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In underwater wireless sensor networks (UWSNs), flooding-based routing protocols are preferred due to their capability of reducing
the routing overhead in terms of no need of path setup and maintenance. In addition to routing, a transport protocol should
be developed to recover lost DATA segments in loss-prone UWSNs. In particular, due to long propagation delay in UWSNS, a
fast end-to-end recovery technique needs to be developed. Fortunately, the Fast Retransmit technique well-defined in TCP can
be exploited for fast retransmissions of lost DATA segments. However, if it operates over the flooding-based routing protocols,
each source node will receive multiple copies of ACK segments which are transmitted along different paths. Therefore, the source
node cannot distinguish between these multiple copies of ACK segments and real duplicated ACK segments (defined as an ACK
indiscretion problem in this paper), which leads to unnecessary retransmissions. In this paper, we therefore propose two Fast
Retransmit techniques to address the ACK indiscretion problem. In our first proposed technique, the sink records a new count
number into a header, informing how many duplicated ACK segments have been transmitted from the sink. Since this requires an
additional field in the header for the count number, the second technique allows a source node to estimate the number of ACK
copies which are expected to be received when the sink transmits an ACK segment, without any dependency on the additional
field. From both of our proposed techniques, the source nodes become aware of the accurate number of duplicated ACK segments

transmitted from the sink and can perform the Fast Retransmit correctly.

1. Introduction

Recently, researchers have paid much attention to underwater
wireless sensor networks (UWSNs) in order to support a
variety of applications such as seismic monitoring, oceano-
graphic data collection, and tactical surveillance in the under-
water environment.

Different from terrestrial sensor networks, UWSNs have
distinctive characteristics such as high propagation delay,
limited bandwidth, and high error rate since acoustic signals
are used for communications, rather than radio signals [1, 2].
Hence, their communication protocols for UWSNs should be
developed to take into account these characteristics.

In particular, many routing protocols have been proposed
to enable a packet from each sensor node in underwater to
reach the sink on the sea surface [3, 4]. In the terrestrial net-
works, ad hoc routing protocols such as DYMO [5] are widely
used to establish a path from the source to destination. How-
ever, these routing protocols require high routing overhead to

set up and maintain the established paths. Due to the high
propagation delay of the acoustic signal, other routing pro-
tocols which can reduce such routing overhead should be
devised.

In UWSNSs, flooding-based routing protocols are pre-
ferred due to their capability of reducing the routing overhead
in terms of no need of path setup and maintenance [6-10].
Moreover, these routing protocols can increase the packet
delivery ratio by allowing multiple copies of a packet to reach
the sink along different paths.

In addition to routing, a transport protocol is still needed
to provide the end-to-end reliability of packet delivery. Par-
tially, some military applications such as tactical surveillance
require a high level of reliability [11]. In order to support these
applications in loss-prone UWSNS, a technique which can
detect and recover lost packets should be devised, since the
flooding-based routing protocols themselves cannot guaran-
tee the successful packet delivery to the sink.



In order to guarantee the successful packet delivery, an
ACK-based retransmission technique is required [11-14]. Par-
ticularly, since hop-by-hop ACK-based packet recovery
causes much channel contention and lowers the transmission
efficiency obtained by link-level broadcasting, an end-to-end
ACK-based retransmission technique is preferred. In addi-
tion, although other techniques such as FEC [15, 16] which
can increase the packet delivery ratio are employed, they re-
quire a lot of overhead in UWSNs which have narrow band-
width.

In most of end-to-end ACK-based retransmission tech-
niques, the absence of an ACK segment during a retransmis-
sion timeout requires the source node to retransmit the miss-
ing DATA segment. Such a timeout-based retransmission
technique causes a long latency to a successful retransmission
in UWSNS suffering from long propagation delay.

