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Anonymity is an important concern in wireless communications. Most anonymous routing protocols in ad hoc networks usually
assume that a shared secret exists between the sender and the receiver. These protocols hide either the sender and the receiver
or the intermediate nodes from the ad hoc network. Different from previous anonymous secure routing protocols, this paper
proposes an anonymous routing protocol, ARAKE, which not only makes the sender and the receiver anonymous but also hides
the intermediate nodes from the network simultaneously. To make the protocol more practical in dynamic network, ARAKE uses
the public key to substitute the shared secret. In ARAKE, the receiver can authenticate the sender and gets a shared secret without
extra key establishment processes. ARAKE can prevent packet analysis attack as well as most active attacks that are based on route
information. The denial-of-service attack to specific session also can be restrained. The simulative results have shown that ARAKE

outperforms a representative protocol ARAN in terms of both communication and energy overheads.

1. Introduction

Ad hoc networks play an important role in urgent commu-
nications. In this environment, when an intermediate node
receives a communication packet, it may modify, fabricate,
or drop it. Based on the information of the received packet,
the malicious node may impersonate the original sender as
well. In addition, an adverse node also may capture a node
physically, gets the secrets from that node, and continues to
attack others using its secrets. For example, in Figure 1, A is
the sender, X is the receiver, N, and N, are adverse nodes,
and the other nodes are normal intermediate nodes. N, could
initiate both passive and active attacks once it receives a
packet.

The early routing protocols, such as AODV [1] and DSR
[2], mainly focus on how to route the packets in ad hoc
networks efficiently, but the potential adversaries that may
sneak into normal nodes are usually not taken into account.
As a result, some malicious nodes may affect the whole
network seriously by creating wrong packets or collecting
the traffic information [3]. Thus, the issue of secure and
anonymous routing [4-7] has received significant attention
in recent years.

Zapata proposes a secure version of AODV, called
SAODV [8], to prevent the black hole attack on AODV. In
this attack, a malicious node acts as an intermediate node
and advertises itself on the shortest path to the destination
by sending a route reply message. In SAODV, when the
intermediate node sends a route reply message to the source,
the source node will send a quick further route request
message to the neighbors of that intermediate node. The
neighbor node will reply with further route reply message
which contains the intermediate node listed in its route. If
it does not, then that neighbor node is a malicious node.
The approach adopted in SAODV is adequate for solving the
black hole problem, but the communication overheads are
increased greatly. Moreover, it fails to detect the wormhole
attacks, in which the neighbor of that intermediate node is its
partner. Naturally, we image a situation: if malicious nodes do
not know the identity of the source and the destination nodes,
and how these attacks are launched. Anonymous routing is to
achieve this condition.

In 2005, Sanzgiri et al. proposed an authenticated routing
protocol for ad hoc networks, called ARAN [9]. In this
protocol, all the packets are signed with the private keys
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FIGURE 1: Example topology.

of the intermediate nodes. As a result, any modification
of the packets can be found by neighbor nodes. ARAN
divides the heterogeneous ad hoc network environments
into three types: open, managed-open, and managed-hostile
and describes the corresponding attributes needed in each
environment. It solves the routing problem in open and
managed-open environments, but the solution in managed-
hostile environment is laid aside. Zhu et al. [10] propose an
anonymous secure routing for ad hoc networks, which owns
the anonymous properties in the field of identity, location,
and route information. This protocol achieves anonymity
of all participators. However, the basic assumption of its
routing is that the source node and the destination node
have to share secrets. In the ad hoc network, each node
may be the source node or destination node in different
sessions. To meet this assumption, each node has to share
secrets with all the other nodes before the practical network
is deployed. It is obvious that the storage of so many secrets is
extravagant, which makes the network hard to manage. With
the movement of the nodes, if some nodes leave the network,
the corresponding secret stored in other nodes is useless.
Furthermore, if some new nodes want to join this network,
all the other nodes have to negotiate new secrets with them.
That is nearly impossible for some deployed nodes. It means
that this routing protocol is difficult to be scalable.

