. Figure 8(a) shows the
initial topology generated using the maximum transmission
power, and the topology generated by different topology
control schemes is shown in Figures 8(b), 8(c), and 8(d),
respectively. As shown in Figure 8, SMECN, LMST and
MCMST all dramatically reduce the average node degree
while maintaining network connectivity. Moreover, LMST,
andMCMST outperform SMECN in the sense that few edges
formed in the final network topology, because they take the
demand for low-power consumed into account and try to
reduce nodes’ transmission powers. However, the network
topology generated by MCMST is slightly different form the
one derived by LMST because LMST has not considered
the robustness of topology structures, and at the same time
MCMST has taken the edge coverage and node degree
constrained into consideration.
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Figure 9: Performance comparisons among different topology control scheme.
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Table 1: The Kruskal Wallis test results of EPS, HYP, and R2 indicator.

MOPSO NSGA II SPEA 2
ZDT 1

MOPSO — 1 1
𝐼
1

𝜀+
NSGA II 4.16519𝐸 − 17 — 1
SPEA 2 3.48666𝐸 − 34 4.16519𝐸 − 17 —
MOPSO — 1 1

𝐼
−

𝐻
NSGA II 2.53616𝐸 − 16 — 1
SPEA 2 4.00793𝐸 − 32 4.88893𝐸 − 15 —
MOPSO — 1 0.99996

𝐼
1

R2 NSGA II 7.6029𝐸 − 08 — 0.0551455
SPEA 2 3.99655𝐸 − 05 0.944854 —

ZDT 2
MOPSO — 2.20462𝐸 − 06 2.16472𝐸 − 05

𝐼
1

𝜀+
NSGA II 0.999998 — 0.72699
SPEA 2 0.999978 0.27301 —
MOPSO — 0.000234484 0.00112884

𝐼
−

𝐻
NSGA II 0.999766 — 0.689058
SPEA 2 0.998871 0.310942 —
MOPSO — 1.18542𝐸 − 14 7.16123𝐸 − 14

𝐼
1

R2 NSGA II 1 — 0.658011
SPEA 2 1 0.341989 —

ZDT 6
MOPSO — 1 1

𝐼
1

𝜀+
NSGA II 3.27923𝐸 − 07 — 1
SPEA 2 1.28526𝐸 − 20 3.94864𝐸 − 11 —
MOPSO — 3.10337𝐸 − 14 1.21161𝐸 − 20

𝐼
−

𝐻
NSGA II 1 — 0.000456755
SPEA 2 1 0.999543 —
MOPSO — 8.72107𝐸 − 20 4.22686𝐸 − 29

𝐼
1

R2 NSGA II 1 — 1.43107𝐸 − 07

SPEA 2 1 1 —
This table shows each pair of the value of𝑃which is composed of algorithm𝑂𝑅 (row) and algorithm𝑂𝐶 (column), and the corresponding alternative hypothesis
is that algorithm𝑂𝑅 is superior to algorithm𝑂𝐶 in indicator. The value of significance level is 0.05.

In the second simulation, we vary the number of nodes in
the region from 40 to 70. The average radius and the average
link length for the topologies generated using the SMECN,
LMST, and MCMST with link removal are shown, respec-
tively, in Figures 9(a) and 9(b). MCMST and LMST outper-
form SMECN in the both two cases, andMCMST scheme has
similar performance with LMST scheme. However, with the
size of nodes increasing, MCMST has better performances
than LMST in terms of the average link length. The results
imply that our proposed scheme can provide a better spatial
reuse and is power-efficient. As shown in Figure 9(c), the
average link strong for the topologies generated using our
scheme outperforms than that of SMECN and LMST because
the structure robustness of network is considered in our
proposed MCMST scheme. The average physical degree and
the average logic degree for the topologies using SMECN,
LMST, and MCMST are shown, respectively, in Figures 9(d)
and 9(e). From Figure 9(d), we can know that MCMST, and
LMST outperform SMECN and MCMST is little inferior to

LMST. As shown in Figure 9(e), the average logical degree
for the topologies generated using the MCMST has better
performance than LMST and SMECN with the size of nodes
increasing. It implies that our proposed scheme can get a
better network topology with low radio interference.

In a word, MCMST scheme proposed in this paper
has made a tradeoff among the energy consumption, radio
interference, and structure robustness, and the performance
of the resulting network topology has been greatly improved.

6. Conclusions

Due to the demand for the optimization of the network
lifetime, this paper adopts the idea of a local minimum
spanning tree, transforms the model into a multicriteria
degreeconstrained minimum spanning tree, and proposes a
NDPSO algorithm. The phenotype sharing function of the
objective space is applied in the definition of fitness function
to obtain a better approximation of true Pareto front, and
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the global convergence of the algorithm is proved using the
theorem of Markov chain. Then, a topology control scheme
based onNDPSO is put forward. Simulation results show that
the obtained topology in this paper has low overall power
consumption, high structural robustness, and controllable
internode communication interference characteristics and
can effectively prolong the lifetime of WSNs. And our
algorithm can obtain a better approximation of true Pareto
front.

Future work will cover the following problem of the
proposed MCMST scheme: (1) consider the reliability in
wireless sensor networks effectively; (2) how to reduce the
complexity and improve the convergence efficiency of our
NDPSO.
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