Fortunately, the Fast Retransmit technique [14] which is
well-defined in TCP (transmission control protocol) and
widely used in most TCP versions can be exploited to reduce
such latency. In the Fast Retransmit technique, the sink trans-
mits a duplicated ACK segment after detecting packet loss.
When the source node receives the same four ACK segments
(one normal ACK, three duplicated ACKs) from the sink, the
source node retransmits the lost DATA segment immediately.

However, when the Fast Retransmit technique is applied
to flooding-based routing protocols, the source node will still
suffer from an ACK indiscretion problem which is described
in more detail in the next section and it will perform un-
necessary retransmissions, which may deteriorate network
congestion, if there is any.

In this paper, we therefore propose two Fast Retransmit
techniques, called FDS (Fast Retransmit technique based on
duplicated ACK sequence number) and FDC (Fast Retrans-
mit technique based on Duplicated ACK Count) which can
work appropriately with the flooding-based routing proto-
cols. In FDS, the sink records a number of duplicated ACK
segments which have been transmitted from the sink into a
header. Based on the recorded number, the source node is
able to distinguish between the duplicated ACK segments and
multiple copies of the ACK segment. However, in FDS, we
need an additional field for including the number of dupli-
cated ACK segments into the header. Fortunately, if FDS is
implemented in TCP which has the well-defined Fast
Retransmit technique, it can record the number of duplicated
ACK segments using some of reserved bits of TCP header,
which can avoid the need of the additional overhead of bits.
However, as the reserved bits of TCP header have already
been utilized for other purposes, we need to devise a new
method not to depend on those reserved bits and we therefore
propose a Fast Retransmit technique, FDC, which utilizes a
local variable at a source node. In FDC, the source node cal-
culates an average number of ACK copies which are expected
to be received when the sink transmits an ACK segment.
Based on the number, the source node estimates how many
ACK segments have been transmitted from the sink and it
performs the Fast Retransmit correctly.

The rest of this paper is organized as follows. In Section 2,
some related works on flooding-based routing protocols and
Fast Retransmit technique are described. In Section 3, the
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FIGURE 1: Packet transmissions in DBR.

ACK indiscretion problem is described in more detail. In
Sections 4 and 5, our proposed Fast Retransmit techniques,
FDS and FDC, are presented, followed by performance evalu-
ations in Section 6. Finally, conclusion remarks are given in
Section 7.

2. Related Works

In this section, the flooding-based routing protocols pre-
ferred for UWSNs and the Fast Retransmit technique well-
defined in most of TCP versions are described separately
below.

2.1. Flooding-Based Routing Protocol. In loss-prone UWSNS,
flooding-based routing protocols have been introduced not
only to reduce routing overhead but also to increase the likeli-
hood of packet delivery. These protocols define their different
flooding area using location or depth information in order to
reduce unnecessary packet transmissions. The packets are
flooded along the multiple path in their own flooding area.

DBR [6] which defines its flooding area using depth infor-
mation is one of the simple flooding-based routing protocols.
Since the sink is located on the sea surface in common
UWSN:Ss, packets should be transmitted towards the sea sur-
face. Hence, in DBR, all nodes which are located at lower
depth from the surface than a current forwarding node can
participate in next forwarding. Figure 1 depicts an example of
packet transmission in DBR. S is a sender node, D is a sink,
and N, N,, and Nj; are intermediate nodes. After receiving
packet from S, N; drops the received packet sink since it is
located in deeper depth from the sea surface. In contrast, N,
and N, broadcast the received packet since they are closer
from the sea surface.

Since DBR uses only depth information to define its
flooding area, it allows packets to be transmitted in different
directions, not towards the sink. Obviously, flooding-based
routing protocols such as vector-based flooding protocol
(VBF) [8] could avoid unnecessary transmissions not towards
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FIGURE 2: Packet transmissions in DFR.