Most anonymous routing protocols [11-13] either hide the
sender and the receiver [14] or hide the intermediate nodes
[15]. Thus, these protocols can be applied in the environment
that the nodes are safe physically. In battlefield environment,
the exposed nodes may be annihilated easily. Inspired by the
application demands described in ARAN [9] and ASR [10],
in this paper, we contribute an anonymous secure routing
protocol, ARAKE, for ad hoc networks. ARAKE hides the
network topology information, such as the participators and
their relationships. For example, in Figure 1, when N, receives
a packet, it cannot get valuable information about which node
is the sender, which node is the receiver, and which nodes
relay the packet in terms of the packet contents. Further, it
cannot distinguish whether the packet is request packet or
reply packet. ARAKE is designed to prevent both passive
and active attacks in the hostile environment. Different from
most previous works, ARAKE does not rely on shared secret
between the sender and receiver but constructs the routing
by public key. Hence, the scalability of ARAKE is better
than those protocols rely on shared secret. In addition, the

receiver in ARAKE can authenticate the sender and gets a
secret key from it without extra key establishment processes.
Intermediate nodes in ARAKE do not need anonymous
neighbor authentication before communications.

The remainder of this paper is structured as follows.
Section 2 introduces the security assumptions and design
goals. Section 3 describes the packet structure of ARAKE.
Section 4 presents our anonymous routing protocol ARAKE.
Section 5 provides a security analysis on ARAKE, while
Section 6 evaluates ARAKE in terms of computation costs,
communication costs, and energy costs. Finally, Section 7
concludes the paper.

2. Security Assumptions and Design Goals

2.1. Network Assumption. We consider that a node can move
freely and thus may leave or join the network dynamically.
The transmission range of a node is limited. Two nodes
out of the direct transmission range communicate by means
of some intermediate nodes. Each node has a fixed IP to
represent its identity and a long-term public/private key pair
to encrypt/sign the packet. The long-term public key of each
node is authenticated by a central certificate authority (CA)
and recorded in the public key certificate list of the CA.

Each node is capable of generating any number of
temporary public/private key pairs for itself. Different from
the long-term public key, the temporary public key is not
bound to a node. Since the public key certificate is usually
implemented with the RSA algorithm, in Section 6, ARAKE
is implemented with the RSA algorithm [16] as well. Other
public key encryption systems, such as ElGamal algorithm
(based on discrete logarithm) and identity based cryptogra-
phy (based on elliptic-curve discrete logarithm and pairings),
can be used to replace RSA.

2.2. Adversary Assumption. Assume that adversaries can
observe all the normal nodes simultaneously and eavesdrop
on all the packets among them. Meanwhile, they can modify
any packet they received, fabricate a new packet, and send
it to normal nodes, but they cannot prevent a normal
node broadcasting or unicasting the same packet that they
received to other nodes. Adversaries can impersonate any
nodes or rebroadcast the packets they received. In addition,
adversaries can capture some but not all nodes in the network
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so that the normal nodes are always the majority. Then they
get the public/private keys of the captured nodes. The running
environment and attackers’ ability simulate the battlefield
environment, and our assumptions are very near to the
practical applications.

Based on its ability, adversaries can launch the following
six attacks.

Packet Analysis Attacks. Due to the packet structure being
open to attackers, they can analyze each packet and get
useful information about packet number, receiving time, user
identity, data content, or other traffic information. These
attacks are passive and cannot be detected.

Redirection Attacks. The core of these attacks is to affect the
route path, so that attackers can add themselves into the
route path. To launch this attack, the active attacker may
modify or delay the packet. Then he declares that he is in the
shortest path between the source and destination nodes, and
advertises himself to his neighbors. Redirection attacks may
cause all the packets for some destination to be sent to the
attacker or to a destination node outside the area (e.g., black-
hole attack). In addition, attackers may initiate tunneling
attack; that is, a pair of attacker nodes A and B linked via a
private network connection. Each packet A receives from ad
hoc networks is forwarded through the wormhole to B and is
then retransmitted by Bj; similarly, B may forward all packets
to A. As a result, attackers are recorded in the shortest path
by other intermediate nodes.