the sink, using geographical information [16]. In VBE each
intermediate node determines whether to forward or drop
the packet according to the distance between itself and a rout-
ing vector which is a vector from the source node to the sink.
If the distance between an intermediate node and the routing
vector is longer than a predefined distance threshold, the
node drops the received packet. Otherwise, the node partici-
pates in the next forwarding. However, VBF can still generate
unnecessary packet transmissions or provide low reliability
since a predefined distance threshold is utilized regardless of
link quality. Hence, in our previous work, we proposed a dir-
ectional flooding-based routing protocol (DFR) [7] which
defines its flooding area according to both geographical infor-
mation and link quality. In DFR, each node N calculates two

vectors, SN and ND, where S is a source node and D is the

sink. If an angle between SN and ND is smaller than a pre-
defined angle 0, node N participates in the next forwarding.
Since the defined angle 0 is controlled based on average link
quality, the number of nodes which participate in the next for-
warding depends on link quality which is calculated accord-
ing to ETX metric [17]. Figure 2 describes an example of
packet transmissions in DFR. In this example, the angle
which is calculated at node n2 and which is greater than 0
drops the received packet. In contrast, node nl participates in
the next forwarding since its calculated angle is smaller than
0. Of course, if link quality becomes too bad, 0 is increased
and n2 will participate in the next forwarding.

2.2. Fast Retransmit in TCP. In order to provide end-to-end
reliability, end-to-end ACK-based retransmission techniques
are defined in various transport protocols such as TCP-Vegas
[13] and TCP-Reno [14]. In most of end-to-end ACK-based
retransmission techniques, when the destination (the sink)
receives a DATA segment successfully, it sends an ACK seg-
ment to inform the source node of its reception. If the source
node cannot receive the ACK segment during a retransmis-
sion timeout (RTO) [18], it retransmits the missing DATA
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FIGURE 3: Fast Retransmit technique in TCP.

segment. In order to calculate the RTO, the Jacobson RTO
calculation algorithm [19] is well-defined and widely used to
perform the timely retransmission. However, such a timeout-
based retransmission technique causes a long latency to a suc-
cessful retransmission in UWSNs which suffer from long pro-
pagation delay.

To reduce the latency, the Fast Retransmit technique [14]
which is well-defined in most TCP versions can be employed.
According to this technique, the source node detects a loss of
DATA segments, based on the reception of duplicated ACK
segments. If a DATA segment is lost during transmission,
the destination will receive an out-of-order DATA segment.
In this situation, the destination transmits a duplicated ACK
segment to inform the source node of a next expected sequ-
ence number of a DATA segment. Hence, when the dupli-
cated ACK segment is received at the source node, the source
node can detect the loss of a DATA segment. However, if the
source node transmits the DATA segment immediately after
detecting the DATA segment loss, spurious DATA segment
retransmissions cannot be avoided when the DATA segment
transmission is temporarily delayed [20]. In order to avoid
such spurious retransmissions, the Fast Retransmit technique
is defined in the TCP standard, using the arrival of 3 dupli-
cated ACKSs as an indication that a segment has been lost.

Figure 3 shows an example of the Fast Retransmit tech-
nique. In this example, the source node transmits DATA seg-
ments (1), (2), (3), (4), (5), and (6). If the DATA segment (3) is
lost during transmission, the destination will transmit one
normal ACK segment and three duplicated ACK segments.
After receiving the third duplicated ACK segment, the source
node retransmits DATA segment (3) immediately.

3. ACK Indiscretion Problem with
Flooding-Based Routing Protocols

As mentioned before, in order to guarantee the successful
packet delivery, the ACK-based retransmission technique is
desirable. Moreover, the Fast Retransmit technique can be



exploited in order to reduce a retransmission latency. How-
ever, the Fast Retransmit technique faces an ACK indiscretion
problem newly defined in this paper when applied to flood-
ing-based routing protocols.

Due to the characteristics of the flooding-based routing
protocols, the sink node may receive multiple copies of a
DATA segment along different paths. After receiving the same
DATA segments, the sink can simply drop the DATA seg-
ments which have been already received. Hence, there is no
problem in the handling of multiple copies of a DATA seg-
ment transmitted from sensor nodes to the sink.

In addition to the DATA segment transmission, the ACK
segment transmission should also depend on the underlying
flooding-based routing protocols. Hence, source nodes may
receive a lot of multiple copies of an ACK segment along dif-
ferent paths. Furthermore, even when the sink transmits a
duplicated ACK segment after detecting packet loss, multiple
copies of the duplicated ACK segment may still reach the
source node. Despite the existence of multiple copies of differ-
ent types of ACK segment, source nodes cannot distinguish
between these ACK segments and they regard them all as
duplicated ACK segments.

This phenomenon is defined as the ACK indiscretion pro-
blem in this paper. The ACK indiscretion problem can cause
the Fast Retransmit to misbehave, requiring the sensor node
to perform unnecessary retransmissions of the DATA seg-
ment. This happens whenever the source node receives four
ACK segments with the same sequence number along dif-
ferent paths, regardless of the received ACK segment type.
Hence, this unnecessary retransmission wastes scarce net-
work resource in UWSNs through flooding, which may dete-
riorate network congestion, if there is any.

Of course, different routing protocols can be applied in
order to avoid the ACK indiscretion problem; a flooding-
based routing protocol for the DATA transmission from sen-
sor nodes to the sink and a nonflooding-based routing pro-
tocol for the ACK segment transmission from the sink. How-
ever, it is required that each sensor should have dual routing
protocols, which is not desirable in terms of the complexity
of implementation.

4. Fast Retransmit Based on
Duplicated ACK Sequence Number

In order to address the aforementioned ACK indiscretion
problem, FDS (Fast Retransmit based on duplicated ACK
sequence) which is one of our proposed techniques enables
each source node to correctly distinguish between the dupli-
cated ACK segments that the sink has transmitted and mul-
tiple copies of the ACK segment.

In FDS (Figure 8), a new count (DACK _cnt: duplicated
ACK count) is defined additionally besides the sequence
number (ACK_seq) which includes the next expected sequ-
ence number of a DATA segment. DACK_cnt represents how
many different duplicated ACK segments have been trans-
mitted from the sink. Since the intermediate sensor nodes
are not allowed to set the DACK _cnt, the multiple copies of
the ACK segment include the same DACK_cnt. Also, the
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duplicated ACK segments which are newly transmitted from
the sink include different DACK_cnt. Therefore, according to
the DACK _cnt, the source node can distinguish the type of
ACK segment and retransmit lost DATA segments.

4.1. Operation of Sink. In order to overcome the ACK indis-
cretion problem at source nodes, the sink should record the
number of duplicated ACK segments which have been trans-
mitted from the sink into DACK_cnt field in a duplicated
ACK segment. To maintain this number, the sink manages a
local value, ACK_send_cnt, which is initially set to 0.

The sink’s detailed operation is as follows. When the sink
receives a DATA segment, it determines whether the received
DATA segment is a DATA segment which is currently ex-
pected to receive it or not, based on a sequence number of the
DATA segment (DATA seq). If the expected DATA seg-
ment has been received, the sink computes the next ex-
pected sequence number of DATA segment and resets the
ACK _send_cnt to zero. After that, the sink sends an ACK seg-
ment whose ACK_seq and DACK _cnt are set to the computed
sequence number of DATA segment and ACK_send_cnt,
respectively.

Otherwise, if the sink detects DATA segment loss, it
increases the ACK_send_cnt by 1 and sends a duplicated ACK
segment with the DACK_cnt set to the new computed
ACK_send_cnt.

Moreover, if the sink receives multiple copies of a DATA
segment, it might send a lot of duplicated ACK segments
since these copies are regarded as unexpected DATA seg-
ments. Hence, the sink should drop the other multiple copies
of the received DATA segment. When the sink receives the
DATA segments which include the same DATA seq, it com-
putes the gap between the reception time of the previous one.
The sink drops the received DATA segment if the computed
gap is less than the minimum length of time for the DATA
segment retransmission which is generally defined in ACK-
based retransmission techniques because it is a copy of the
previously received DATA segment.