Fabrication Attacks. Fabrications are the most common
attacks. Adversaries may fabricate routing packets, the credit
of other nodes, or the identity of some important node.
Hence, the information that the receiver gets from that packet
is wrong.

Reply Attacks. Adversaries record the valid packets and
retransmit them to the other nodes. Then the receiver will
generate more than one reply packet.

Impersonation Attacks. Adversaries initiate a session by
impersonating the identity of an authorized node to gain
access to network resources or to disturb the normal func-
tioning of the network. With the help of man-in-the-middle
attack, adversaries may even alter the information transmit-
ted between two nodes and let them believe they are talking
directly with each other.

Denial of Service Attacks. Adversaries try to disturb the com-
munication in ad hoc network by flooding the network with
vast amount of packets constantly. Although these packets are
useless, each node that receives those packets must handle
them. It causes services offered by the network not to work
as usual, slow down, or even stop. Ad hoc networks are easier
to be affected than wired networks, because there are more
possibilities to perform such an attack.

Physical Attacks. In hostile environments, adversaries can
easily annihilate any node if the location of that node is
revealed to attackers. The physical attack is the strongest
attack to nodes in ad hoc networks.

2.3. Design Goals. The goal of ARAKE is to resist the above
attacks under our network and adversary assumption. First,
since eavesdropping is easy to be achieved, all the fields of
the route packet should be encrypted so that passive attack
cannot get any useful information, even if all the packets of
a session are collected by the adversary. Second, the routing
protocol should be robust to node compromise. That is to say,
if some nodes are compromised, the security of other nodes
should not be harmed. Third, the protocol should be easily
scalable. When the nodes increase, the protocol needs to
adapt the mutative topology structure automatically. Fourth,
the computation and communication costs should be cost-
effective.

3. Packet Structure of ARAKE

The reply packet has the same format as the request packet,
and their format is as follows:

[label, session ko> NEXt pyppey» SEquence, dIP,

label™, sIP, source_signature, source_pubkey].

The first field is a unique session id. In the route request
phase, the second field is the temporary public key of the node
that relay the packet, and the third field is not used. In the
route reply phase, the second field is the session private key,
and the third field is the next node’s temporary public key. The
data in these two fields are encrypted, and their function is to
find an anonymous link among intermediated nodes.

The fourth field records a random number shared
between the source node and the destination node. The fifth
field records the IP of the destination node. The sixth field
records the session private key. The seventh field records the
IP of the source node. The eighth field records the signature
of the source node’s IP address. The ninth field records the
public key of the source node. All the data in fields 4-9 are
encrypted by the receiver’s long-term public key.

Each node sets up a route table and a spare route table
after it receives a valid reply packet. These two tables have
the same structure. Route table is to record the preferred
neighbor node, which can relay the packet, and spare route
table is to record all the other neighbor nodes.

The route table contains 4 fields:

[label",label”, previous_node, next node).

The first field records a session id and indicates which
session that node is participating in. The second field records
the paired session private key. The third field records its
previous node’s temporary public key. Similarly, the fourth
field records its next node’s temporary public key.

4. Proposed Protocol

In this section, we introduce the details of ARAKE. The
variables and notations are listed in Table 1. ARAKE consists
of four phases: system initialization, route request, route
reply, and route maintenance. To describe the protocol clearly,
we take the topology of Figure 1 as the example.
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TABLE 1: Variables and notations.
K Public key of node U
Ky Private key of node U
TK, Temporary public key of node U
TK, Temporary private key of node U
{d}K; Encryption of data d using key K
{dIK, Decryption of data d using key K,
[dIK,, Signature of data d by node U
[dIK; Designature of data d by node U
Ny Random number selected by node U
ny Random number selected by node U
1P, IP address of node U
label* Session public key
label” Session private key

4.1. System Initialization. In this phase, a central certificate
authority S takes charge of selecting the key size and cipher
size of the RSA algorithm and computes relevant public
parameters, such as the big primes p, g, and ¢(n). Then the
server generates the public key certificate for each node. Each
node needs to download associated parameters. The format of
the public key certificate is as follows:

Certificatey : IPy, K, [IPy, K{] . K - 6)

All nodes need to store the public key, K¢, of the CA, and
each one can watch the CA’s public key certificate list and
download its public key certificates. CA defines the storage
space of the route table and space route table that each
node needs to obligate for ARAKE. The period to delete the
incomplete items (e.g., the fourth field is null) in the two
tables is defined by CA.