4.2. Operation of Source Node. If a source node receives an
ACK segment which is not duplicated, it sends a new DATA
segment or discards the received ACK segment according to
the ACK_seq. Otherwise, if the source node receives an ACK
segment which includes the same ACK_seq, it should execute
the Fast Retransmit only when the value in the DACK _cnt
field is greater than or equal to 3. In addition, in order to
address the ACK indiscretion problem, the source node dis-
cards the received ACK segments when they are multiple
copies of the already received ACK segment.

Here, the detailed operation of each source node is des-
cribed below. In receiving an ACK segment, a source node
compares the ACK_seq included in the received ACK seg-
ment with the maximum ACK sequence among previous
ACK segments. If the received ACK segment is an ACK seg-
ment arriving late, it will be dropped. Otherwise, if the
ACK seq in the received ACK segment is greater than the lat-
est ACK sequence number, the source node will send its new
DATA segments [12] (Algorithm 1).

If the ACK_seq in a received ACK segment is the same
with the ACK_seq in the previous ACK segment, the source
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if (ACK_seq < MAX_ACK_seq) then
Discard an ACK segment;

end if

if (ACK_seq > MAX_ACK_seq) then
MAX_ACK_seq « ACK_seq;
Transmit a new DATA segment;

end if

Retransmit a lost DATA segment;
else
if (DACK_num = DACK_cnt) then
Discard an ACK segment;
end if
DACK_num « DACK _cnt;
end if

(1) MAX_ACK _seq is the maximum ACK sequence among previous received ACK segments;
(2) Last_FR_seq is a sequence number of the last fast retransmitted DATA segment;
(3) DACK_num is a DACK_cnt of the last received ACK segment;

if (Last_FR_seq # DATA _seq and DACK_cnt > 3) then

ALGoRrITHM l: Operation of each source node (in FDS).

Source
DATA (1)

DATA (2)
DATA (3)
DATA (4)

DATA (5)

P

Multiple copies of ~4
ACK (2) — DAC_cnt (0)

Fast Retransmit |
DATA (2)

Sink

ACK (2) - DAC_cnt (0)

ACK (2) —» DAC_cnt (1)
ACK (2) — DAC_cnt (2)

ACK (2) —» DAC_cnt (3)

FIGURE 4: Operation in FDS.

node should operate differently according to the value in the
DACK _cnt field, not the number of received duplicated ACK
segments. If the value of DACK _cnt is greater than or equal to
3, the source node retransmits the corresponding DATA seg-
ment. Moreover, when the corresponding DATA segment has
been already retransmitted, the Fast Retransmit should be
stopped since the additional retransmissions can incur packet
collisions.

Otherwise, if the value of DAC_cnt is less than 3, the cor-
responding DATA segment is not retransmitted. However, in-
dependent of the DATA segment retransmissions, the recep-
tion of duplicated ACK segments can trigger other operations
in transport layer such as the part of congestion control.
Hence, in order to support such operations, the source node
regards the received ACK segment as a duplicated ACK
segment when the DACK _cnt in the received ACK segment is
different from the DACK _cnt in the previous ACK segments.

Figure 4 shows an example of the FDS. In this example,
the source node transmits DATA segments (1), (2), (3), (4),
and (5). If the DATA segment (2) is lost during transmission,
the sink will transmit 4 ACK segments which include differ-
ent DAC_cnt. After receiving the ACK segment and the value
of DAC_cnt becomes equal to 3, the source node retransmits
DATA segment (2) immediately.

5. Fast Retransmit Based on
Duplicated ACK Count

As mentioned before, FDS attempts to use some of reserved
bits of TCP header to record DACK_cnt for reducing the
transmission overhead. However, if all those bits have already
been used for other purposes, there exists no room for FDS in
the header. Therefore, another proposed Fast Retransmit



technique called FDC (Fast Retransmit based on duplicated
ACK count) can address the problem, which does not require
any additional header field, but through a local variable
(Figure 9).

In FDC, the source node assumes that a new ACK seg-
ment is flooded along the same set of multiple paths as the
ACK segment transmitted previously and the source node
will receive the same number of ACK copies as its previous
one. Hence, if a source node receives more ACK copies than
the previous one, the source node can detect that some dupli-
cated ACK segments have been transmitted. In this case, if the
number of duplicated ACK segment becomes over three
according to the basic Fast Retransmit defined in the TCP’s
Fast Retransmit, the source node performs the Fast Retrans-
mit correctly.

However, in case that a new ACK segment is flooded
along different set of multiple paths, FDC does not operate as
expected, since the source node cannot estimate the accurate
number of duplicated ACK segments which have been trans-
mitted from the sink. Hence, in order to support dynamic
changed set of multiple paths, FDC requires a sophisticated
path control method which is our future work.

5.1. Operation of Sink. Different from FDS, FDC does not
require an additional operation of the sink. The sink performs
basic operations which are well-defined by transport proto-
cols such as TCP [12].

When the sink receives a DATA segment, it checks
whether the received DATA segment is a DATA segment
which is currently expected to receive, based on a sequence
number of the DATA segment (DACK_cnt). If the expected
DATA segment has been received, the sink sends an ACK seg-
ment which includes a newly computed ACK_seq. Otherwise,
if the sink receives out-of-order DATA segments, it sends a
new duplicated ACK segment which includes the next ex-
pected sequence number of a DATA segment.

5.2. Operation of Source Node. In receiving an ACK segment,
a source node compares the ACK_seq inside the received
ACK segment with the maximum ACK sequence among the
sequences of the ACK segments received previously. If the
received ACK segment is an ACK segment which arrives late,
it is dropped. Otherwise, if the ACK _seq in the received ACK
segment is greater than the latest ACK sequence number, the
source node will send its new DATA segments and calculate
an average number of ACK copies which is expected to be
received at the source node when the sink transmits a new
ACK segment. The average number of ACK copies is denoted
by ADC (average duplicated ACK count) in this paper, which
is calculated according to (1). If the amount of ACK segments
which include the same ACK _seq is greater than quadruple of
ADC, the source node fast-retransmits the lost DATA seg-
ment.

ACK
ADCy = a + ADC(,_y + (1 - a) * (M)

Cwnd M

ADC(; and ADC,_;, are anew ADC value and a previous
ADC value, respectively. ACK_recv is the number of received
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ADC(t)=3

DATA (5) ACK (3)
DATA (6)
ACK (3)

ACK (3)
ACK (3)

Fast Retransmit
DATA (3) -}

FIGURE 5: Operation in FDC.

ACK copies which includes the same ACK_seq. Cwnd is a
congestion window size which is an amount of DATA seg-
ments that a source node can transmit before it has to wait for
an ACK segment to proceed. If FDC is employed in non-
pipelined transport protocols, Cwnd is set to 1. « is a system
parameter.

After the new ADC calculation, the source node increases
local value (denoted by ACK_cnt) whenever an ACK segment
which includes the same ACK_nt as the previous ACK seg-
ment is arrived. If ACK_cnt is smaller than the quadruple of
ADC, the source node drops the received ACK segment. Oth-
erwise, if ACK_cnt is greater than the quadruple of ADC, the
source node fast-retransmits the correspondent DATA seg-
ment.

Figure 5 shows an example of the FDC. In this example,
the source node transmits a DATA segment (1) and the sink
replies with one ACK segment. Due to the flooding, the
source node receives the same three ACK segments and it cal-
culates ADC_cnt value to 3. After then, the source node tran-
smits consecutive DATA segments (2), (3), (4), (5), and (6). If
the DATA segment (3) is lost during transmission, the sink
will transmit four ACK segments (3). Since the ADC_cnt
value is 3, the source node retransmits the DATA segment (3)
when the 12th ACK segment is received (Algorithm 2).