4.2. Route Request Phase

4.2.1. Source Node Request. Assume the source node A wants
to set up a route to the destination node X. First, it selects the
session private key, label”, and generates the paired session
public key label®; for example, label” x label” = 1 mod
¢(n) in RSA. Then, A selects its temporary private key TK,
and computes the paired temporary public key TK, in the
same way as label” and label” . Finally node A broadcasts the
following request packet to its neighbors:

A — broadcast : {A, Ay, Ay, Ay As, A, Ay Ag, Ay}
(2)

Ay « label®, A, — {TK }label", Ay — n,, A, — {N,}K5,
Ag — {IPy ® N, }Ky, Ag — {label” & N,}K5, A, « {IP, &
NKp Ag — {IPAIK}K S Ao — {[KE]KS & N, IK.

4.2.2. Intermediate Node Validation and Rebroadcast. Let B
be an intermediate node which has received request packet
from A. It needs to determine whether it rebroadcasts the
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packet. Only when the following conditions are satisfied, B
rebroadcasts that packet.

(1) It is not the destination node. To verify this condition,
B decrypts A, and A with its private key K, selects
a random number m, and validates whether (3) holds
or not:

m A UAKS AT _ 1 od . ©)

If B’s public key K was equal to K, then {A4}Ky =
label” ® N, and {A,}Kj = N,. Equation (3) would
hold. However, since K # K, the verification fails.
Thus, B is not the destination node.

(2) That packet is not a reply packet. Since intermediate
nodes also need to estimate the packet type in route
reply phase, we introduce how to estimate the packet
type later.

(3) It has not received other request packets with the same
session id. To verify this condition, B only needs to
query its route table.

If the above conditions are satisfied, B records A, and
A, to the first and third fields of its route table, generates its
temporary public/private key TK;/TKy, and broadcasts

B — broadcast : {A|,B,,B;, Ay, As, Ag, Ay, Ag, A} (4)

B, = {TK}abel", and B; = n,.

4.2.3. Destination Node Validation. After receiving the route
request packet, the destination node X needs to verify that
packet, and then reply to it. Assume that the packet to X
is from an intermediate node M and has the format as
{A, My, M5, A, As, A, Ay Ag, Agh, M, = {TK,}Habel”,
and M; = n,,.

X first confirms that it is the destination node in the same
way as (3). Since the destination node is X, (3) turns into the

following equation. It is easy to see that the following equation
holds:

mlabel*x{{{lubel’eNA}K;}K;(aa{{NA}K;}K;(} — mmodn. (5)

Then, besides label™, X gets XA, = N4, XA; = IPy,
XAq = label, XA, = IP,, XA, = [IP,]K}, and XA, =
[[K}]Kg] successively with its private key K. The source
node’s public key K, can be extracted by computing K}, =
[XAo]K{. Next, X compares XA with its IP address and
checks whether the following holds or not:

XA, = [XAg] K} (6)

If any one of the above verifications fails, X drops the packet
and waits for the next one it can confirm. Otherwise, the
packet is legal and then X generates a reply packet. At last, X
decrypts M, to get TK, with label” and records it to the third
field of its route table and spare route table. Figure 2 shows the
flow chart of ARAKE.
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FIGURE 2: Flow chart of ARAKE.

4.3. Route Reply Phase

4.3.1. Destination Node Reply. Since X may receive more than
one legal request packet, multiple temporary public keys with
the same session id may be recorded in its spare route table.
However, it only replies the first one and adds its temporary
public key to the route table. Others are stored in the spare
route table. To generate a reply packet, X selects its temporary
private key TK, computes the temporary public key TK} in
the same way as node A, and unicasts a reply packet back to
M as follows:

X — M {X], X5, X5, Xy, X5, X» X7, X5, X} (7)

X, = label*, X, = {label }TK,,, X5 = {TKTK;;, X, =
(NLJKY X, = {IP, ® NJK, Xg = {label” ® N, K, X, =
{IPy® N4 IK ), Xg = {[IPX]K;(}KJr, X = {[K;(]KgéBNA}KX.