6. Performance Evaluation

6.1. Simulation Environments. Through the NS-2 simulator,
we tested the feasibility of our proposed Fast Retransmit tech-
niques for UWSNs. We conducted their performance com-
parisons against the Fast Retransmit without the ACK dis-
tinction technique. For the rest of operations of a transport
protocol, the TCP-Reno was employed in our simulations,
since it has already well-defined procedures to provide the
end-to-end packet delivery, including congestion control.
We chose the DFR [7] which was proposed in our previ-
ous work as a flooding-based routing protocol and we also
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(2) ACK cnt is a local value;

if (ACK_seq < MAX_ACK_seq) then
Discard an ACK segment;

end if

if (ACK_seq > MAX_ACK_seq) then

Transmit a new DATA segment;
end if
ACK_cnt < 0
if (ADC(t) * 4 > ACK_cnt)then
Retransmit a lost DATA segment;
ACK_cnt « 0
else
if (ADC(t) * 4 < ACK_cnt) then
Discard an ACK segment;
ACK_cnt «— ACK_cnt + 1
end if
end if

(1) MAX_ACK _seq is the maximum ACK sequence among previous received ACK segments;

ADC(t) <« a * ADC(t — 1) + (1 — «) * ACK_recv/Cwnd;

ALGORITHM 2: Operation of each source node (in FDC).

used a broadcasting mode of IEEE 802.11 MAC protocol.
We positioned 250 sensor nodes at random locations in the
square of 1500 m x 1000 m among which one sink was located
in the center top of the square. To emulate high error rate in
UWSNS, link error rates of 12% and 3% were set for DATA and
ACK segment transmissions, respectively. Each sensor node
was set to have a bandwidth of 10 kHz. The maximum trans-
mission range of sensor nodes was set to 300 m. Among the
sensor nodes which were located more than 4 hops away from
the sink, source nodes were chosen randomly. They generated
FTP traffic for 1800 seconds towards the sink. The DATA
segment size of the FTP traffic was set to 64 Kbytes. o value
of FDC was set to 0.5 (we found out the best o empirically).

6.2. Simulation Results. First, we investigate their average
throughput with various numbers of FTP traffic flows
(Figure 6). Regardless of the number of FTP traffic flows,
TCP-Reno with FDS and TCP-Reno with FDC outperforms
the original TCP-Reno in terms of higher throughput.

In the original TCP-Reno, since the source node performs
unnecessary Fast Retransmit due to the simple reception of
multiple ACK segments without the distinction, a lot of
packet retransmissions cause the network resource to be
wasted and particularly those retransmitted packets incur
packet collisions in the network. In contrast, such throughput
degradation can be avoided due to the capability of the ACK
distinction in TCP-Reno with our Fast Retransmit tech-
niques. Through this distinction, TCP-Reno with our Fast
Retransmit techniques performed the Fast Retransmit only
when necessary.

However, as the number of traffic flows increases, the net-
work gets more congested and the number of lost ACK seg-
ments increases accordingly. Hence, the number of unnec-
essary Fast Retransmit misbehaved by source nodes also
decreases, which makes their performance gap reduced.

Moreover, TCP-Reno with FDS outperforms TCP-Reno
with FDC with higher throughput, regardless of the number

0.6 T T T T T T T

0.5 R

0.4

03F

0.2F i

Throughput (Kbps)

0.1 i

4 6 8 10 12 14 16 18 20

Number of traffic flows

—— TCP-Reno with original Fast Retransmit
-»- TCP-Reno with FDS
--%-- TCP-Reno with FDC

FIGURE 6: Throughput.

of traffic. In TCP-Reno with FDS, the source node checks
whether to fast-retransmit the DATA segment according to
DACK _cnt recorded into a header. Hence, in TCP-Reno with
FDS, although some ACK segments are lost, the source node
can perform Fast Retransmit correctly if DACK_cnt which is
included in a received ACK segment is greater than 4. How-
ever, in TCP-Reno with FDC, since the source node deter-
mines whether to fast-retransmit the DATA segment accord-
ing to the number of duplicated ACK segments, Fast Retrans-
mit cannot be performed correctly when a lot of ACK seg-
ments are dropped due to network congestion.