4.3.2. Intermediate Node Validation and Reply. Upon receiv-
ing the reply packet, M needs to determine whether it should
relay that packet. If the following two conditions hold, M
generates a new reply packet to its previous node.

(1) It is not the destination node. The verification equa-
tion is the same as (3). Since the destination node is
not M, the verification fails.

(2) That packet is a legal reply packet. To confirm this
condition, M selects a random number m, computes
XM, = [X,]TK},, and verifies whether the following
holds or not:

m XM modn, (8)

If the verification fails, M drops the packet. Otherwise, M

confirms only that the packet is a legal reply packet. For
this situation, the values of X, and X; are encrypted by M’s

temporary public key, TK},, and X, are filled by the session
private key label” simultaneously.

In the route request phase, the request packets are broad-
casted in the network, and M may receive many request pack-
ets from different nodes. However, in the route reply phase, M
only replies to the first one and adds its temporary public key
to its own route table. Other nodes’ temporary public keys are
recorded to its spare route table. Assume that M receives the
first route request packet {A |, B,, B3, A;, A5, Ag, Ay, Ag, Ao}
from the node B and has recorded A, and B,. Then M
computes BM, = {B,}label” = TKj, XM, = {X3}TK,, =
TK} and records BM, and XM to the third and fourth fields
of its route table. Finally, it unicasts a reply packet back to B:

M — B: {X,, MB,, MB;, X,, X5, X4, X7, X, Xo}  (9)
MB, = {label }TK}, and MB; = {TK; }TK}.

4.3.3. Source Node Validation. Besides the equations X
should verify, A needs to verify whether the random number
N, decrypted from the packet is the original one it generated.
Then N, can be used to encrypted the data packets as the
symmetric key. After the packet is confirmed, A adds TKj to
the fourth field of its route table and spare route table.

4.4. Route Maintenance. Each node deletes the incomplete
items in its route table and spare route table periodically so
that the two tables have enough space to record new items. A
current route may be broken into two cases. First, a node in
the route cannot receive packets from its neighbor nodes over
a fixed time. Second, a node broadcasts a route block message
actively. In the first case, the node selects another temporary
public key in the next position of its spare route table to repair
the route. In the second case, the node sends a ERR message to
report that an active link will break off. Suppose that node M



cannot continue to keep the link between A and X; it unicasts
the ERR message to its neighbors as follows:

M —> B : label”, {ERR, label” } TK},
(10)
M — X : label”, {ERR, label” } TK,.

Upon receiving the packet, B decrypts it, checks the
validity with label™ and label ™, and then checks whether it can
repair this route by querying its spare route table. If it cannot
repair it, B continues to relay the corresponding message to
A:

B — A :label",{ERR, label } TK}. (11)

If all the nodes in the route path cannot repair the route,
either the source node A or the destination node X can
initiate a new route request to set up a new link.

5. Security Analysis

In this section, we analyze the security of ARAKE against
packet analysis attack, fabrication attack, redirection attack,
impersonation attack, reply attack, and denial of ser-
vice attack under the adversary assumption described in
Section 2.

In ARAKE, all the request and reply packets have the
same format. A node without special knowledge cannot
distinguish the packet type directly. Only the source node and
the destination node use their public keys in ARAKE. The
authentication information is included in the 4-9 fields, and
each field is encrypted by the public key of the destination
node. Hence, these data are useless to all the other nodes. The
data in the fifth, sixth, seventh, and ninth fields are confused
by a random number N,, and that number is encrypted
and given in the fourth field. Owed to N, the ciphertexts
generated by the same plaintext and public key are different
in two sessions. As a result, attackers cannot guess which
node generates the packet by comparing public keys. Since
temporary public keys in the second and third fields are not
associated with the node identity, attackers cannot deduce
which node relays the packet from the temporary public keys.

Besides the format and content, a packet also provides
another message, packet receiving time, to attackers. If
attackers are not in the route path, they cannot distinguish the
packet type, and then the receiving time is useless for them. If
an attacker happens to be in the route path, he can record the
receiving time of the reply packet and calculate the time delay
from the time that he rebroadcasts the request packet to the
time that he receives the reply packet. In addition, he could
calculate the time delay between each neighbor node and
him as well. Then he may estimate the general hops from the
destination node to him. However, since the processing time
of each node is not same, the estimated hops are not precise.
To get more exact information, he needs to be in the route
path of the same destination node for many times. However,
since the identity and statuses of the destination node and
the nodes out of his transmission range are anonymous for
him, this condition is very hard to meet. As a result, the
time analysis does not lead to serious threats. After the route

International Journal of Distributed Sensor Networks

reply phase finishes, the attacker can estimate general hops
from the destination node to him and knows how many
neighbor nodes in his transmission range. However, which
nodes are on the route path and which nodes are closer to the
destination node are unknown to him.

In the route request phase, all the intermediate nodes
do not know the session private key. Thus, no information
about the other nodes reveals in this phase. When the request
packet arrives at the destination node, it should be verified
by some equations. If the value of the fifth field is modified,
the decrypted destination IP value cannot be the same as
the receiver’s IP. If any one of the seventh, eighth; or ninth
field is modified, (6) will fail. The values in the first and
sixth fields can mutually verify. If any one of the two fields
is modified, the node will drop that packet directly. Only all
of these verifications hold, the destination node believes that
the packet is not modified by a malicious node. Otherwise, it
just needs to wait for another valid packet. Similarly, the reply
packet also needs these verifications. Hence, the fabrication
attack cannot lead to serious problems.

To redirect a path from a normal node to the attacker,
such as black hole attack and tunneling attack, the attackers or
the cooperative attackers need to make the neighbors feel that
they can relay the packet to the destination nodes with the
shortest time. However, since the destination node and the
intermediate nodes are all anonymous, the attackers cannot
generate effective packets to affect neighbors’ judgments.
Thus, the redirection attack is invalid in ARAKE.

Similarly, the attacker cannot activate an impersonation
attack, because he does not know who he should impersonate.

Each node in ARAKE only rebroadcasts the first request
packet and unicasts the reply packet for one time. Repetitive
packets are just dropped. Hence, the reply attack is invalid.

The most general threat to all routing protocols is the
DosS attack. ARAKE cannot prevent this attack to the whole
network, because the source node and the destination node
are anonymous to all the other nodes. If a malicious node
could generate a request packet to an inexistent destination
node, the other nodes will receive this request packet and
have to rebroadcast it. But ARAKE can protect a specific
session from the DoS attack. In this situation, the source
node cannot be the malicious node. No matter how many
request packets it received, each node only generates one
request packet in route request phase. In route reply phase,
each node can only recognize the reply packet encrypted with
its temporary public key. Hence, the valid packets won't be
received except the neighbor nodes of the malicious node.

If the attacker happens to be in the route path and refuses
to relay the packet to his neighbor, the link is broken. Then
the node in the previous or next position may choose another
node in their spare route table to replace the attacker as
described in the route maintain process. It means that the
attacker cannot launch DoS attack constantly.

6. Performance Evaluation

In this section, we evaluate the performance of ARAKE by
comparing its computation costs, communication costs, and
energy costs with ARAN.
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6.1. Computation Performance. We first compare the com-
putation overheads of ARAKE and ARAN on the nodes in
the route path. Then we discuss the computation costs on
the nodes out of the route path. Finally the influence to the
network made by the malicious nodes is analyzed.