Second, we compared retransmission overhead of the
three protocols according to the various number of traffic
flows (Figure 7). Retransmission overhead is defined as the
ratio of the number of DATA segments retransmitted by a
source node to the number of DATA segments received by
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FIGURE 7: Retransmission overhead.

the sink. As observed in the comparison of throughput, the
timely execution of the Fast Retransmit in TCP-Reno with
our proposed Fast Retransmit techniques leads to less re-
transmission overhead.

However, as network is more congested, a source node
depends on the larger number of timeout-based retransmis-
sions for providing reliable packet delivery, rather than Fast
Retransmit. Hence, the gap in their performance also be-
comes reduced with the number of traffic flows.

Moreover, retransmission overheads of TCP-Reno with
FDS and TCP-Reno with FDC are similar regardless of the
number of traffic. As mentioned in the previous simulation
analysis, TCP-Reno with FDC cannot perform Fast Retrans-
mit correctly when a lot of ACK segments are dropped. How-
ever, the lost DATA segments are retransmitted from the
source node after RTO timeouts [18]. Therefore, in both of
TCP-Reno with FDS and TCP-Reno with FDC, retransmis-
sion overheads are still observed as the number of lost DATA
segments increases.

Finally, we measured the distribution of arrival time of
DATA segments which have reached the sink for the three
protocols. In these simulations, one flow was selected among
eight flows in the network and we traced the 40th to 60th
DATA segments of the flow. Due to the flooding-based rout-
ing protocol, it is possible that the sink node received multiple
copies of a DATA segment within a short period, regardless of
the two implemented Fast Retransmit techniques. However,
in TCP-Reno with the original Fast Retransmit, the sink is
still receiving a lot of the same DATA segments even after the
time elapsed significantly (i.e., a lot of unnecessary retrans-
missions), unlike TCP-Reno with our proposed Fast Retrans-
mit techniques.

7. Conclusion

In this paper, we attempted to exploit the Fast Retransmit
well-defined in TCP for the purpose of supporting the reliable
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end-to-end packet delivery over flooding-based routing pro-
tocols in underwater wireless sensor networks. To apply the
Fast Retransmit, we revealed the ACK indiscretion problem
where each source node cannot distinguish between original
duplicated ACK segments and multiple copies of an ACK seg-
ment received through flooding, leading to unnecessary
retransmissions. To address the ACK indiscretion pro-blem,
this paper proposed two Fast Retransmit techniques to be
applied to flooding-based routing protocols, namely, FDS
(Fast Retransmit technique based on duplicated ACK sequ-
ence number) and FDC (Fast Retransmit technique based on
duplicated ACK count). In FDS, the sink includes a sequence
number indicating the occurrence number of duplicated
ACK segments into outgoing ACK segments. From the
sequence number, each source node is required to execute the
Fast Retransmit only when the sink has transmitted more
than three duplicated ACK segments. Since FDS requires an
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additional field in the header for the sequence number, we
also proposed the second technique, FDC, which allows the
source nodes to estimate the number of ACK copies which are
expected to be received when the sink transmits an ACK seg-
ment, without any dependency on the additional field. In
FDC, each source node performs Fast Retransmit only when
the number of received ACK segments received at the source
node is over four times than the estimated number of ACK
segments.

Through NS-2 simulations, we observed that our first pro-
posed Fast Retransmit technique, FDS, achieves 15-60%
throughput improvements and 220-286% reduction of re-
transmission overhead. Also, our second Fast Retransmit
technique, FDC, could achieve performance improvements
of 13-57% and 218-279% in terms of higher throughput
and lower retransmission overhead, respectively. Through
traces of the transmitted DATA segments, it was proved that
the original Fast Retransmit causes a lot of unnecessary re-
transmissions.
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