6.1.1. Computation Costs of Route Nodes. Due to the com-
putation time of encryption being far greater than some
fundamental operations (e.g., ®), we ignore these simple
operations. In public key cryptogrammic system, the opera-
tion time of encryption and signature is nearly the same, and
the operation time of decryption and designature is nearly the
same, such as RSA [16] and BF-IBE [17]. Since we implement
the ARAKE and ARAN with RSA, we make RSA as an
example in this paper. The computation costs of encryption,
decryption, signature, and designature in RSA are the same.
We called all these operations basic operation. Measured by
the basic operations, we compute the total computation times
of the two protocols when the final route path consists of t
nodes.

If there are t nodes, 1 + 3 + 5(t — 3) + 4 = 5t — 7 basic
operations are needed in route request phase and the same
times of operation operations are needed in route reply phase
of ARAN. So 10t — 14 basic operations are needed in ARAN.
In the same situation, 8 + 4(f —2) + 8 = 4t + 8 basic operations
in route request phase and 9 + 5(f — 2) + 9 = 5t + 8 basic
operations in route reply phase are needed in ARAKE. So
9t + 16 basic operations are needed in ARAKE. Thus, we
know that the computation cost of ARAKE and ARAN is in
the same level and the ARAKE is slightly better than ARAN
when the number of route nodes is larger than 30 and without
malicious nodes.

6.1.2. Computation Costs of Other Intermediate Nodes. In the
route request phase of ARAKE, each node has to test whether
it is the destination node. This needs 2 basic operations.
For the reduplicative packets with the same label, the node
can drop it directly. Hence, the computation times of the
extra operations are decided by the number of the packets in
this phases. In the route reply phase of ARAKE, each node
also needs to confirm whether it is the source node or in
the route path. Hence, the situation is similar to the route
discovery process. In the route request phase of ARAN, each
node should design the first part of the received packet to
verify whether it is the destination node. Each node needs
4 basic operations except the neighbor of the source node.
So 4n — 2m designature operations are needed, where m
denotes the numbers of neighbors of the source node. The
same computation times are needed in the route reply phase
of ARAN. That is to say, the computation costs of these two
protocols are still in the same level. A fact should be noticed
that the source and the destination nodes need less compu-
tation costs than the intermediate nodes in ARAN. However,
in ARAKE, the computation costs in the source node and the
destination node are more than the intermediate nodes. The
differences in the distribution of computation costs may lead
to small distinction in communication performance of the
two protocols.

6.1.3. Influence by Malicious Nodes. Suppose that one or more
nodes except the route nodes are malicious. They send useless
or fabricated packets to their neighbors. In ARAKE, each
normal packet is encrypted and only designated node can
decrypt it. So the malicious nodes can send their packet
freely; it can only cause 1 time useless decryption to all of its
neighbors. Since the neighbor nodes of the malicious node
cannot recognize the fabricated packets, they cannot retrans-
mit these packets. Hence, other nodes are not impacted by
the malicious node. If a malicious node is just selected to relay
the packet between the source node and the destination node,
the only attack it can do is to drop the packet. It will not add
the computation cost of other nodes. But other nodes should
waste much time repairing the link. ARAN protocol cannot
prevent the denial-of-service attack. When a node receives
a packet, it will retransmit that packet to its neighbor node,
and finally the packet will be received by all the nodes in
the network. So the malicious node sends one packet to its
neighbors; the number of the packets generated by the other
nodes is equivalent to the total packets that those nodes set
up a new route path.

6.2. Communications Costs. In this section, we implement
ARAKE and another representative protocol, ARAN, with
C++ language and compare their performance on the NS2.
For both ARAN and ARAKE, the 1024 bits RSA algorithm is
utilized to encrypt/decrypt or sign/design route packets. The
transmission range of each node is 250 m. All the nodes are
distributed at the vertex of a grid when the simulations start.
The edge length of the grid is 200 m. The MAC layer protocol
is IEEE 802.11. ARAKE and ARAN are simulated under 7
different configurations: 5 nodes lined up in a row; 10 nodes
lined up in two rows with 5 nodes in each row; 15 nodes stand
in three rows; 16 nodes stand in three rows; 25 nodes arrange
in a square; 36 nodes arrange in a square; 49 nodes arrange in
a square. The two protocols are evaluated by following four
metrics.

(1) Average end-to-end delay of data packets: this is the
average data packet delay from the source node to
the destination node. For one packet, the delay time
starts when data packet leaves the source node and
ends at the time the destination node receives that
data packet.

(2) Average route acquisition latency: this is the average
route packet delay between the source node and
destination. In ARAKE, the source node should add
all possible paths into its spare routing table and then
select the fast path to the routing table. Hence, the
route is set up after all the reply packets back to
the source node. The delay time starts from the first
request packet sent by the source node and ends with
the last receipt of corresponding route reply packet.

(3) Routing packet load: this metric shows the packet
overhead to set up a route path between the source
node and the destination node. We compute the total
number of control packets and the average number of
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data packets to send a data and get the value of this
metrics by computing their quotient.

(4) Average path length: these metric is measured by
the average hops between the source node and the
destination node. We describe it with the hops taken
by data packet from the source node to destination as
well as from the destination node back to source.

Figure 3 shows the observed results of ARAN and
ARAKE in different numbers of nodes. The end-to-end delay
and the path length of the two protocols are nearly identical;
the route acquisition latency and the routing load of ARAKE
are slightly lower than ARAN.

The end-to-end delay and the path length of the two
protocols are nearly identical except the scene that the node
number is 49. In this scene, the two protocols happen to
choose different paths and the path length is different as well.
We describe it with Figure 4. The node 37 is the source node,
and the node 13 is the destination node. In ARAN, the path
from the source node to destination is different with the path
from the destination node back to the source. It is occasional
that the path length of route discovery is longer than route
setup and the route setup path of the two protocols is identical
at the same time. Hence, the data packets in ARAN need more
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FIGURE 4: Route path in a 49-node scene.

time from the source node to destination. The average end-to-
end delay is highly relevant with the path length. Hence, the
values of the two protocols are different in this scene.
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In most scenes, the time that the route request packet
arrives to the destination node and the first reply packet back
to the source node are very near. However, the time that the
last reply packet back to the source node are different between
ARAKE and ARAN. Since the redundant paths have been
saved in the spare route table, the source node in ARAKE
only receives one reply packet. However, the source node
receives more than one reply packets in ARAN. Hence, the
route acquisition latency of ARAN is longer than ARAKE.
This result is made by the broadcast nature of wireless
transmissions. Due to more than one reply packets being sent
back to the source node, the total route packets in ARAN are
more than that in ARAKE. Hence, the routing load of ARAN
is higher than ARAKE.

6.3. Energy Costs. The energy costs of ARAKE are highly
related to the basic cryptographic operations. In ARAKE,
each intermediate node needs to validate that it is not
the destination node with (3), which needs 2 decryption
operations. Then it needs 1 decryption operation to determine
the packet type with (8). Hence, receiving a packet in ARAKE
needs 3 decryption operations. In addition, generating a
request packet needs 1 encryption operation and generating
a reply packet needs 2 encryption operations. In ARAN, to
receive a packet, a node needs to design two certificates to
extract the public keys of the last two nodes with the server’s
public key and then designs the packet with these two public
keys. Hence, 4 designature operations are needed to receive a
packet. Finally, 1 signature operation is needed to generate a
new packet in ARAN.

Suppose that each cryptographic operation needs to
consume 1 mJ. Each intermediate node in ARAKE needs 3 m]J
to receive and average 1.5m] to send a packet. Meanwhile,
node in ARAN needs 4m]J to receive and 1m]J to send a
packet. The idle energy cost is set to 0 m]J. Figure 5 shows
the comparisons of their energy costs. The average values are
listed.

In ARAKE, each node needs to consume about 16 mJ
to set up a session, while 37 mJ is needed in ARAN. The
nodes that have more neighbor nodes consume more energy,
and those nodes in the edge of network usually expend less
energy. The maximum energy cost in ARAKE is about 30 m],
while the minimum value is only about 5 m].

7. Conclusions

In this paper, a novel secure routing protocol, ARAKE, for
ad hoc networks is proposed to solve the anonymous secure
routing problem in hostile environment. The protocol hides
the topology structure of the network and can prevent most
existing attacks.
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